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es for reducing sampling error in
quantum Krylov subspace diagonalization

Gwonhak Lee, a Seonghoon Choi, bc Joonsuk Huh *d

and Artur F. Izmaylov *bc

Within the realm of early fault-tolerant quantum computing (EFTQC), quantum Krylov subspace

diagonalization (QKSD) has emerged as a promising quantum algorithm for the approximate Hamiltonian

diagonalization via projection onto the quantum Krylov subspace. However, the algorithm often requires

solving an ill-conditioned generalized eigenvalue problem (GEVP) involving erroneous matrix pairs, which

can significantly distort the solution. Since EFTQC assumes limited-scale error correction, finite sampling

error becomes a dominant source of error in these matrices. This work focuses on quantifying sampling

errors during the measurement of matrix element in the projected Hamiltonian examining two

measurement approaches based on the Hamiltonian decompositions: the linear combination of unitaries

and diagonalizable fragments. To reduce sampling error within a fixed budget of quantum circuit

repetitions, we propose two measurement strategies: the shifting technique and coefficient splitting. The

shifting technique eliminates redundant Hamiltonian components that annihilate either the bra or ket

states, while coefficient splitting optimizes the measurement of common terms across different circuits.

Numerical experiments with electronic structures of small molecules demonstrate the effectiveness of

these strategies, reducing sampling costs by a factor of 20–500.
I. Introduction

Recent advancements in quantum computing devices, particu-
larly in terms of the scale and coherence time,1–7 have signi-
cantly heightened expectations for their ability to perform
efficient quantum simulations. These advancements promise to
deepen our understanding of many-body quantum systems,
such as electronic structure in chemical systems.8–10 This
anticipation is driven by the expected stability, controllability,
and scalability of universal quantum computers being devel-
oped across various platforms, including ion traps,2,3

photons,4,5 and superconductors.6,7

Currently, the eld is progressing through the era of noisy
and intermediate-scale quantum computers (NISQ).11,12 This
phase marks a regime of quantum computation which is hard
to be simulated using classical computers, while quantum error
correction is absent due to the limited scalability, inherent
noises, and decoherence of current devices. Within this context,
the variational quantum eigensolver (VQE) has been primarily
ogy (SAINT), Sungkyunkwan University,
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discussed as an algorithm for quantum simulation.13,14 Based
on the variational principle, VQE employs quantum-classical
hybrid optimization of a parameterized ansatz, implement-
able within a shallow quantum circuit to approximate specic
eigenstates of the target system. However, the expected
quantum advantage—based on the classical hardness of simu-
lating the ansatz—is negated by errors in estimating cost
function for each optimization step, particularly associated with
barren plateau problem.15–19 Furthermore, the absence of the
error correction results in the errors accumulating signicantly,
thus limiting the scalable quantum advantage in VQE.

This naturally shis our attention towards early fault-tolerant
quantum computing (EFTQC) as a viable next step beyond NISQ
era. The feasibility of EFTQC is further supported by decreasing
hardware error rates that are approaching the threshold for the
error correction20–22 and an emergence of a small-scale demon-
stration of logical qubits.23 EFTQC is introduced within a frame-
work of scale-limited quantum error correction, where the error
rate for logical qubits increases with the size of the quantum
circuit.24 Consequently, unlike fully fault-tolerant quantum
computing, EFTQC cannot arbitrarily scale the number of logical
qubits or the use of non-Clifford operations, thereby limiting the
practical implementation of quantum phase estimation.25 To
address these limitations, EFTQC algorithms typically aim to
compromise between the circuit size and the number of repeti-
tions. Quantum phase estimation requires M = O(jg0j−2) repeti-
tions of a circuit with real-time propagators (e−iĤtk) with the total
© 2025 The Author(s). Published by the Royal Society of Chemistry
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propagation time,
P
k
tk ¼ Oð3alg�1Þ, where jg0j and 3alg denote the

initial overlap and algorithm accuracy, respectively.25 Here, the
real-time propagator is usually approximately implemented by
Suzuki–Trotterization.26,27 In contrast, EFTQC algorithms use
shorter propagators, t < O(3alg

−1), but increase the number of
repetitions, M > O(jg0j−2).28–33 An alternative approach within
EFTQC utilizes the block encoding scheme,34 which, while exact,
demands signicantly more resources than Trotterization with
a minimal Trotter steps. Although reducing Trotterization errors
necessitates more Trotter steps, thus approaching the resource
demands of block encoding, the limitations of near-future hard-
ware render small-scale Trotterization a more feasible option.

Within the domain of EFTQC algorithms, quantum Krylov
subspace diagonalization (QKSD) is being explored as a prom-
ising candidate for quantum simulation algorithm.32,33 QKSD
employs quantum circuits to project the Hamiltonian onto the
Krylov subspace, a reduced-dimensional space that is classically
solvable. This approach is potentially feasible because the
extremal eigenvalues of the projected matrix converge expo-
nentially fast to those of the original Hamiltonian, provided the
projection remains unperturbed and the overlap between the
eigenstate and the initial state is large.35 However, this advan-
tage is counterbalanced by the challenge associated with ill-
conditioning of the eigenvalue problem, where perturbations
in the projected matrix can signicantly distort the accuracy of
the approximated eigenvalues.35,36 These perturbations mainly
arise from imperfect error correction, Trotterization error, and
nite sampling error. As EFTQC stabilizes and expands, the rst
two factors can be suppressed. However, despite the discussion
of the measurement problem in QKSD,36 strategies to tackle this
problem have not been suggested.

