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reviewing the results of automated
conversion of structured organic synthesis
procedures from the literature†

Kojiro Machi, *a Seiji Akiyama, b Yuuya Nagata b and Masaharu Yoshioka *abc

Organic synthesis procedures in the scientific literature are typically shared in prose (i.e., as unstructured data),

which is not suitable for data-driven research applications. To represent such procedures, there is a well-

structured language, named chemical description language (cDL). While automated conversion methods

from text to cDL using either a rule-based approach or a generative large language model (GLLM) have

been proposed, they sometimes produce errors. Therefore, human review following an automated

conversion is essential to obtain an accurate cDL. The aim of this work is to visualize embedded

information in the original text with a structured format to support the understanding of human reviewers.

In this paper, we propose a novel framework for editing automatically converted cDLs from the literature

with annotated text. In addition, we introduce a rule-based conversion method. To improve the quality of

automated conversions, a method of using two candidate cDLs with different characteristics was

proposed: one generated by the proposed rule-based method and the other by an existing GLLM-based

method. In an experiment involving six organic synthesis procedures, we confirmed that showing the

outputs of both systems to the user improved recall compared with showing one output individually.
1 Introduction

Organic synthesis procedures in the scientic literature are
typically shared in prose (i.e., as unstructured data). Repro-
ducing these procedures is sometimes challenging because
these texts can be ambiguous and require interpretation by
human experts. While recent machine learning techniques and
laboratory automation can accelerate chemical research,1 the
absence of machine-readable procedures hinders the applica-
tion of these efforts. If these procedures are shared as an nd-
able, accessible, interoperable, and reusable (FAIR) format,2 it
will help not only computers but also people who want to
execute experiments but are not familiar with organic synthesis.

There are several schemes for representing organic synthesis
procedures and these can be classied into two levels: (a)
a general description that cannot be executable on the
platforms3–8 and (b) a detailed description that can be execut-
able on robotic platforms.9,10 At the detailed level, Mehr et al.
proposed the chemical description language (cDL).10 cDL was
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180
designed as a universal chemical programming language that
could be executed on any automated platform by translating
into platform-specic low-level actions if the actions were
feasible on the platforms. Their research group demonstrated
the capability of cDL by executing chemical reactions on their
robotic platform. Furthermore, several examples that use cDL
to execute automated chemical reactions on other platforms
have been reported.11,12 An integrated development environ-
ment for cDL named ChemIDE and a rule-based natural
language processing (NLP) tool for the conversion of organic
synthesis procedures from text to cDL have also been proposed.

Because manual information extraction from the chemical
literature is a labor-intensive task for domain experts, NLP tools
have been developed to support this work. From an early stage,
rule-based methods have been developed for the extraction of
information, such as compound names, reaction parameters,
and actions.3,13–15 For example, ChemicalTagger3 was developed
to extract chemical reaction information from the literature.
Because the extraction is done by rules, domain experts can see
the alignment of raw text and the output if it is visualized.
However, rule-based methods sometimes suffer from scalability
and exibility issues against a wide variety of texts. In the past
decade, deep learning-based methods have also been devel-
oped.16,17 These methods are generally more exible and robust
to data variations and show higher performance than rule-
based methods but require large amounts of task-specic data
for the training of a model. To enable the training of deep
learning models with smaller datasets, bidirectional encoder
© 2025 The Author(s). Published by the Royal Society of Chemistry
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representations from transformers (BERT)18 were proposed.
BERT employed self-supervised pretraining to obtain general
natural language patterns and supervised ne-tuning for
solving a specic task. To obtain higher performance in
domain-specic text, several domain-specic BERTs have been
introduced.19–23 For chemistry, ChemBERT22 was proposed. In
the past few years, generative large language models (GLLMs),
which have shown high performance when trained only with
zero or a few training examples, have constituted a trend in NLP
tasks.24–26 For chemical information extraction, several works
demonstrated the usefulness of GLLMs.11,27–29 However, several
challenges, including consistency of the output format and
unclear text alignment, hinder the wide application of these
models.

