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structure analyzer/featurizer for
explainable machine-learning models to predict
solid state structures†

Emil I. Jaffal,‡ab Sangjoon Lee,‡*c Danila Shiryaev,a Alex Vtorov,a

Nikhil Kumar Barua, d Holger Kleinke d and Anton O. Oliynyk *ab

Traditional and non-classical machine learning models for solid-state structure prediction have

predominantly relied on compositional features (derived from properties of constituent elements) to

predict the existence of a structure and its properties. However, the lack of structural information can be

a source of suboptimal property mapping and increased predictive uncertainty. To address this

challenge, we have introduced a strategy that generates and combines both compositional and

structural features with minimal programming expertise required. Our approach utilizes open-source,

interactive Python programs named Composition Analyzer Featurizer (CAF) and Structure Analyzer

Featurizer (SAF). CAF generates numerical compositional features from a list of formulae provided in an

Excel file, while SAF extracts numerical structural features from a .cif file by generating a supercell. 133

features from CAF and 94 features from SAF are used either individually or in combination to cluster nine

structure types in equiatomic AB intermetallics. The performance is comparable to those with features

from JARVIS, MAGPIE, mat2vec, and OLED datasets in PLS-DA, SVM, and XGBoost models. Our SAF +

CAF features provide a cost-efficient and reliable solution, even with the PLS-DA method, where

a significant fraction of the most contributing features is the same as those identified in the more

computationally intensive XGBoost models.
Introduction

Previous studies on machine learning (ML) for solid state
chemistry have primarily focused on applying state-of-the-art
algorithms and improving the model accuracy. However, there
is a growing interest in using ML as a primary tool to gain
deeper insights into the underlying phenomena, which means
improving explainability of the models.1–5 These studies
emphasize explainability based on the features generated with
open-source packages or soware managed by individual
labs.6,7 The features can be broadly categorized into
composition-based and structure-based types, although other
cases, such as microstructures or sample imaging processing,
might have a narrow specialization and rely on highly
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specialized databases.8 In this paper, we explore open-source
packages available for generating chemistry-based features,
introducing two Python open-source tools: Composition
Analyzer/Featurizer (CAF) and Structure Analyzer/Featurizer
(SAF). We demonstrate the performance of the features gener-
ated with CAF and SAF in classifying the equiatomic AB inter-
metallic crystal structures. Composition-based features can be
generated from a chemical formula by parsing the formula into
constituent elements and their stoichiometric ratios. Due to its
simplicity, there are open-source soware packages capable of
generating features in a high-throughput way.9,10 The
composition-based feature vector (CBFV) package from the
Sparks group is an example that utilizes multiple databases for
a given chemical formula.11 Matminer is another open-source
toolkit which contains 44 featurization classes capable of
generating thousands of descriptors.12 It also provides addi-
tional functionalities, including visualization and data retrieval
from large databases such as the Materials Project,13 Citrine
Informatics,14 Materials Data Facility15 and the Materials Plat-
form for Data Science.16

Table 1 summarizes the featurizers used to predict solid
state structures that employ compositional and/or structural
features. The table includes examples, those with an asterisk
indicating experimentally validated works. This is not an
exhaustive list of available featurizers, as we focus primarily on
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Common featurizers used for machine-learning structure prediction models in chemistry and materials science

Featurizer
No. of features,
including structural Used in the following works: *experimentally validated

MAGPIE17 115 145 total Accelerated discovery of perovskite materials18

ML modeling of superconducting critical temperature19

*Accelerated discovery of metallic glasses through iteration of ML
and high-throughput experiments20

JARVIS21 438 total High-throughput identication and characterization of 2D materials
using DFT22

*Thermodynamic properties of the Nd–Bi system via EMF
measurements, DFT, ML, and CALPHAD modeling23

Screening Sn2M(III)Ch2X3 chalcohalides for photovoltaic
applications24

Atom2vec25 N/A Predicting the synthesizability of crystalline inorganic materials26

ML-based prediction of crystal systems and space groups from
inorganic material compositions27

Evaluating the prediction power of ML algorithms for materials
discovery using k-fold cross-validation28

Mat2vec29 200 total *Compositionally restricted attention-based network for materials
property predictions9

Using word embeddings in abstracts to accelerate metallocene
catalysis polymerization research30

Word embeddings for chemical patent natural language processing31

Elemnet32 145 total *Compositionally restricted attention-based network for materials
property predictions9

Enhancing materials property prediction by leveraging
computational and experimental data using deep transfer learning33

*Element selection for crystalline inorganic solid discovery guided by
unsupervised ML of experimentally explored chemistry34

CGCNN35 N/A Developing an improved crystal graph convolutional neural network
framework for accelerated materials discovery36

*Band gap prediction in crystalline borate materials37

Machine learning-based feature engineering for thermoelectric
materials by design38
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View Article Online
those applied to solid state materials and specically to struc-
ture prediction. Herein, we list open-source featurizers that,
while widely used, are not appropriate for crystal structure
prediction. RDKit39 is used to generate features for the devel-
opment of structurally distinct activators of pregnane X recep-
tors40 and protein domain-based prediction of drug/compound-
target interactions.41 This featurizer addresses challenging
topics, such as prediction of conditions for organic reactions.42