QKSD involves measuring the matrix elements, Hkl =

hfkjĤjfli, across a nite basis {jfki = e−iĤkDtjf0i} that spans
the Krylov subspace with a reference state jf0i. While oth-
er bases have been proposed, such as jfki = Ĥkjf0i37 and
jfki = e−Ĥkbjf0i,38 we focus on QKSD with the real-time evolu-
tion operator due to its simplicity and practical viability for
EFTQC. Consequently, a primary objective in this scenario is to
minimize the sampling error when measuring the matrix
elements. Although this specic measurement problem has not
been tackled, several measurement strategies have been
proposed for the standard expectation values.39–46 In general,
the direct measurement of hjjĤjji with a single circuit is
impractical, as measurement is constrained to the Pauli-Z basis,
which requires the implementation of a unitary operator that
fully diagonalizes Ĥ. As an alternative, Ĥ is decomposed into
a linear combination of fragmented Hamiltonians, which can
be efficiently diagonalized with implementable unitaries, and
the results for each fragment are aggregated.39,42,46 The goal then
becomes to minimize the sampling error by optimally frag-
menting Ĥ and allocating the number of circuit repetitions
among these fragments. This optimization can be formulated
as a combinatorial problem, akin to NP-hard clique covering
problems,42,46 for which a heuristic solution has been devel-
oped.39 Additionally, this issue has been expanded into
a continuous optimization problem that considers
© 2025 The Author(s). Published by the Royal Society of Chemistry
approximated covariances between fragments.40,44 On the other
hand, randomized measurement strategies, known as classical
shadow techniques, have been developed.47–49 While these
methods are superior when measuring multiple expectation
values simultaneously, deterministic methods generally
outperform them when measuring a single expectation value
hĤi.40,41,50 Since our case involves measuring hfkjĤjfli, we focus
on deterministic measurement strategies in this work.

These developments resolve the measurement problems
associated with standard expectation values. In this paper, we
aim to adapt these methods to the QKSD framework. To
accomplish this, we analyze the measurement problem of the
matrix elements with two decomposition scenarios for Ĥ: linear
combination of unitaries (LCU) and fragmented Hamiltonians
(FH). Specically, we focus on quantifying and mitigating the
sampling errors for these scenarios, applying strategies origi-
nally designed for standard expectation values to enhance
measurement accuracy in QKSD. Notably, the strategies that we
propose can be applied to the general measurement of transi-
tional amplitudes, hfkjĤjfli, which can be utilized for the
design of algorithms beyond QKSD.

The organization of the paper is as follows. First, a brief
preliminary of the QKSD is provided in Section II, followed by the
analyses of the twomeasurementmethods for thematrix elements
and the associated errors in Section III. Section IV demonstrates
how conventional methods39,40,51,52 are converted to reduce the
sampling errors for QKSD, highlighting that a method initially
devised for reducing the simulation cost of LCU51,52 is transferable
to the measurement problem. Finally, we numerically validate
these reduction methods by solving the electronic structure
problems of small molecules as case studies in Section V.
II. QKSD

Before considering the measurement problem in QKSD, this
section reviews the QKSD method for estimating the spectrum
of a Hamiltonian Ĥ, as originally introduced in ref. 32 and 33.

QKSD estimates approximated eigenstates of a Hamiltonian
Ĥ with the following ansatz:

jjðwÞi :¼ 1

N

Xn�1

k¼0

wkB̂
kjf0i; (1)

where N is the normalization factor, and
w ¼ ðw0;.;wn�1Þ˛ℂn, and n is the Krylov order. This ansatz
fully covers vectors in the Krylov subspace,
Kn ¼ spanðfjf0i;.jfn�1igÞ, where jfki=B̂kjf0i is dened by
a reference state jf0i and the base operator,

B̂ = e−iDtĤ. (2)

This exponential function is approximated by the Trotteri-
zation. There are other choices for B̂, such as Ĥ, which is
analogous to the classical Krylov method,37 and imaginary time
evolution (e−bĤ).38 Although we only focus on the real-time
evolution operator, which is widely discussed, the methods
that will be described in the Section IV can be expanded to the
Digital Discovery, 2025, 4, 954–969 | 955
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Fig. 1 Circuit diagrams for (a) the Hadamard test and (b) the extended
swap test to estimate the j-th fragment of the Hamiltonian matrix
element, hf0jĤjfki (see eqn (11) and (18)); here, R̂x(y) operator rotates ŝz
basis into ŝx (ŝy) basis and is adopted to estimate the real (imaginary)
part of the amplitude for the second operator applied to the ancilla
qubit.
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other choices of B̂ because they are approximated by linear
combinations or products of real-time propagators.

Using the ansatz (eqn (1)) in the variational principle with w
as optimized parameters leads to the following generalized
eigenvalue problem (GEVP)

Hw = SwE(n), (3)

where E(n) is an approximate eigenvalue, and the n × n Hamil-
tonian matrix H and overlap matrix S are dened as

Hkl = hfkjĤjfli = hf0jB̂†kĤB̂ljf0i = H0,l−k (4)

Skl = hfkjfli = hf0jB̂†kB̂ljf0i = S0,l–k. (5)

These matrices are obtained by quantum algorithms using
EFTQC circuits and measurements. Note that S has the struc-
ture of a Toeplitz matrix, Sk,l = S0,l–k, because B̂ is unitary.
Furthermore, since [Ĥ,B̂] = 0, H becomes a Toeplitz matrix as
well. Therefore, rather than n2, only n elements are required to
construct each matrices.

For systems with large energy gaps, the lowest solution of
eqn (3) converges to the ground state energy of Ĥ exponentially
fast with n.35 However, the GEVP in eqn (3) can become ill-
conditioned for larger n's, which makes QKSD sensitive to
noise in matrix elements of H and S.
III. Measurement of QKSD matrix
elements

In the quantum subroutine that estimates the elements of H
and S, the quantum uncertainty predominantly induces the
matrix perturbation. This perturbation, coupled with the ill-
conditioned GEVP (eqn (3)), may introduce a signicant error
in the solution. In this section, we develop methods for esti-
mating Hamiltonian matrix elements,