For the automated conversion from text to cDL, Yoshikawa
et al. proposed a GLLM-based method named CLAIRify11 and
compared the performance of CLAIRify with a rule-based Syn-
thReader. CLAIRify employed an iteration cycle of generation by
a GLLM (GPT3.5, one of the GPT models31) and the validation of
generated code to obtain a syntactically correct output. The
outputs of organic synthesis procedures generated by Syn-
thReader and CLAIRify were compared by expert chemists, and
the experts oen preferred the outputs of CLAIRify over those
from SynthReader. In addition, CLAIRify tends to obtain higher
recall and lower precision than SynthReader. The experts
mentioned that the effects of missing actions are more severe
than ambiguous or wrong actions when they determine
preferred outputs.

While the focus of these studies was on improving the
performance of automatic extraction, the aspect of manually
correcting the automatically extracted results was not
Fig. 1 Overview of our approach. In existing approaches, cDL is generate
unannotated text. In contrast, our approach generates cDL using two sys
In the GLLM-based system, cDL is directly transformed from the text (1-A
B1), and if necessary, the annotations can be modified (1-B2). Then, the
Finally, human reviewers can compare the converted cDLs with annotat

© 2025 The Author(s). Published by the Royal Society of Chemistry
systematically investigated. However, a human review process is
essential to make appropriate cDLs from the literature because
these methods did not have 100% accuracy. In the review step,
human reviewers need to read the original text.

Along these lines, the aim of this work is to visualize
embedded information in the original text with a structured
format to support the understanding of human reviewers. We
propose a novel framework for editing automatically converted
cDLs from the literature with annotated text. Fig. 1 shows the
overview of our framework. Our framework has two main
points. First, to make actions described in plain text easier to
understand visually, our framework provides reviewers with
annotated text; it annotates action verbs with related entities
and parameters. We used the organic synthesis procedures with
argument roles (OSPAR) format,8 which was developed in our
previous work, as the annotation format. Here, the structuring
of procedures is aimed only at the synthesis sections, and no
structuring is performed for the purication or analysis sections
reported in the literature. This is because purication and
analysis involve a wide variety of operations and require the
description of equipment-specic procedures, which are
currently considered unsuitable for structuring. Consequently,
the conversion of text to cDL is also restricted to the synthesis
sections in this study. Second, to improve automated conver-
sion quality, we propose a method to use two candidate cDLs
with different characteristics. One is the GLLM-based CLAIRify
and the other is a rule-based system that was developed in this
study. Although CLAIRify achieved higher recall than the rule-
based system, there are several cases where only the rule-
based systems can nd appropriate information. Therefore, it
is useful for the user to refer to both results to select appropriate
d by a single system, followed by a human review that compares it with
tems: (A) a GLLM-based system and (B) a rule-based proposed system.
). In the proposed system, text annotation is conducted using BERT (1-
annotated text is converted into cDL by a rule-based method (1-B3).
ed text.

Digital Discovery, 2025, 4, 172–180 | 173
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parts from them. By using this framework, the user can recog-
nize the action in the text with annotation and select appro-
priate action parts from the candidate cDLs. Even if the
appropriate actions are not included in either of the converted
cDLs, the user can easily identify the lack of action information
in the cDLs by seeing the annotation.

In section 2, we rst describe the existing schema for
annotating text. Then, we introduce the user interface of our
framework followed by the proposed rule-based conversion
method. In section 3, we describe an experiment we conducted
to discuss the comparative advantages of our framework by
comparing the conversion result of cDLs by CLAIRify and the
proposed system. As a result, we conrmed that the proposed
system could nd action information, which was not feasible by
CLAIRify. We also compare the proposed system with Syn-
thReader and discuss the advantages of the proposed system
against the existing rule-based system. We found that the
proposed method performed better, in terms of nding explicit
actions, which were important for the information extraction
task, while SynthReader was better at nding implicit actions.
2 Methods

In this section, we rst describe an existing schema for visual-
ization. Then, we propose a user interface for human review and
an automated conversion method from text to cDL.
2.1 Related work: OSPAR format

We used the OSPAR format8 for visualization and as an inter-
mediate representation to convert text to cDL. An example of
the visualized annotation is shown on the le of Fig. 2. The
Fig. 2 Screenshot of the proposed user interface. The procedure text is
the OSPAR corpus.