However, RDKit primarily focuses on molecular structures, with
unknown applicability in extended crystal structure prediction.
Similarly, Mordred43 is a widely used featurizer by Takagi, which
produces close to 2000 features and is used in experimentally
validated medical-related studies, such as drug repurposing
screening to identify clinical drugs targeting SARS-CoV-2 main
proteases44 and an open drug discovery competition for novel
antimalarials.45 Despite its applications in other fundamental
chemistry studies, such as predicting the reactivity power of
hypervalent iodine compounds,46 like RKDit, Mordred does not
focus on solid state materials. Additionally, MOFormer47 by Cao
is also soware for metal–organic frameworks (MOFs), not
intended to be used as a general featurizer for inorganic solid-
state materials.

Structural features have been used for solid state materials
with ML frameworks. Numerical features generated by the
© 2025 The Author(s). Published by the Royal Society of Chemistry
DScribe package48 offer structural representations of molecules
and materials.49 These features are used for determining
transferable ML interatomic potential, ranging from bond
dissociation energy prediction of drug-like molecules50 to reac-
tivity of single-atom alloy nanoparticles.51 However, their vec-
torized representation and lack of human interpretability do
not align with the current need for human interpretable
approaches. Additionally, lattice convolutional networks
(LCNN) by Jung and Vlachos, which calculate surface graph
features in two dimensions with six different permutations52

have been used for predicting properties, including surface
composition and surface reaction kinetics,53 ground states,54

catalyst properties,55 and phases.20 While these features are
evidently optimized for deep neural networks, they do not
address the requirements for interpretability and explainability
in solid state materials studies. We also tested the smooth
overlap of atomic positions (SOAP) featurizer, provided by the
DScribe package.48 We generated a total of 6633 features and
achieved F-1 scores of 0.983 (XGBoost), 0.978 (SVM) and 0.94
(PLS-DA). The performance was highly comparable to other
featurizers for SVM and XGBoost, but it vastly outperformed the
rest in PLS-DA. Although it outperformed, with the 6633
features, it became very computationally expensive. Likewise,
the features are not explainable, so we are not able to track what
Digital Discovery, 2025, 4, 548–560 | 549
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Fig. 1 Approach for calculating compositional features.
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View Article Online
physical feature they correspond to which does not align with
our goal of interpretability of features in this case.

Experimental/methods
Composition featurization

Herein, we present design considerations for CAF and contrast
them with the approaches found in common featurizers.
Composition featurizers utilize element symbols to index the
corresponding properties and perform arithmetic operations,
such as addition, subtraction, multiplication, division, and
others, on these properties. Commonly, features are calculated
based on the stoichiometric ratio (or percentage) of elements
and weighting the properties according to the element content.
For example, this approach could be used for regression type
property prediction, where the property is assumed to scale with
a gradual change in composition. However, the weighted
approach might not be ideal for classication in cases where
a certain subclass of compounds is studied with nearly identical
ratios of elements (i.e., 1 : 1 vs. 49 : 51).56 Index ratios can indi-
rectly relate to more structural information, oen associated
with distortions and symmetry reductions57 or simple atomic
mixing (e.g., site defects).58 Atomic mixing in a compound,
sometimes could be detected from the composition. For
instance, indices in chemical formulae with decimal points
summing up to unity oen indicate atomic mixing, although
only in-depth analysis of the crystallographic information can
provide a denite answer. This observation was used to collect
atomic mixing statistics in an automated single crystal structure
renement approach.59 In databases, chemical formulae are
oen ordered alphabetically; however, the order of elements in
chemical formula has a signicant meaning. Positions of the
elements indicate their electronegativity properties, as elements
are typically listed from electropositive to electronegative. For
example, the radius ratio of elements rA/rB in an AB compound
indicates the radius ratio of the cation over the anion. While the
electronegativity-based sorting approach works well for most
compounds, discrepancies arise in some regions of the periodic
table, for example, where certain transition metals are more
electronegative than some nonmetals.60 Furthermore, various
electronegativity scales might complicate the approach.61–63 An
alternative is sorting based on Mendeleev numbers,64 which
preserves the order of the elements in the periodic table, with
each element having a unique value. However, no ideal sorting
criterion exists, given that the Mendeleev number method fails
with a less diverse set of elements in a compound, such as
predominantly nonmetal organics and same-group p-block
element compounds.