H0k = hf0jĤjfki, (6)

and the analysis of the associated sampling error.
Since, rather than the matrix element, only the measurements

of standard expectation values of hFjÔjjFi with easily diagonal-
izable Ôj's are possible at the circuit level, it is necessary to express
eqn (6) in terms of hFjÔjjFi using certain states jFi and simple
operators Ôj. To translate eqn (6) into standard expectations, we
consider two approaches: the Hadamard and the extended swap
tests. In both approaches, the problem is addressed by parti-
tioning the Hamiltonian into diagonalizable Hermitian or
implementable unitary operators. In the Hadamard test, the
Hamiltonian is presented as an LCU: Ĥ ¼P

j
bjÛ j, where each

unitary Ûj is implemented to estimate the overlap between jf0i
and Ûjjfki (Fig. 1a). In the extended swap test, Ĥ is decomposed

as a sum of fragments: Ĥ ¼P
j
V̂
†

j D̂j V̂ j, where D̂j is diagonal and

the corresponding diagonalizing unitary V̂ j can be implemented
efficiently. Then, the extended swap test is conducted with the
956 | Digital Discovery, 2025, 4, 954–969
circuits of Hadamard tests which estimate hf0jfki, while
including the measurement of system qubits with the basis rep-
resented by V̂ j (Fig. 1b). Note that in the extended swap test, the
overlap matrix elements can be measured simultaneously by
measuring the ancilla qubit, which corresponds to a Hadamard
test circuit thatmeasures S0,k= hf0je−ikDtĤjf0i. This simultaneous
measurement capability is not available in the Hadamard test
when measuring the Hamiltonian in its LCU form.

This work mainly focuses on analyzing and improving the
sampling error determined by the decomposition of the
observable, which is not required for the case of the overlap
matrix element, S0k ¼ hf0 ĵIjfki. In a previous work,36 it was
shown that the sampling variance of S0k are determined iden-
tically across the test algorithms as:

Var½S0k;mR;mI � ¼ 1

M

 
1�Re½S0k�2

mR

þ 1� Im½S0k�2
mI

!
; (7)

where mR and mI are the fraction of total shots, M, allocated to
measure real and imaginary parts of S0k, respectively (mR +
mI = 1). The ideal allocation that minimizing the variance is
m(opt)

R f (1 − Re[S0k]
2)1/2 and m(opt)

I f (1 − Im[S0k]
2)1/2, which is,

however, infeasible to be estimated before measuring S0k. If we
take Haar averaging of the states, jf0i and jfki, mR = mI = 1/2 is
achieved from Lemma 2 in Appendix A. The corresponding
variance is related to the amplitude of the matrix element as

Var½S0k; 1=2; 1=2� ¼ 2

M

�
2� jS0kj2

�
: (8)

In the rest of this section, we quantify the sampling error
associated with the Hamiltonian matrix elements and examine
how the decomposition of Ĥ affects this error.
A Hadamard test

An LCU decomposition of Ĥ is
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Ĥ ¼
XNb

j¼1

bjÛ j ; (9)

where Ûj is unitary, and bj is a real and positive coefficient. Such
decomposition was originally motivated in the context of
Hamiltonian simulation problem53 and then expanded to the
measurement problem.54,55 The simulation cost in LCU based
approach scales linearly with the L1 norm of the
coefficients, kbk1 ¼

P
j

��bj��. In the Hadamard test, we are going

to show that the sampling cost to estimate eqn (6) within
a certain level of accuracy is proportional to ‖b‖1

2.
The matrix element in eqn (6) can be viewed as the weighted

sum of overlaps between jf0i and Ûjjfki:

hf0jĤjfki ¼
XNb

j¼1

bjhf0jÛ j jfki: (10)

Fig. 1a depicts the circuit that estimates hf0jÛjjfki. To derive
the sampling cost, eqn (6) is translated to standard expectations as

hf0jĤjfki ¼
XNb

j¼1

bj

�
F0k; j

���ŝx þ iŝy

�
5Î
��F0k; j

�
; (11)

where ��F0k;j

�
:¼ 1ffiffiffi

2
p
�
j0ijf0i þ j1iÛ j jfki

	
(12)

is prepared with an additional qubit and the conditional evolu-
tion unitary. The additional qubit is measured in ŝx and ŝy bases,
corresponding to the real and imaginary parts of hf0jÛjjfki,
respectively. Thus, 2Nb independent measurements of
ÔR ¼ bsx5Î and ÔI ¼ bsy5Î with a set of states f��F0k;jigNb

j¼1
complete the total estimation of a matrix element in eqn (11).

Formeasuring the expectation value of eqn (11), the variance is:

VarðLCUÞ½H0k;m� ¼ 1

M

 XNb

j¼1

X
X˛fR;Ig

bj
2

mjX

Var
h
ÔX

i
F0k;j

!
; (13)

where

Var



ÔX

�
F0k;j

¼
*
ÔX

2

+
F0k;j

�
�
ÔX



F0k;j

2

¼

8>>>>><>>>>>:
1�Re



hf0jÛ jjfki

�2
; X ¼ R

1� Im



hf0jÛ jjfki

�2
; X ¼ I

:

(14)

Also, M denotes the total number of shots to measure H0k,

and mjX is the fraction of shots for hF0k;jjÔXjF0k;ji
 P

jX
mjX ¼ 1

!
.

Given LCU decomposition, nding the optimal shot alloca-
tion m to minimize eqn (13) is a convex problem, which is
analytically solved by

m(opt)
jX f bjVar[ÔX]F0k;j

1/2. (15)
© 2025 The Author(s). Published by the Royal Society of Chemistry
However, since Var[ÔX]F0k;j
are not known in advance, they

are estimated by taking Haar-averaging over the states jf0i and
jfki. This results in a sub-optimal allocation instead,
m(subopt)

jX f bj, which is independent of the unknown variances.
Furthermore, such allocation leads to the averaged variance as
shown below:

V ðLCUÞ :¼ Ef0 ;fk

�
VarðLCUÞ�H0k;m

ðsuboptÞ��
¼ 2kbk12

M

�
2� 1

d

	
;

(16)

where d is the dimension of the Hilbert space, which is gener-
ally exponentially large. The proof of eqn (16) is provided in
Appendix A. The number of total shots more than

Mz
4kbk12

32
(17)

is required to make the total uncertainty less than 3 with a high
probability, which shows that the sampling cost is proportional
to ‖b‖1

2. This result indicates that an LCU decomposition of Ĥ
with lower ‖b‖1 can potentially reduce the number of
samplings, while maintaining accuracy.