174 | Digital Discovery, 2025, 4, 172–180
OSPAR format consists of two tasks: (a) named entity recogni-
tion (NER) and (b) relation extraction (RE).

NER is a task to nd spans of actions, entities, and param-
eters. Words that represent actions are annotated as REAC-
TION_STEP. Related entities with actions, such as chemical
substances, gas, and instruments are annotated as ENTITY.
Labels for representing parameters are TIME, TEMPERATURE,
and MODIFIER. MODIFIER is information about parameters
other than time and temperature used to perform actions, such
as atmosphere, way to add compounds, stirring rate, and
others.

RE is a task to nd semantic roles between the action and
entity/parameter. Semantic roles express the relation between
a predicate (verb) and its arguments. In the OSPAR format,
semantic roles represented by using PropBank-style semantic
roles32 are used and each usage of a verb has a set of roles called
rolesets. There are three labels in the OSPAR format, namely
ARG1, ARG2, and ARGM. ARG1 represents the prototypical
patient or theme of the verb. ARG2 represents other arguments
that depend on rolesets. ARGM represents parameters that do
not depend on rolesets.
2.2 User interface

We propose a user interface that consists of three main func-
tions: (a) conversion from text to the OSPAR format by BERT, (b)
conversion from the OSPAR format to cDL by rules, and (c)
conversion from text to cDL by CLAIRify. Fig. 2 shows the user
interface. This editorial process starts by entering an organic
synthesis procedure into the text box at the top of the screen.

Aer the user clicks the “annotate text” button, the text is
converted to the OSPAR format and the result is visualized by
based on Okaya et al.,30 with revisions made through pre-processing in

© 2025 The Author(s). Published by the Royal Society of Chemistry
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brat,33 a web-based annotation tool. Then, the user can see the
annotated text in the OSPAR format. If the user is not satised
with the automatic annotation results, he/she can modify the
annotation results by using brat as an annotation tool. This
modication has the potential to improve the automated
conversion method from the OSPAR format to cDL. By moving
a cursor over REACTION_STEP, the user can view a roleset for
the action to refer to the modication (Fig. S1†).

Then, the user clicks the “Generate cDL” button above the
middle text editor to generate cDL from the OSPAR annotation
which is displayed in the brat. The generated cDL can be edited
and saved by clicking the “save as le” button as a lename
beside the button. The text editor on the right is used for
conversion from the text in the top textbox or text shown in brat
to cDL by CLAIRify. The buttons around this editor have the
same functions as the middle text editor. The user can compare
both conversion results and select a better cDL as a base for the
reviewing process. When the user nds some mistakes in the
base cDL, the user can refer to the other cDL to check the
existence of correct action for revising the base cDL.
Fig. 3 An example of conversion from the OSPAR format to cDL.

© 2025 The Author(s). Published by the Royal Society of Chemistry
See ESI† for more details of this user interface.
2.3 Conversion from text to cDL

2.3.1 Conversion from text to the OSPAR format. We used
a system that was similar to a system constructed in our
previous work by using the OSPAR corpus.8 We trained Chem-
BERT models,22 which are domain-specic BERTs for chemistry
and for NER, and another ChemBERTmodel for RE by using the
training set and development set of the corpus. The ChemBERT
models were implemented using HuggingFace Transformers.34

2.3.2 Conversion from the OSPAR format to cDL. We
converted the OSPAR format to cDL by mapping the arguments
of roleset to cDL actions. We used cDL version 2.0.0.35 Fig. 3
shows an example of the conversion. First, we dened candidate
cDL actions for each roleset to map the rolesets to the cDL
actions. Then, to align the roleset arguments with cDL argu-
ments, we specied the type and whether each roleset argument
was “required” by referring to the target cDL arguments. For
liquid and solid handling actions of cDL such as Add and
Digital Discovery, 2025, 4, 172–180 | 175
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Transfer, the corresponding roleset has “transfer direction”
information to determine the order of the cDL actions. We used
ChemicalTagger3 to obtain detailed information about the
arguments, such as compounds, masses, and other parameters.
Then, cDL actions were generated by referring to the roleset and
the outputs of ChemicalTagger. When ARGM arguments such
as TEMPERATURE or TIME were present, these parameters
were either used to generate new actions (e.g., HeatCh-
illToTemp) or to dene specic cDL arguments (e.g., time = “1
h”). In cases where an argument was a mixture, such as a solu-
tion of sodium iodide (15.0 g, 100 mmol) in acetonitrile (100
mL) (see ESI† for details), a single argument could be converted
into multiple cDL actions. The cDL actions were generated as
instances of the cDL library, which automatically validated the
cDL arguments. Finally, these instances were converted into
XML format.