Nevertheless, sorting chemical formulae is a crucial pre-
processing step, especially when working solely with composi-
tion for modeling. Despite the limited information, for certain
structure types (e.g., Heusler's AB2C or perovskites, ABO3), the
indices may serve as a proxy for structure where a specic index
is related to a particular structure site. However, this approach
is prone to what is known as a coloring problem when indices
duplicate; it might not be clear from the index which crystal-
lographic site is occupied by which element.65,66 Commonly,
550 | Digital Discovery, 2025, 4, 548–560
when only composition features are employed, we observe
nothing more than the fact that elements group according to
their elemental properties, which echoes with the periodic table
principle.67 The next level is structure maps that depict more
complex information in either two or three dimensions.64,68,69

Fig. 1 illustrates the most common approach for deter-
mining compositional features used in machine learning for
chemistry and materials science. Oen, no preprocessing (e.g.,
index normalization) is better than preprocessing. Chemical
information such as structural complexity can be lost when
opting for atomic percentage instead of the indices to represent
chemical composition. However, simple preprocessing such as
meaningful sorting and rearranging of formulae can greatly
enhance the model performance.

Prior to writing code for CAF, we considered the user expe-
rience with open-source soware used for feature generation.
Our goal was to develop easy-to-use soware that does not
require programming skills, including for those without formal
programming training in the solid-state materials community.
Utilizing the packages featured in Table 1, we documented the
experiences of individuals with various levels of academic
training: an undergraduate student with no prior programming
experience, an undergraduate student with a semester's worth
of programming experience, a postbaccalaureate user, and
a master's level student majoring in soware development.
These subjective experiences from our group members are
summarized in ESI Tables S1 and S2.†

CAF (Fig. 2) is available on GitHub at https://github.com/
bobleesj/composition-featurizer-analyzer or https://
github.com/OliynykLab. As discussed, the sorting of formulae
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Options available in Composition Analyzer/Featurizer (CAF).
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View Article Online
can signicantly impact the model quality. CAF supports Excel
le formats and includes a ltering option that summarizes
dataset content and lters data based on the number of
elements in a formula or removes non-elements. All solid
elements are accounted for, for a total of 73 elements, to
ensure maximum applicability. Additionally, a heatmap based
on element occurrence can be generated, allowing users to
visually analyze their dataset. If data are stored as CIFs in
a folder, CAF can extract compositions from the CIFs and
generate a table with element formulae. Following ltering,
the second option is sorting, which can be based on
composition (indices or element fractions). Another sorting
method is based on properties; if a le containing properties
is provided, they will be listed to give users the option to sort
them in the ascending or descending order. Sorting can also
be based on a manually modied list of element groups to
meet specic user needs. Once the le is updated with sorted
compositions, the third option, featurization, can be applied
using a pre-prepared list of descriptors designed to avoid
mathematical operations that could result in values of innity
or NaN. The descriptor list can also be tailored to address
specic problems the user aims to solve. For instance, we
include the option for users to hot-encode their data,
converting categorical information into a binary vector format
suitable for machine learning algorithms. The presence or
© 2025 The Author(s). Published by the Royal Society of Chemistry
absence of an element is indicated by 1 or 0, respectively. To
maximize data utility, we have prepared binary and ternary
featurizers, along with a universal featurizer that is agnostic
to the number of elements in a compound. The nal two
options allow users to cross-reference the list of compounds
against the folder containing CIFs and to enhance the le
with features from other les (e.g., those generated by other
featurizers).

CAF is also designed for extensibility. The list of properties
used for calculating features can be further enhanced by
incorporating novel size or electronegativity scales dened by
the user. For instance, the size scale is sensitive to the class of
materials and the presence of other elements, making it
advisable for users to calculate their own scale for effective
modeling. For example, to dene a new size scale, one could use
the shortest homoatomic distance from CIF reports, divided by
2, to determine the CIF radius. We recommend generating the
output with the mean value, standard deviation, and a histo-
gram for visual inspection. The CIF radius scale can then be
used as a property for feature denition, comparable to other
metrics such as covalent radius, ionic radius, and others.
Structure featurization

We discuss a simple method of generating features from
a composition, which can be augmented with information
Digital Discovery, 2025, 4, 548–560 | 551
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Fig. 4 User prompt options in CIF Cleaner code.
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extracted from CIF les, including but not limited to the space
group number and unit cell parameters. Additional features
could be extracted from the database, which is specic to how
the data there is structured (in our case, we used PCD70). While
these database-sourced features are not utilized in this study,
they are further explored in the ESI Table S3.†Herein, we aim to
extract additional information that is useful for describing the
structure. The goal is to combine measurable descriptors with
explainable models to help reveal intuitive relationships
between the structure and properties. At the atomic level, the
structural feature sets include information on coordination
geometry, bond distances, and atomic environments. These
structural features can be used either as standalone features or
in combination with other compositional features to generate
high-accuracy models, as demonstrated in this study.

Proposed here is the Structure Analyzer Featurizer (SAF)
available at https://github.com/bobleesj/structure-analyzer-
featurizer or https://github.com/OliynykLab/. At the time of
writing, SAF currently supports binary and ternary
compounds, generating 94 numerical features and 134
features for ternary with the goal to support quaternary and
beyond for future studies. The complete lists of features are
available in the GitHub repository and the ESI Tables S4–S6,
with Table S4† providing comments that allow users to utilize
extracted data not only for ML modeling but also for structure
analysis. INT_* features are calculated from interatomic
distance analysis, WYC_* features are based on Wyckoff
symbol/multiplicity, ENV_* features are derived from atomic
environment data, and CN_* features are also calculated from
atomic environment data. Fig. 3 illustrates the process of
procuring a single set of numerical features extracted from
structural, compositional, and raw data as an input data
source for ML models. Parts of the SAF code have been used
to determine coordination geometry using various methods.71

Furthermore, although not implemented in this study, the
features can be used for feature relationship analysis (e.g.,
SISSO) to reveal the relationships between the measured
structural features and properties.72

SAF supports .cif les from databases such as PCD, ICSD,
COD, and Materials Studio. PCD provides detailed structural
Fig. 3 Process for combining compositional and structural features
with raw data.