B Extended swap test

The extended swap test32 estimates the matrix element through
the measurement of

hf0jĤjfki = hF0kj(ŝx + iŝy) 5 ĤjF0ki, (18)

where

jF0ki :¼ 1ffiffiffi
2

p ðj0ijf0i þ j1ijfkiÞ:

However, the direct measurement of eqn (18) is possible only
when Ĥ is an Ising form. In general, Ĥ can be expressed as
a sum of diagonalizable fragment Hamiltonians:

Ĥ ¼
XNg

j¼1

Ĥj ¼
XNg

j¼1

V̂
†

j D̂jV̂ j; (19)

where V̂ j can be efficiently implemented to diagonalize Ĥj onto
the computational basis, yielding an Ising Hamiltonian D̂j.
Then, the measurement can be performed for each Ĥj. For
example, if Ĥj is composed of mutually commuting Pauli
operators, the unitary V̂ j can be efficiently determined and
implemented as a Clifford circuit with the gate count of O(Nq

2),
where Nq is the number of qubits.39,56,57

Aer substituting Ĥ in eqn (18) by (19), the total variance of
the estimator is

VarðFHÞ½H0k;m� ¼ 1

M

0B@XNg

j¼1

X
X˛fR;Ig

Var
h
ÔjX

i
F0k

mjX

1CA; (20)

where Ôj,R(I) = ŝx(y) 5 Ĥj, and the quantum variance of Ôj is
Digital Discovery, 2025, 4, 954–969 | 957
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Var
h
ÔjX

i
F0k

¼

8>><>>:
D
ÔjR

2
E
F0k

�Re
h
hf0jĤjjfki

i2
X ¼ R;D

ÔjI

2
E
F0k

� Im
h
hf0jĤj jfki

i2
X ¼ I ;

(21)

with*
ÔjR

2

+
F0k

¼
*
ÔjI

2

+
F0k

¼ 1

2

�
hf0jĤj

2jf0i þ hfkjĤj

2jfki
�
:

As in LCU decomposition, the optimal shot allocation,
m(opt)

jX f Var[ÔjX]F0k;j

1/2, is hard to estimate in advance. In order
to nd a sub-optimal allocation, m(subopt), we perform Haar
averaging on the variance over the states, jf0i and jfki.
According to the result in Appendix A, this averaging produces
m(subopt)

jR(I) f (Tr[Ĥj
2]/d)1/2. Furthermore, for the case of Pauli

decomposition, the value of (Tr[Ĥj
2]/d)1/2 is efficiently deter-

mined as the L2 norm of Pauli coefficients in Ĥj, as elaborated
in Appendix B.

The total averaged variance is

V ðFHÞ : ¼ Ef0 ;fk

�
VarðFHÞ�H0k;m

ðsuboptÞ��
¼ 2kgk12

M

�
2� 1

d

	
;

(22)

where kgk1 :¼
P
j
ðTr½Ĥj

2�=dÞ1=2. The corresponding measure-
ment cost,

Mz
4kgk12

32
; (23)

scales quadratically with the ‖g‖1, which plays the same role as
‖b‖1 in the LCU case.

We can nd the similarity between the variances of LCU and
FH, (see eqn (16) and (22)). Let us write the decompositions for
both cases (eqn (9) and (19)) as

Ĥ ¼
XNz

j¼1

N̂j ; (24)

where N̂j ˛ {bjÛ j,Ĥj}. Then, the partial variances, eqn (14)
(multiplied by bj) and (21), are generalized into a single form:

Var
�
X0k; j

� ¼ 1

2

�
hf0jN̂

†

j N̂jf0i þ hfkjN̂
†

j N̂jfki
�
� E

�
X0k; j

�2
; (25)

where X0k;j ˛ {R0k;j, I0k;j} is an estimator for the real or imaginary
part of hf0jN̂jjfki.

Moreover, the decomposition norms, ‖b‖1 and ‖g‖1 in eqn
(16) and (22), are regarded as:

kzk1 : ¼ 1ffiffiffi
d

p
X
j

Tr
h
N̂

†

j N̂ j

i1=2
: (26)

Correspondingly, the sampling cost is given by:

Mz
4kzk12
32

: (27)
958 | Digital Discovery, 2025, 4, 954–969
Thus, regardless of the test algorithms, ‖z‖1 serves as
a metric of decomposition assessing the nite sampling error,
akin to the measurements of standard expectation values.39,55
IV. Sampling cost reduction

In this section, we propose techniques to reduce the sampling
cost discussed in the previous section. This is done by adapting
the cost reduction techniques for the measurement of standard
expectation, hfjĤjfi,39,40,44 to the measurement of matrix
elements. Such adaptation is simply done by replacing the
standard variance, hÔj

2i–hÔji2, by the variance for the matrix
elements represented in eqn (14) and (21). We propose
a method to optimize the decomposition, {Ûj} or {Ĥj}, to achieve
smaller variance analogous to the approach in previous work.39

Furthermore, the dependence of the sampling cost on ‖z‖1, as
shown in eqn (27), allows us to use methods that reduce ‖z‖1.
A Shiing technique

Here, we introduce a technique to reduce the norm ‖z‖1, and
consequently, lower expected sampling costs, by shiing the
Hamiltonian. Before developing the technique, let's clarify the
notation for the norm, ‖zA(Ĥ)‖1, which indicates the norm of
the decomposition achieved on Ĥ using a specic deterministic
algorithm, A. This clarication is crucial because the decom-
position applied to Ĥ is not unique without specifying the
algorithm A. As an example of A, a greedy algorithm-based

heuristically nds a decomposition by
Pauli operators that yields a relatively small norm.39

The shiing technique involves nding an operator T̂ that
shis the Hamiltonian and minimizes the norm of the shied
decomposition:

min
s
kzAðĤ � T̂ðsÞÞk

1
; (28)

where A is a xed polynomial time algorithm performing
a decomposition, and the Hermitian operator T̂ is parameter-
ized by s, enabling the use of classical optimization algorithms.
Additionally, we impose a constraint on T̂(s), that is

T̂(s)jf0i = t(s)jf0i, (29)

for a known factor tðsÞ˛ℝ. Note that T̂ is not required to
commute with Ĥ, unlike symmetry operators. The necessity of
this constraint will be presented with the rest of procedure.