We used text normalization tools. To normalize the verbs, we
used WordNet lemmatizer.36 To interpret numbers in word
form, we used text2num37 to convert numbers in word form to
numerical form. Additionally, we dened several constants to
accurately interpret the parameters expressed in words and
convert them into precise values (see ESI†).

Because it was difficult to capture multiple asks (e.g.,
compounds A and B were mixed in a ask X and compounds C +
D were mixed in a ask Y), we xed vessel to reactor other than
the case that OSPAR argument was a mixture and multiple
compounds were written in the argument.
3 Experiment

As we mentioned in section 1, recall is important for human
review. To discuss the advantages of showing both the outputs
of the proposed method and CLAIRify, we constructed six cDL
examples and evaluated the recall of the methods on the
examples. In addition, we compared the proposed method with
SynthReader10 as an existing rule-based method.
Fig. 4 An example for evaluating a correct action in exact recall and
action recall. While missing and/or wrong parameters are not allowed
in exact recall, they are allowed in action recall.
3.1 Construction of evaluation data

We selected organic synthesis procedures that can be per-
formed by an automated robot (Chemspeed platform), from
Organic Syntheses38 for the examples. The cDL examples were
constructed by three authors: two organic chemists (associate
and assistant professors) and one information scientist (PhD
student). To evaluate the effect of the automated annotation
quality on the OSPAR format, we required annotated texts that
were checked by humans. Because there were only four exam-
ples in the test set of the OSPAR corpus, we additionally anno-
tated two examples other than the corpus in the same manner
as the OSPAR corpus including text preprocessing.

To evaluate each method by considering only actions that
were explicit in the text, we labeled implicit actions. We labeled
each action into an explicit or implicit action to distinguish
them in the evaluation phase because errors from these types of
actions had different meanings in an information extraction
task. There are two types of implicit actions: (a) initiating stir-
ring aer addition of reagents and solvents (StartStir) and (b)
176 | Digital Discovery, 2025, 4, 172–180
stirring for a certain period of time (Stir). We did not consider
creating a mixture in a noun phrase such as a solution of
sodium iodide (15.0 g, 100 mmol) in acetonitrile (100 mL)
because the actions were embedded in the text, unlike the
abovementioned actions. When creating the correct cDL, if
stirring continues aer a Stir, it is treated as an implicit action.
Therefore, instead of setting continue_stirring=True as an
argument for Stir, it was represented as Stir and StartStir, with
StartStir being treated as an implicit action. While we annotated
the stopping stirring (StopStir) or heating (StopHeatChill) when
the target vessels were not used in subsequent steps, we
excluded these actions from the evaluation as they were not
critical to reproduce the procedure.
3.2 Experimental settings

We compared four methods in this experiment: SynthReader,
the proposed method from text to cDL (Pipeline), the proposed
method from human-annotated OSPAR format to cDL
(OSPAR2cDL), and CLAIRify. To compare the proposed method
with/without human intervention, we used Pipeline and
OSPAR2cDL. We used SynthReader via a web interface called
ChemIDE.39 We used CLAIRify downloaded from github.40

While the original CLAIRify used GPT-3.5, we used GPT-4o (gpt-
4o-2024-05-13) as an LLM because later models were considered
to be better than older models. Because the original imple-
mentation did not work on the current version of OpenAI API,
we made a minor revision of the source code.