552 | Digital Discovery, 2025, 4, 548–560
descriptions, including editor-entered crystal structure proto-
types and fully standardized crystal structure data. Similarly, we
have ensured that our code is compatible with the ICSD data-
base,73 where most structures also have assigned structure
types, which facilitates searches for specic structure classes.
We recommend standardizing CIFs through trusted crystallo-
graphic soware which writes CIFs in the correct format. Large
CIF repositories do not guarantee consistency in CIF format-
ting, and even with large online databases, there could be cases
when, for example, atomic label and atomic type are reversed,
which might cause errors in le processing. Furthermore, CIFs,
even from reputable databases, require some editing, due to
typographic error or missing entries which prevents them from
being parsed. Extracting data from databases might seem to be
a straightforward process, but preparing the les for processing
tends to require some adjustments. For instance, parsing errors
might arise in cases where CIF info loops have blanks reported
with some informationmissing. These could be as simple as the
title of publication missing or author's affiliation, but these
problems can affect le parsing. In materials science, especially
where experimental data are scarce, it is crucial to ensure that
all reports are included, and errors are automatically corrected.
Another common CIF problem is inconsistent site labels,
especially the numbering of labels or problematic labels in the
case of atomic mixing, where the same site could be labeled
differently, causing confusion and inconsistent results during
a high-throughput CIF processing. Therefore, to lter ill-
formatted CIF les, we have also developed a standalone and
user-interactive Python application called CIF Cleaner available
at https://github.com/bobleesj/cif-cleaner or https://
github.com/OliynykLab/ (Fig. 4).
Data mining

To test featurizers and demonstrate our recent data processing
developments, we selected the simplest 1 : 1 equiatomic
compound cases, similar to the study done a decade ago,74 but
with a more challenging subset – intermetallics. (Composi-
tionally unrestricted data for common structure types oen
could be easily segregated with self-reiterated parameters such
as electronegativity.) The selected intermetallic data are
provided in Table 2. The CIFs in this work were extracted from
2023/2024 versions of Pearson's Crystal Database (PCD).70 In
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 The most common structure types for intermetallic 1 : 1
structures (at least 15 representatives)

Structure
type

Search
result

CIFs needed
editing

Under ambient
conditions

TlI 411 10 401
FeB 279 1 197
NaCl 243 1 236
FeSi 190 1 164
CsCl 188 4 138
ZnS 89 3 89
FeAs 86 1 79
NiAs 85 1 83
CuAu 47 3 41
Cu 141 1 104
Mg 32 0 29
W 15 0 0

Fig. 5 (a) Elements used in the current study to illustrate the appli-
cation of Structure Analyzer Featurizer (SAF) and (b) all solid elements
included in Composition Analyzer Featurizer (CAF).
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this study, we limited the dataset to the elements we use in our
intermetallic research, provided in Fig. 5.
Results and discussion

To compare the featurizers and test how the combination of
compositional and structural features can inuence the output,
we prepared features using CBFV-embedded JARVIS, MAGPIE,
mat2vec, and Oliynyk (OLED) featurizers and two sets of
features prepared using the featurizers described in this work:
Composition Analyzer Featurizer (CAF) and Structure Analyzer
Featurizer (SAF). Although we focus our study on intermetallics,
SAF and CAF, alongside the OLED dataset, have already been
© 2025 The Author(s). Published by the Royal Society of Chemistry
successfully applied to other problems, such as chalcogenides
and thermoelectric materials.75,76 The number of features that
were generated is available in Table 3. In the cases where feature
calculation resulted in innity (Inf) or not a number value
(NaN), these columns had to be ignored for the purpose of ML
model training. These cases occur with generic featurizers quite
commonly, given that division by zero occurs when a set of
standard mathematical operations is looped through the list of
element properties. One could replace these Inf and NaN with
the best guess value; however, it is advised not to do that for
preserving data in its original state. With our newest develop-
ments, CAF and SAF, we made sure to avoid calculations that
result in problems, for example, by never dividing any property
by the number of electrons at certain shells, which might result
in the division by zero. For each feature case study, we employed
three very common ML methods: PLS-DA, SVM, and XGBoost.
The support vector machine (SVM) model produces similar
results in terms of model statistics and time to train compared
to XGBoost. In the current dataset, neither of the featurizers had
issues with providing features sufficient to train and cross
validate SVM models with the best model statistics (Table 3).
Along with our feature sets, mat2vec also had marginally higher
precision and recall compared to other datasets. As expected, we
observed the ideal predictions with more expensive (SVM)
models, which already showed effectiveness in solving crystal-
lographic problems previously.65,77 Our goal in this study is not
attaining the best model statistics. The primary purpose of the
study is to test how different sets of features perform with
simpler methods (partial least squares discriminant analysis,
PLS-DA) and to assess the visual clustering achieved through
dimensionality reduction (latent values, LV, and individual
feature contribution), similar to structure map approaches
(Fig. 6). The performance of the models on each dataset is
available at: https://github.com/bobleesj/SAF-CAF-
performance. The estimated cost value in Table 3 is based on
the time it takes to run all models (PLS-DA, SVM, and
XGBoost) on a single core. For PLS-DA and SVM, we used
stratied K-fold cross-validation with 10 splits, with data shuf-
ing and random states provided in the source code. No further
hyperparameter tuning was conducted. For PLS-DA plotting, the
number of components was determined based on the best
accuracy achieved with between 2 and 10 components.