Aer the optimization of eqn (28), we then employ test
algorithms explained in Section III to estimate the shied
Hamiltonian matrix H − T, consuming reduced cost (‖zA(Ĥ −
T̂)‖1

2 # ‖zA(Ĥ)‖1
2). Here, H − T is dened as a Toeplitz matrix

satisfying

[H − T]kl = hf0j(Ĥ − T̂)jfl−ki. (30)

Then, the GEVP with the shied Hamiltonian matrix is

(H − T)w = Sw(E(n) − t), (31)
© 2025 The Author(s). Published by the Royal Society of Chemistry
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because the original matrix element is written in terms of the
shied matrix element as shown below:

H0k ¼ hf0jĤjfki
¼ hf0jĤ �

�
T̂ � t

�
jfki

¼ hf0j
�
Ĥ � T̂

�
jfki þ thf0jfki

¼ ½H � T�0k þ tS0k;

andH− T is Toeplitz as dened in eqn (30). Thus, the constraints
of eqn (29) and (30) enables the recovery of the solutions of the
original GEVP, E(n) from that of shied one by simply adding t.

Here, we give an example of designing and parameterizing T̂
dedicated to the electronic structure problem. In many cases, the
reference state, jf0i is chosen as a simple state, such as Hartree
Fock (HF) ground state or a conguration state function (CSF)
which is a symmetry-adapted state composed of a small number of
Slater determinants. Some or all orbitals in such reference states
are separately occupied or unoccupied, which is represented as:

jf0i ¼
�
5
q˛occ

j1iq 5
q˛virt

j0iq
	
5
��f0

ðrÞ�; (32)

where ‘occ’ and ‘virt’ denote the sets of occupied and virtual
orbitals, respectively, and jf0(r)i is possibly entangled and in the
remainder system, satisfying jf0(r)ihf0(r)j = Trocc,virt[jf0ihf0j]. In
a HF ground state, all orbitals are either occupied or unoccupied
while a CSF state may involve some entangled state jf0(r)i.
Furthermore, an electronic structureHamiltonian is represented as

Ĥ ¼
XNorb

p# q

hpqÊpq þ
X
pqrs

gpqrs

�
ÊpqÊrs þ h:c:

	
; (33)

where Norb denotes the number of total orbitals and the nota-
tions of the symmetric excitation operators Êrs = â†r âs + â†sâr and
the number operators n̂q = â†qâq are employed.

Then, the shi operator can be designed to cover one- and
two-body terms in the Hamiltonian and to satisfy eqn (29),
which has the following form:

T̂
�
sð1Þ; sð2Þ

� ¼X
q˛F

 
sð1Þq n̂q þ

X
rs˛Eq

sð2ÞqrsÊrs

�
n̂q � dq˛occ

�!
: (34)

Here, the sets of orbital indices, F :¼ occWvirt and
Eq :¼ fðr; sÞ: r; s ˛ ½Norb�\fqg; r# sg are dened, and dq˛occ is an
identity if q ˛ occ, zero otherwise. The indices r and s range over
the entire orbital set except q to make T̂ Hermitian and to avoid
duplication with the one-body number operator, since n̂q

2 = n̂q.
Note that the two-body terms with Êrsn̂q for q ˛ virt annihilate
jf0i, as do Êrs(n̂q − 1) for q ˛ occ. Therefore, the corresponding
shi factor is determined as

t ¼
X
q˛occ

sð1Þq : (35)

The optimal s can be found using iterative optimization algo-
rithms like or with the number of parameters of
jsj = O(Norb

3). However, the optimization overhead is reduced if
we adopt a decomposition algorithm where each term in eqn (33)
© 2025 The Author(s). Published by the Royal Society of Chemistry
is regarded as a fragment, as detailed in Appendix D. By using this
reduced optimization, the optimal parameters are found as

sð1Þq ¼ 2hqq

sð2Þqrs ¼ 4grsqq � 2grqsq:
(36)

Aer this optimization, the entire number operators, along
with a signicant portion of one-body Hamiltonian, are dis-
carded. Consequently, only a part of the two-body Hamiltonian
needs to be measured.

The shiing technique is also applicable to other algorithms
that require the measurement of aÔ(s) := hf0jÔe−iĤsjf0i for
some Hermitian operator Ô. With the extended swap test, one
can efficiently estimate aÔ(s) from the measurement of aÔ−T̂(s)
and a

Î
ðsÞ, which are always measurable simultaneously.
B Iterative coefficient splitting

In contrast to the shiing technique, which minimizes the
state-averaged costs (eqn (16) and (22)), this section focuses on
optimizing the state-dependent costs (eqn (13) and (20)). As one
approach, we apply iterative coefficient splitting (ICS), initially
designed for standard measurements,40 to the problem of
measuring the matrix elements.

Given a qubit Hamiltonian, Ĥ ¼PpapP̂p, where ap ˛ ℝ and

P̂p ˛ fbI; bsx; bsy; bszg5Nq , ICS seeks a decomposition into
measurable operators that minimizes the total variance. Note
that measurable operators here involve not only Hermitian
operators but also scaled unitaries, which are used for the
Hadamard test. As reviewed in Appendix B, such a decomposi-
tion in Pauli basis is written as:

Ĥ ¼
XNz

j¼1

N̂j ¼
XNz

j¼1

X
p˛Gj

ap
ðGjÞP̂p; (37)

where N̂j are measurable operators and the corresponding sets
of Pauli indices, Gj, are predetermined by a decomposition
algorithm like . Importantly, these Gj sets
may not be disjoint, meaning the same operator P̂p can belong
to multiple sets. Correspondingly, the coefficient ap is split
across these sets, satisfying the condition:X

j:p˛Gj

ap
ðGjÞ ¼ ap cp: (38)

ICS leverages the exibility of coefficient splitting to mini-
mize the total variance, which is thus treated as a function of
the split coefficients a and the shot allocation m:

VarðICSÞða;mÞ ¼ 1

M

X
j¼1;.;Nz
X˛fR;Ig

Var
h
X0k; j ;a

ðGjÞi
mjX

; (39)

where the vectors of split coefficients are dened as
a :¼ ðaðG1Þ;.;aðGNzÞÞ and aðGjÞ :¼ fap