In addition to evaluating each system individually, the
combination of CLAIRify with other systems for a practical
situation by human review was also examined. The combined
recall was calculated by verifying whether the correct answer
was present among the cDL actions produced by independently
running the two systems. To evaluate close failures, we dened
action recall in addition to exact recall. The denitions were the
following:

� Exact recall: the proportion of correct actions with only
correct parameters among the actions in gold data.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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� Action recall: the proportion of correct actions with correct
parameters and correct actions with missing/wrong parameters
among the actions in gold data.

An example for evaluating a correct action in exact recall and
action recall are shown in Fig. 4.

Other evaluation criteria were the following:
� Liquid/solid handling actions: it was considered as correct

action if either mass or volume was specied in an action even if
both mass/volume and amount were mentioned in the text. It
was acceptable if dropwise=True was not specied for the Add
action. It was also acceptable to create the initial mixture in the
reactor.

� Stirring actions: when mass or volume were mentioned
multiple times in the text, it was considered correct if either
mass or volume was specied in an action.

� Temperature control actions: for HeatChill, cases like
“between −15 °C and −5 °C” were considered correct if the
temperature was set within that range.
3.3 Results and discussion

3.3.1 Evaluation for explicit actions. Table 1 shows the
result of explicit actions. To see individual systems, CLAIRify
showed the best performance in both exact and action recall.
While CLAIRify demonstrated a high action recall (60/65), its
exact recall was relatively modest (38/65). This was because that
CLAIRify sometimes failed to extract the units of the parameters
or even the parameters themselves. We found that when
CLAIRify failed to extract the parameters, CLAIRify consistently
did not extract the parameters in the example procedure (Fig. 5).
Such characteristics were observed in two of the six procedures.

The proposed Pipeline and OSPAR2cDL showed higher
recall than SynthReader in both exact and action recalls. While
the evaluation data were small, we conrmed that the OSPAR
format could represent enough information and the proposed
rule-based conversion was better than SynthReader. A major
reason why Pipeline was better than SynthReader was because
Pipeline employed BERT-based NER and RE in contrast to rule-
based SynthReader, which could not extract entities and rela-
tions absent from its templates. As a result, we observed
differences in the recall of liquid handling actions such as Add
and Transfer, which require recognizing compound names
(Table S4†).

We conrmed that the modication of the OSPAR annota-
tion could improve the conversion quality because actions,
which were not extracted by Pipeline, were sometimes found by
OSPAR2cDL, in terms of both exact and action recall. The main
reason for the difference is that ChemBERT sometimes failed to
Table 1 Result of explicit actions. The numbers indicate (#found action
and CLAIR is CLAIRify

SR Pipe O2X CLA

Exact recall 22/65 28/65 31/65 38/6
Action recall 34/65 41/65 50/65 60/6

© 2025 The Author(s). Published by the Royal Society of Chemistry
extract compounds. In addition, errors in identifying entity
boundaries led to missing parameters. As a result, the recall of
liquid handling actions of Pipeline was lower than that of
OSPAR2cDL (Table S4†). For examples of these errors, see ESI
(Fig. S3†). To improve the information extraction system from
the text to the OSPAR format, for example, increasing training
data and improving a deep learning-basedmodel were required.
If the user annotates procedures for cDL conversion, the
annotated procedure can be used as training data of the models
for text to the OSPAR format.

There were two common errors that were difficult for rule-
based methods when converting the OSPAR format to cDL.
The rst was an incorrect target vessel for actions because the
proposed rules could not consider multiple vessels, as
described in section 2.3.2. The second was the missing quantity
or mass, as ChemicalTagger failed to determine which param-
eters belonged to which molecule. For example, o-tolylboronic
acid, 10.0 g (73.6 mmol) was not correctly parsed due to the
comma aer o-tolylboronic acid. While the proposed method
was sensitive to the notations of the OSPAR arguments in the
text, CLAIRify was robust to these notations thanks to the ex-
ibility of a GLLM.

We also conrmed that combining results of rule-based
methods and CLAIRify was effective in increasing exact
recalls. To compare the exact recalls of the CLAIRify combined
with other systems, Pipeline and OSPAR2cDL showed better
results than SynthReader (SynthReader found 7 new actions,
Pipeline found 10 actions and OSPAR2cDL found 11 new
actions). On the other hand, action recalls of the combined
results did not increased by threemethods. This result indicates
the improved capability of CLAIRify for nding actions. Fig. 5
shows an example of how other systems can improve CLAIRify's
recall. In this example, the amount or volume of reagents was
not specied by CLAIRify. In other cases, CLAIRify failed to
extract the time of addition or the stirring rate, even though
these parameters were clearly stated in the text.