Among the featurizers used via CBFV (Fig. 6a–d), none
demonstrate a clear class clustering in two dimensions, except
for NaCl structures (yellow circles), especially with mat2vec.
Clustering with CAF (Fig. 6e) also is not better than other
composition-based featurizers, which is not surprising, given
that it is based on the OLED set of properties for feature
generation. The location of some datapoints with extreme
values of LV1 and LV2 might indicate decreased condence in
their prediction as they are approaching the limits of the
compositional space. JARVIS had precious metal silicides at the
edge of the model condence, which is typical for underrepre-
sented cases such as OsSi (FeSi-type), IrSi (FeAs-type), and RhSi
(in both FeAs- and CsCl-types). MAGPIE had some issues with
classifying rare cases when the compounds are formed with two
p-block elements, such as GaSb (ZnS-type), InSb (ZnS-type), and
Digital Discovery, 2025, 4, 548–560 | 553
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Fig. 6 PLS-DA latent value plot using the first two latent value dimensions: (a) JARVIS, (b) MAGPIE, (c) mat2vec, (d) OLED (all sets of features were
generated with CBFV), and our developments – (e) CAF and (f) SAF.

Table 3 PLS-DA, SVM, and XGBoost model statistics based on various feature sets

Features PLS-DA SVM XGBoost

CostGenerated Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

JARVIS 3066 0.372 0.366 0.330 0.391 0.979 0.965 0.977 0.972 0.989 0.985 0.987 0.989 23.7
MAGPIE 154 0.369 0.364 0.328 0.404 0.965 0.956 0.960 0.967 0.988 0.983 0.985 0.986 0.8
mat2vec 1400 0.611 0.658 0.582 0.609 0.990 0.985 0.987 0.989 0.981 0.978 0.979 0.983 9.3
OLED 308 0.449 0.448 0.399 0.457 0.974 0.955 0.963 0.973 0.987 0.984 0.985 0.987 1.4
CAF 133 0.419 0.384 0.363 0.404 0.967 0.950 0.957 0.959 0.988 0.984 0.986 0.987 1.03
SAF 94 0.526 0.567 0.511 0.603 0.993 0.989 0.991 0.990 0.997 0.993 0.995 0.994 0.6
CAF + SAF 227 0.569 0.589 0.533 0.579 0.994 0.987 0.991 0.993 0.997 0.996 0.996 0.996 1
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SnSb (ZnS- and NaCl-type). This is not surprising as most of the
datasets consisted of transition metal-containing phases, and
compounds with only main block elements are rare. Similar
issues, and actually the same compounds, were problematic on
the PLS-DA plot from the model based on OLED. One of the
limitations of composition-based featurizers is their inability to
handle polymorph cases, where one stoichiometry can form
multiple structures, like it was in the cases described above
(SnSb and RhSi).

CAF was developed with the output data consistency in mind
and with a principle that treats differently integral values
(measured exactly) and property values (measured over the
range of values) to avoid Inf or NaN values in cells. CAF, SAF
(Fig. 6e and f), and SAF + CAF (Fig. 7) models in PLS-DA plotted
with reduced dimensions to two LV dimensions are shown to be
complementary to each other. While CAF had NaCl points
mixed with FeB and TlI and SAF had difficulties in segregating
554 | Digital Discovery, 2025, 4, 548–560
NaCl with FeAs, the combination of SAF + CAF (Fig. 7) resolved
individual CAF and SAF issues completely. Some structure types
have a wide composition range which results in partial success
of structure segregation. For instance, the segregation of the TlI-
type dataset depends on the element present in the TlI struc-
ture. The Fe-family member representative of the TlI class could
not be efficiently separated from the rest of the structures;
however, the rare-earth element TlI representatives are well
separated with mat2vec (Fig. 6c, TlI points at LV1 = 8–15), SAF
(Fig. 6f, TlI points at LV1=−5.0 to−1.8 and LV2= 2.5–8.0), and
SAF + CAF (Fig. 7, TlI points at LV2 = −3 to −7). SAF analyzes
geometry and is agnostic to the composition of the samples,
resulting in clear clustering of the structures, besides a large
cluster that has mixed TlI/FeB, and FeSi/FeAs/NiAs types in one.
This clustering happens because of similar coordination
geometry within the cluster but distinctly different from the rest
of the structures. Traditionally, like in all previous plots, ZnS-
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 SAF + CAF PLS-DA plot.
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type is at the edge of the condence with extreme LV1 and LV2
values. Combination of CAF and SAF results in the solution to
the large unseparated blocks mentioned above, with only two
structure types overlapping (TlI and FeB), as shown in Fig. 7.
None of the featurizers provided data to successfully separate
these two structure types, but to be fair, mat2vec was the closest
to separation compared to the rest of the featurizers.
Indirect problem solving with a crystal structure classication
model