Gj : p˛Gjg. The partial
variance for N̂j (eqn (25)) is expressed as a quadratic form in
terms of the split coefficients aðGjÞ:
Digital Discovery, 2025, 4, 954–969 | 959
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Table 1 LCU(b) and FH(g) decomposition norms with and without
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Var
h
X0k;j ;a

ðGjÞi ¼ X
p;q˛Gj

ap
ðGjÞaq

ðGjÞCovðX Þ
�
P̂p; P̂q

�
F0k

: (40)

Here, the Pauli covariance for the real part is determined as:

CovðRÞ
�
P̂p; P̂q

�
F0k

¼ hF0kjbI5 1

2

n
P̂p; P̂q

o
jF0ki

�Re
h
hf0jP̂pjfki

i
Re
h
hf0jP̂qjfki

i
: (41)

The detailed derivation is provided in Appendix C. The
covariance for the imaginary part is obtained by replacing Re
with Im in eqn (41).

To proceed with the optimization of eqn (39), the covariances
need to be estimated beforehand. A direct and precise calcula-
tion of eqn (41) requires a state, jfki = e−iĤtkjf0i, which is
classically difficult to obtain. Therefore, the covariance is
approximated using conguration interaction single and
double (CISD) ground state, jCISDi, and its energy, ECISD:

jfki z e−iECISDtkjCISDi. (42)

Then, the optimization problem is given as:�
a*;m*

� ¼ argmin

a:ap¼
P
j:p˛Gj

ap
ðGjÞcp

m:
P
jX

mjX¼1

VarðICSÞða;mÞ: (43)

Here, a and m, denote the split coefficients and the shot alloca-
tion, respectively. Although optimizing both a and m does not
have a closed-form solution, the each step of alternating opti-
mization—by xing one variable (a or m) while optimizing the
other—is a convex problem. When m is held constant, con-
strained quadratic programming can be employed for optimizing
a, because the variance is expressed as a quadratic form of a as
shown in eqn (40). Conversely, when optimizingm with a xed a,
the Lagrangian multiplier method is utilized, which results in

m
ðoptÞ
jX fVar

h
X0k;j ;a

ðGjÞi1=2: (44)

Overall, adapting the ICS method to the measurement
problem for the matrix elements involves three additional key
features compared to ref. 40: (1) including scaled unitaries as
measurable objects, (2) dening covariances between anti-
commuting Pauli operators, (3) employing the CISD proxy state
for the time-evolved state.
shifting. is adopted as decomposition algorithm.
Shifting operators T̂ are chosen as eqn (34) and optimized by the

algorithm after assigning the parameters shown in eqn (36)

Norm (Hartree) H2 H4 LiH BeH2 H2O

‖bSI(Ĥ)‖1 0.8405 6.0055 9.9902 16.4482 57.3794
‖bSI(Ĥ − T̂)‖1 0.1812 1.1278 0.4739 1.3582 2.0035
Reduction (LCU, %) 78.4 81.2 95.3 91.7 96.5
‖gSI(Ĥ)‖1 0.7397 2.0310 2.5254 4.7003 21.9723
‖gSI(Ĥ − T̂)‖1 0.1812 0.5288 0.3268 0.7857 1.1727
Reduction (FH, %) 75.50 74.0 87.1 83.3 94.7
V. Numerical results

Here, we present numerical illustrations of our theoretical
developments by examining the electronic structures of small
molecules: H2, H4, LiH, BeH2 and H2O, using the STO-3G basis
set. The fermionic Hamiltonians are transformed to qubit
operators by the Bravyi–Kitaev mapping with two-qubit
reduction.58,59
960 | Digital Discovery, 2025, 4, 954–969
For the QKSD setting, we use the Hartree–Fock ground as the
reference state jf0i. The time step for the propagator is chosen as
Dt = p/DE1, following the choice in ref. 35, Theorem 3.1, where
DE1 represents the rst spectral gap. In practical scenario where
the spectral gap is difficult to estimate in advance, a sufficiently
large time step is oen chosen to mitigate ill-conditioning,
although this comes at the cost of increased circuit depth. The
dependency of the conditioning on the time step has been
numerically studied in ref. 37, Appendix A-2. Also, in order to
focus on the nite sampling error, we assume that the exact
propagator B̂ = e−iĤDt is available, which does not involve Trot-
terization error. The QKSD order is set to n = Nq + 1, where Nq is
the number of qubits. In this setting, the overhead for the classical
GEVP is exponentially small compare to the direct diagonaliza-
tion, while the error induced by the projection onto the quantum
Krylov space is exponentially small as shown in ref. 35, Theorem
3.1. We observed that the error caused by the Krylov projection is
bounded as jE0(n)− E0j<10−4 Ha in the electronic structures of our
interest, where E0 is the true ground state energy of Ĥ.

The reduction in the norm achieved through the shiing
operator in eqn (34) is presented in Table 1. Overall, the shiing
technique reduced the norm more than 74%. The relative
reductions are larger in the LCU case because the shiing
removes large Ẑ-type Pauli operators. These operators cannot be
grouped together in the LCU decomposition, leading to a larger
norm when they were not removed. The details are provided in
Appendix B. However, the resulting costs of LCU remain higher
than those for FH, which implies that FH allows more efficient
measurement.

The exact and empirical measurement costs for each
scenario, both with and without the techniques described in
Section IV, are tabulated in Table 2. The measurement costs
obtained by the experiments approximate the exact costs
described in eqn (13) and (20) within the error caused by the
nite number of experiments. Generally, the cost reduction
tends to increase with the system size. Also, a signicant
portion of the reduction is attributed to the shiing technique,
which correlates closely with the squared reduction ratio in
Table 1. This correlation suggests that M32 f ‖z‖1

2, aligning
with the relationship previously established in eqn (27).