3.3.2 Evaluation for implicit actions. Table 2 shows the
result of implicit actions. As we expected, the proposed Pipeline
and OSPAR2cDL could not nd implicit actions because the
OSPAR format did not consider actions that were not written in
text and we did not make rules to complement such actions
when converting the OSPAR format to cDL. SynthReader could
nd implicit actions because rules to complement such actions
were included in SynthReader. We conrmed that CLAIRify
could nd implicit actions by the capability of a GLLM.

To enable nding implicit actions by the proposed methods,
we need to construct rules to capture these actions in future
work. For example, inserting StartStir following multiple Add
)/(#all actions). SR is SynthReader, Pipe is Pipeline, O2X is OSPAR2cDL

IR SR + CLAIR Pipe + CLAIR O2X + CLAIR

5 45/65 48/65 49/65
5 60/65 60/65 60/65
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Fig. 5 An example for increased recall by systems other than CLAIRify when CLAIRify did not extract parameters. The procedure text is based on
Okaya et al.,30 with revisions made through pre-processing in the OSPAR corpus.

Table 2 Result of implicit actions. The numbers indicate (#found
action)/(#all actions). SR is SynthReader, Pipe is Pipeline, O2X is
OSPAR2cDL and CLAIR is CLAIRify

SR Pipe O2X CLAIR
SR +
CLAIR

Pipe +
CLAIR

O2X +
CLAIR

Exact recall 2/12 0/12 0/12 6/12 7/12 6/12 6/12
Action recall 2/12 0/12 0/12 6/12 7/12 6/12 6/12

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
N

ov
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

1/
10

/2
02

5 
9:

59
:4

5 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
actions would be considered. Another example is inserting
StopStir when the reactor or ask was not used aer the
previous action.

3.3.3 What should be considered in the human review
process? As we discussed, we found that CLAIRify was generally
promising for generating a “base cDL” because it demonstrated
178 | Digital Discovery, 2025, 4, 172–180
higher recalls than other systems. However, the output of the
proposed systemmay be preferred as a base cDL when CLAIRify
consistently fails to extract the parameters.

We found that human reviewers need to be careful with
vessel parameters when multiple vessels are used in a proce-
dure. When combining multiple candidate cDLs, reviewers also
need to pay attention to the parameters. For example, the vessel
names should be standardized to match the notation used in
one of the cDLs, and the associated component should be
declared in the hardware section. Similarly, the reagents section
should be updated when a reagent that used in cDL actions is
not declared.

To supplement implicit actions, expertise in chemistry is
required because it is necessary to determine when stirring is
required and how long the stirring should continue. For
example, it is difficult for non-experts to supplement implicit
© 2025 The Author(s). Published by the Royal Society of Chemistry
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stirring actions aer mixing compounds because the stirring
time depends on the specic compounds involved.

4 Conclusions

To curate organic synthesis procedures as structured data, we
focused on the limitations of the automated information
extraction from the literature and proposed a framework for
reviewing the results of the extraction. The proposed user
interface can visually support human reviewers by highlighting
original texts with the OSPAR format. In addition, to improve
the quality of the automated conversion, a method to show the
generated cDL by our rule-based system and the GLLM-based
CLAIRify was developed. In the experiment, we conrmed the
comparative advantage of our approach by showing the outputs
of both systems to the user. We also conrmed that our system
obtained higher recall than SynthReader. In the future, we plan
to improve our system by improving the automated annotation
quality of the OSPAR format and maintaining rules to obtain
both explicit and implicit actions.

Data availability

The code for our framework can be found at https://github.com/
mlmachi/OSPAR_XDL/. The ne-tuned ChemBERT models, cDLs
for the experiments, and detailed evaluation for each cDL action
are available at https://doi.org/10.6084/m9.gshare.27233541.
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