In chemistry, oen ML models are created for a specic task
and could not be applied to similar yet different datasets
without loss of accuracy/precision/recall. Here, we tested the
cases when a more specic structure classication problem was
solved, and the solution was applied (including the dataset and
features) to solve a more general problem. Next, we tested the
extrapolation of machine learning models, when the model was
built on a similar AB dataset, applied on a different AB dataset,
which is too different to be considered as validation/test. As
shown in Fig. 8a, the SAF + CAF model from our study is plotted
with a structure type y-vector (9 classes), but the color-coded
output is based on crystallographic compound classes (7
Fig. 8 Indirect learningwith ourmodel to solve problems of (a) compoun
of features from another AB classification model.

© 2025 The Author(s). Published by the Royal Society of Chemistry
classes), where some structures are structurally similar and
oen grouped together. For example, TlI and FeB, which are
both distorted variations of NaCl, require advanced tools to be
separated with materials informatics.78 These two structure
types were segregated successfully with SVM and XGBoost, but
no separation was observed with PLS-DA (Fig. 6). In the current
case (Fig. 8a), the indirect learning of crystallographic
compound classes (7 classes) through structure type classica-
tion (9 classes) is visually apparent and performed statistically
even better than direct learning (Fig. 7), specically because of
the structural similarities of these structure types. On the other
hand, another problem such as centrosymmetric/
noncentrosymmetric classication (two classes), Fig. 8b,
remains unsolved, which suggests a more complex phenom-
enon behind this classication, or the need for more specic
features to approach this problem. In other cases, we applied
our new expanded dataset to the model with a similar AB clas-
sication. Almost a decade ago, we tackled AB binary equia-
tomic classication for the rst time, with experimental
validation.3 A small dataset (yet, signicantly larger than
structure mapping approach used prior to that work)69 was
used, which resulted in a decent separation of structure types. It
is important to note that the structure types used in that study
differ from the ones used in the current study. No matter if the
full feature set (56) or feature-selected set (33) was used, sepa-
ration of the classes was not signicantly different from any
other composition featurizer. This is consistent with our
expectations; none of the structure types were segregated within
the LV space (Fig. 8c). Testing models for indirect problem
solving or extrapolation helps us better understand the limita-
tion of the models and apply them accordingly.
Explainability of the models

Explainable machine learning determines each feature's
contribution to the output and the correlation between features,
transforming a black-box model into a glass-box model, ulti-
mately generating new knowledge. Let us look at how explain-
ability has been used recently. In a recent study, post-hoc model
interpretability methods such as BreakDown (BD) and SHapley
Additive exPlanations (SHAP) were employed aer building an
ensemble of support vector machines used for phase
d class and (b) noncentrosymmetric phase prediction and (c) testing set

Digital Discovery, 2025, 4, 548–560 | 555
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classication of multi-principal element alloys.79 The training
data consisted of 1821 instances, each with 12 features such as
mean melting point, mean enthalpy of formation, and mixing
entropy. For BCC structure types, both BD and SHAP methods
identied the mean melting temperature and maximum atomic
weight difference as dominant variables. In another study, three
gradient boosting methods, histogram gradient boosting
(HGB), extreme gradient boosting (XGB), and gradient boosting
(GB), were used to predict the adhesion strength of synthesized
brillar dry adhesives, each characterized by 7 features such as
contact area and pull-off force.80 For each model, three
explainable machine learning techniques (SHAP, LIME, and
DALEX) provided both local and global contributions of each
feature. The study demonstrates that explainable machine
learning is a viable approach for limited datasets and limited
number of features in experimental settings. Similar to our
study, in the materials science discipline, SVM and XGBoost
methods are common, as they result in excellent quality
models, and explainability could either be achieved with post-
hoc methods or be inherent to the model, like in the case
with XGBoost.