Furthermore, we validated the approximation of Pauli
covariance (eqn (41)) using the CISD proxy (eqn (42)) by
comparing ICS results obtained with both the proxy and the true
Krylov basis state, as shown in Table 2.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 The measurement costsM32 for the (shifted) matrix elements hf0jĤ(−T̂)jfki, averaged over k, are separately displayed for the cases with
and without applying ICS and/or shift techniques from the measurement setting obtained from (denoted as ‘SI’). The costs
are estimated by directly computing eqn (20) and (13). The values in the parenthesis are averaged empirical variances obtained by 1000 inde-
pendent runs of QKSD algorithm for each setting. The sub-optimal shot allocations are used if ICS is not employed, while shot allocations of the
ICS output are adopted otherwise. The result of ICS based on the true state jfki and phased CISD proxy are shown. Note that ICS by true state is
not practically achievable

M32 (Hartree2) H2 H4 LiH BeH2 H2O

LCU SI 1.51 (1.50) 81.40 (82.53) 213.60 (215.62) 598.29 (600.75) 7265.04 (7290.16)
ICS (True) 0.88 (0.87) 69.84 (69.77) 185.04 (182.27) 534.46 (534.83) 6534.53 (6508.27)
ICS (CISD) 0.92 (0.90) 70.11 (71.19) 185.34 (184.59) 536.47 (529.47) 6550.79 (6561.18)
Shi 0.13 (0.13) 5.08 (5.01) 0.89 (0.91) 7.37 (7.38) 16.04 (15.77)
Shi, ICS 0.13 (0.13) 4.82 (4.85) 0.80 (0.79) 6.97 (7.03) 14.53 (14.50)

FH SI 2.18 (2.24) 34.66 (34.27) 50.19 (50.25) 151.65 (149.91) 2284.67 (2287.81)
ICS (True) 1.29 (1.29) 18.32 (18.32) 26.43 (26.29) 88.00 (87.51) 1528.96 (1529.87)
ICS (CISD) 1.42 (1.44) 18.74 (18.60) 26.48 (26.18) 89.52 (89.90) 1535.81 (1523.23)
Shi 0.13 (0.13) 1.61 (1.60) 0.67 (0.67) 3.01 (3.01) 6.44 (6.44)
Shi, ICS 0.13 (0.13) 0.80 (0.79) 0.37 (0.36) 1.46 (1.47) 3.25 (3.25)
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However, we observed that for the LCU cases, the ICS
method performed less effectively than the FH cases. As shown
in Appendix B, a scaled unitary fragment, bjÛ j, is constructed by
grouping mutually anticommuting Pauli operators, while
commuting ones form a Hamiltonian fragment, Ĥj. In general,
because the anticommutation between Pauli operators occurs
less frequently, there are fewer opportunities for the Pauli
operators to be grouped to form a unitary. This makes the
coefficient splitting with LCU less effective.

As shown in Fig. 2, we compare the perturbed ground state
energies of the electronic Hamiltonian of H2O, obtained by
Fig. 2 Histogram of the error of the estimated ground state energies
(~E0

(n/n0 ) − EFCI) of the electronic structure Hamiltonian of H2O with
different measurement settings obtained from QKSD algorithm with
the thresholding by eqn (45) and the finite number of shots ofM= 108.
The horizontal axis represents the errors in the atomic unit (mHa), and
the vertical one denotes the frequency of the each histogram bin. The
histogram is plotted using the perturbed QKSD energies from 10 000
independent and identical experiments. Here, the optimal thresh-
olding of eqn (45) is applied to mitigate the sampling error, further
reducing the Krylov dimension from n= 9 to n0 = 3. In the FH case, two
different values of n0 = 2, 3 were observed across the random
experiments, resulting in the two peaks in the histogram. ~E(n/n0) and
E(n/n0 ) denote the QKSD ground state energies with and without
considering the effect of sampling error, respectively. E(n) represents
the QKSD ground state energy without error or thresholding.

© 2025 The Author(s). Published by the Royal Society of Chemistry
the QKSD algorithm, with and without applying the
reduction techniques. We observed the unperturbed QKSD
energy, E(n), is close to the full conguration interaction (FCI)
energy (jE(n) − EFCIj z 0.1 mHa).

We also employed a classical postprocessing called basis
thresholding to alleviate the numerical instability of GEVP.35,36

Since small singular values in S signicantly amplify the
perturbation to the eigenvalue E(n), the thresholding technique
further projects the GEVP onto the singular basis of S with
corresponding singular values larger than a certain value 3th > 0.
However, the thresholding also discards the information about
the eigenstates, not only the error, which biases thresholded
QKSD energy. Thus, by adjusting 3th, the thresholding estab-
lishes a trade-off, reducing the effect of the statistical error in H
and S while introducing additional projection error. Within this
trade-off, the optimal 3th was heuristically found in ref. 36 to be:

3th ¼ ~O
�
n
. ffiffiffiffiffiffiffiffi

MS

p �
; (45)

where MS is the number of shots used to construct S with the
Hadamard or extended swap test. Note that for the case of errors
other than the sampling error are present, an automated thresh-
olding60 can be adopted. We denote n0 as the dimension of the
thresholded problem and E(n/n0) as corresponding eigenvalue.

Despite the bias caused by the projection error, the effect of
the matrix perturbation is minimized. In the FH case, the
application of the shiing technique and ICS resulted in the
perturbed QKSD solution being concentrated within chemical
accuracy (j~E0(n/n0) − EFCIj <1.6 mHa), whereas most results
without these techniques deviated beyond chemical accuracy.

VI. Conclusion

In this work, we analyzed the nite sampling errors that arise
when projecting the Hamiltonian onto the quantum Krylov
subspace with quantum algorithms. The measurement cost
analyses of two scenarios, LCU and FH decomposition,
converge to a unied perspective, where the decomposition
rules and circuit construction are different. We also showed that
the expected cost is analogous to the LCU 1-norm, which has the
Digital Discovery, 2025, 4, 954–969 | 961
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same denition in the context of block encoding.53 Such anal-
ogies enable the translation of methods originally motivated to
reduce the costs in LCU simulation51,52 and the expectation
measurement39,40 to the problem of measuring matrix elements.
Especially, adopting the symmetry shi51,52 to the measurement
problem eases the constraint on the shi operator, and thus
provides larger cost reduction. Although the shiing technique
is more effective in the LCU case, the measurement cost is
observed to be lower in the FH case.