Aiming for explainability in models, especially with struc-
tural descriptors, reveals correlations that advance chemical
knowledge. For instance, it helps to develop new size or elec-
tronegativity scales for a specic subclass of compounds or
analyze polyhedra through the lens of electron congurations
and orbital hybridization theory. Structural features play an
important role in the overall prediction of property schema in
various situations. For instance, in a study analyzing ligand
affinities, the authors ranked the features with three different
methods, namely RF, Permutation Importance, and AdaBoost,
which consistently placed PEOE_VSA2 and NumHAcceptors as
the two highest-ranked features.81 These features are two-
dimensional topological and topochemical properties that
have versatile uses. However, the authors specically needed
them to provide valuable information about the molecular
surface and its potential interactions with binding species.
Fig. 9 XGBoost highest performing features from the models using vari

556 | Digital Discovery, 2025, 4, 548–560
NumHAcceptors is self-explanatory, while PEOE_VSA calculates
the atomic contributions to the van der Waals surface area
using partial total charges and molar refractivity. In another
paper predicting band gap for materials,82 the authors analyzed
the respective features by using two different ranking criteria,
one based on Pearson correlation between each of the een
features and the target variable and the other based on the
weights obtained from Lasso regularization (weights of the
Lasso coefficient). They were able to reduce the original set of
een features to seven with no loss of information. Another
work had a similar schema using both a low number of
descriptors (nine in total, a combination of elemental and
structurally based) and found only one of those structural
descriptors (octahedral factor) in the top ve descriptor
ranking.83 They ranked these descriptors using recursive feature
elimination, which selects features by recursively removing
those which exhibit the smallest weight assigned by an extra
tree classier. Structural features were also used for bulk and
shear modulus prediction (proxy properties for hardness),77

where they were among the most important features aer iter-
ative feature selection. As we can see, structural features are
used in building explainable models and could be easily iden-
tied in datasets with a small number of features. This allows
detailed feature correlation analysis and straightforward
construction of the decision trees, which are regarded as the
most visual representation of model explainability.

In the current study, we deal with a larger set of features (a
few hundred), which requires dimensionality reduction, while
preserving the information on each feature importance. We
believe that even simple methods like PLS-DA might be effective
in solving crystallographic structure classication problems.
And with an effective set of features (SAF + CAF), it could
identify the same important features as more expensive
(XGBoost) methods, providing us the explainability in an
affordable way. While PLS-DA (as well as PCA) methods allow us
to explore the LV (or PC) space and extract the weights of the
original features that contribute to the axes, it is important to
ous featurizers.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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keep in mind that for these methods the combination of
features matter more so than the individual features. In recent
years, explainability has become an important topic as the age
of the black box methods is over, and users want to gain insight
rather than just getting results with excellent modelling statis-
tics. (Oen, for experimentalists, explainability that results in
new chemical knowledge and eventually translates into novel
material discovery is more important than high model accuracy
statistics.) There are a few methods that improve the
explainability/interpretability of the models, and here we
summarize the top ten XGBoost scores for each feature set that
was used in our test study (Fig. 9).7,84,85

Labeling features is the rst step to explainability, and
despite being on a par with our featurizers in terms of model
statistics, mat2vec fails to provide appropriate and scientically
meaningful labels for their features (Fig. 9c). In the top 10
features with the highest gain according to XGBoost, JARVIS
identies the mass, volume, and electron properties (ionization
energy, electron affinity, etc.) to be the most important. MAGPIE
identies periodicity and systematization information (Men-
deleev number, group number, and space group number),
electron properties, and physical properties among the most
important features. OLED shows a great balance of features in
the top gain list, which consists of the periodic table
Table 4 Comparison of the top contributing features to the first 3 LVs o

mat2vec

Variance Top contributors

LV1 11.50% max_53
min_74
mode_74
min_178
mode_178
sum_46
sum_84
sum_129
avg_46
avg_84

LV2 2.82% dev_193
range_193
min_23
mode_23
max_193
dev_194
range_194
dev_91
range_91
dev_195

LV3 4.79% max_75
dev_129
range_129
min_40
min_50
mode_40
mode_50
sum_40
avg_40
dev_191

© 2025 The Author(s). Published by the Royal Society of Chemistry
information (group number), various size scales (metallic and
Miracle radii), various electronegativity scales (Gordy and
Pauling), and electron count approaches (metallic valence and
valence electron count), along with the physical properties of
different origins (polarizability, ionization energy, and specic
heat). We continued the approach behind OLED featurization
in our CAF development; therefore, CAF top features also
demonstrate the excellent balance of features: periodic (group
number and Mendeleev number), size (radii difference, average
radius, and Pauling radius), Pauling electronegativity, and
physical properties (bulk modulus, ionization energy, and
melting point). It is important to mention that the user-
introduced features such as the CIF radius scale introduced in
this work and element preprocessing play a crucial role, since 8
out of 10 top features had a specic A/B element sorting tag. The
CAF feature set is the closest to the classical structure map
works by Villars and Pettifor.64,69 SAF produces structural
features, which are unique to other featurizers. The features are
related to the coordination environment, interatomic distances,
and distortions of polyhedra. Interestingly, the combined SAF +
CAF (Fig. 9g) results in the most effective model, and the gain
scores of the top two features overlap with the top two features
from SAF (Fig. 9f) and CAF (Fig. 9e) separately, which is a great
indication of the balance. While the top 10 features of SAF + CAF
f the best performing PLS-DA models

SAF + CAF

Variance Top contributors

15.26% CN_MIN_packing_efficiency
CN_AVG_packing_efficiency
CN_MAX_packing_efficiency
WYK_A_lowest_wyckoff
WYK_B_lowest_wyckoff
WYK_A_multiplicity_total
WYK_B_multiplicity_total
CN_MIN_B_atom_count bulk_modulus_avg
ENV_B_shortest_tol_dist_count

11.82% INT_UNI_rened_packing_efficiency
ENV_B_count_at_A_shortest_dist
ENV_B_avg_count_at_A_shortest_dist
INT_Asize_ref
CN_AVG_central_atom_to_center_of_mass_dist
CN_MAX_central_atom_to_center_of_mass_dist
CN_MIN_central_atom_to_center_of_mass_dist
ENV_A_shortest_dist_count
ENV_A_avg_shortest_dist_count
CN_AVG_packing_efficiency

4.56% specic_heat_A–B
specic_heat_B
ENV_A_count_at_A_shortest_dist
ENV_A_avg_count_at_A_shortest_dist period_B
CN_MAX_B_atom_count specic_heat_A/B
Z_eff_B ratio_closest_min
density_A/B

Digital Discovery, 2025, 4, 548–560 | 557
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are dominated by the structural origin, as we will show next,
PLS-DA LV contribution scores solve this issue, and composi-
tional features become on a par with the structural features.

PLS-DA is an affordable method for analysis andmodeling of
large volumes of data. With a combination of a properly con-
structed feature vector, it becomes an effective method to
increase the explainability. Ultimately, PLS-DA application in
solid state chemistry originates from structural maps that were
traditionally used in crystal structure classications. While
model statistics of PLS-DA are not comparable to SVM and
XGBoost methods (Table 3), PLS-DA model statistics (which
deviate more in the PLS-DA method) can provide an indication
of a suitable feature set, when more advanced methods produce
quite comparable results indifferent to the feature set. Another
application of the PLS-DA method could be feature analysis for
explainability. The rst indication is variance percent in latent
value vectors (LVs). Withmodern computational power, we have
a privilege of utilizing any number of LVs we want, and the
cumulative variance increases with more LVs. Eventually, the
accuracy converges at certain LV levels, but the most effective
number of LVs is usually low, with the rst 3 LVs being the most
helpful as it allows one to visualize data in plots, essentially
creating structure maps. In our comparison, we looked at the
two most accurate PLS-DA models, mat2vec and our develop-
ment, SAF + CAF (Table 4). The cumulative variance of SAF +
CAF is signicantly higher than that of mat2vec, meaning that
our features are used more effectively. While the rst two LVs
are dominated by SAF features, the CAF features are also
present, especially in the third LV. In bold, we have highlighted
the features that were listed in the top 10 gain features by the
XGBoost model. In the case of mat2vec, only one feature had an
overlap, while half of the features found to be helpful with
XGBoost were also found in the rst three LVs with the PLS-DA
method. This is signicant considering the relative cost of the
methods and highlights how effective features from SAF and
CAF are.

Conclusions

Combination of various features from different sources and
generated using various approaches is important. We provided
a tool that besides generating our features also allows users to
integrate features from other sources by combining data
matrices. The most important role in explainability is pre-
processing and tailoring dataset and features to a specic
problem, such as organizing a structure/formula in a meaning-
ful way and introducing novel features, such as CIF radius. We
built open-source command-line-based Python programs
known as Composition Analyzer Featurizer (CAF) and Structure
Analyzer Featurizer (SAF), which work with all elements that
exist in their solid form under ambient conditions. These fea-
turizers produce well-balanced and superior quality features
readily available to be applied in machine learning models or
used for classical structural map plotting. CAF generates
numerical compositional features from a list of formulae
provided in an Excel le, while SAF extracts numerical structural
features from a .cif le by generating a supercell. To expedite the
558 | Digital Discovery, 2025, 4, 548–560
current state of machine learning and make sure it is more
accessible, we kept in mind that most users may not have
a computational background and therefore included that
subjective experience when developing our soware. We also
looked at various solid state applicable featurizers already in
use to provide a benchmark for ourselves and the reader. To
emphasize the needs of the user, we ensured our soware
checked every box and included various options within ltering,
sorting, checking, and providing multiple visualizations for the
user to have the smoothest experience possible while main-
taining scientic knowledge. For validation, 133 features from
CAF and 94 features from SAF were either combined or used
separately to classify structures in equiatomic AB intermetallics.
From the explainable model, a novel size scale CIF radius,
various structural features, such as distortion of polyhedra, and
data preprocessing were found to be important. The perfor-
mance, measured in terms of precision, recall, F1-score, and
accuracy, was comparable to and surpassed those generated
using features from JARVIS, MAGPIE, mat2vec, and OLED in
PLS-DA and SVM. The combination of CAF and SAF showed
promising results in addressing these challenges, suggesting
potential for enhanced performance in crystallographic
problem-solving tasks compared to other featurizers. Further
research should focus on optimizing the integration of CAF and
SAF, to fully realize their potential in improving the perfor-
mance and efficiency in these crystallographic systems.

Data availability

Composition Analyzer Featurizer (CAF) soware: https://
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