Despite of the effort to reduce the measurement cost,
achieving the chemical accuracy by QKSD in practice remains
still challenging, as the corresponding GEVP is oen ill-
conditioned. Note that in our application of QKSD to the H2O
system, the results were tted within the chemical accuracy by
using 108 shots, which can be considered expensive. In classical
Krylov subspace diagonalization, the perturbation on the GEVP
matrices mainly depends on the round off or oating point
error, which decreases exponentially to the number of bits of
the data type, although the calculation of the matrix elements
takes exponentially long time. On the other hand, governed by
the standard quantum limit, the matrix perturbation in QKSD
decays with the square root of the number of measurements,
which is much slower than the classical KSD, while each
measurement takes polynomial time. Therefore, if exponential
precision for the matrix element is required because of the ill-
conditioning, it is not yet obvious that QKSD is superior to
the classical counterpart in terms of running time to achieve
a certain precision in the estimated eigenvalues.

As discussed in Section III, we observed that the extended swap
test, enabled by FH decomposition, allows for the simultaneous
measurement of both the overlap and Hamiltonian matrices:

S0k ¼ hF0k ĵI5
�bsx þ ibsy

�jF0ki;
H0k ¼ hF0kjĤ5

�bsx þ ibsy

�jF0ki;
due to commutativity between bI5ŝxðyÞ and Ĥ 5 ŝx(y). This idea
can be extended to the other EFTQC algorithms. Based on our
knowledge, recently developed EFTQC algorithms other than
QKSD focus on extracting the spectrum only from the autocor-
relation function, a(t) := hf0je−iĤtjf0i. However, those algo-
rithms can be more rened by adopting the simultaneous
measurement of aÔ(t) := hf0jÔe−iĤtjf0i for some observable Ô.
For instance, the rst derivative of a(t) can be directly calculated
from aĤ(t). This measurement, which can be done precisely if
the techniques introduced in this work are adopted, only
requires overheads of O(Nq

2) Clifford operations. These opera-
tions do not need additional logical qubits and present an
endurable cost for EFTQCs. Given this rationale, our future
research direction involves exploring EFTQC algorithms
including aÔ(t) in the spectrum extraction.
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Appendices
Appendix A: averaged variance on H0k

In this section, we derive the state-independent variance, rep-
resented by eqn (16) and (22), by averaging the states jf0i and
jfki over the independent uniform Haar distributions
ðf0 � HðdÞ;fk � HðdÞÞ. Before proceeding with the derivation,
we introduce three lemmas that will be instrumental in this
process. Throughout this section, Ef�HðdÞ½$� is abbreviated as
Ef½$� unless otherwise mentioned.

Lemma 1: for any normal operator Â ˛ ℂd�d, the following
equality holds:

Ef1 ;f2

"����hf1jÂjf2i
����2
#
¼ 1

d2
Tr



Â

†
Â

�
: (A1)

Proof: for any operator X̂ ˛ ℂd�d, the averaged conjugation
is known as

EÛ�UðdÞ



Û

†
X̂ Û

�
¼ Î

d
Tr
h
X̂
i
; (A2)

as a consequence of Schur's lemma and the le and right
invariance of the Haar measure, where UðdÞ is the uniformHaar
distribution over the unitary group of dimension d. Therefore,
we can state

Ef

h
hfjX̂ jfi

i
¼

Tr
h
X̂
i

d
: (A3)

Finally, by applying eqn (A3) consecutively, we have:
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Ef1 ;f2

"����hf1jÂjf2i
����2
#
¼ Ef1 ;f2



hf1jÂjf2ihf2jÂ

†jf1i
�

¼ 1

d
Ef2



Tr



Âjf2ihf2jÂ

†
��

¼ 1

d
Ef2



hf2jÂ

†
Âjf2i

�

¼ 1

d2
Tr



Â

†
Â

�
:

Lemma 2: for any normal operator Â ˛ ℂd�d, the following
equality holds:

Ef1 ;f2

"
Re



hf1jÂjf2i

�2#
¼ Ef1 ;f2

"
Im



hf1jÂjf2i

�2#
(A4)

Proof: because of the unitary-invariant property of Haar
measure, Ef½ f ðjfiÞ� is always identical to
Ef½ f ðeip=2jfiÞ� ¼ Ef½ f ðijfiÞ� for any function f. Therefore, the
following proves eqn (A4):

Ef1 ;f2

"
Re



hf1jÂjf2i

�2
� 1

2

����hf1jÂjf2i
����2
#

(A5)

¼ 1

4
Ef1 ;f2



hf1jÂjf2i2 þ hf2jÂ

†jf1i2
�

(A6)

¼ 1

4
Ef1 ;f2



hf1jiÂjf2i2 þ hf2jð�iÞÂ

†jf1i2
�

(A7)

¼ Ef1 ;f2

"
Im



hf1jÂjf2i

�2
� 1

2

����hf1jÂjf2i
����2
#
; (A8)

where eqn (A6) and (A8) are obtained using

Re½z�2 ¼ 1
4
½z2 þ z*2 þ 2jzj2� and Im½z�2 ¼ 1

4
½ �z2 � z*2 þ 2jzj2�,

respectively, for z ˛ℂ. Additionally, eqn (A7) is derived by
replacing jf2i with ijf2i.

Lemma 3: for any normal operator Â ˛ ℂd�d, the following
equality holds:

Ef

"����hfjÂjfi����2
#
¼

Tr



Â

†
Â

�
þ
����Tr
Â�����2

dðd þ 1Þ : (A9)

Proof: because Â is normal, we can perform the eigende-

composition to an arbitrary state as jfi ¼Pd
i¼1

gijjii, where Âjjii
= aijjii and gi = hjijfi. Then the Haar averaging over jfi is
identical to the averaging {gi}i=1

d over d-dimensional complex
unit sphere, Ef½$� ¼ Efgig�ℂℙd�1½$�, where ℂℙ denotes the
complex projective space. Therefore, it can be shown that

Ef

"����hfjÂjfi����2
#

(A10)
© 2025 The Author(s). Published by the Royal Society of Chemistry
¼ Efgig�ℂℙd�1

"����Xd
i¼1

aijgij2
����2
#

(A11)

¼
X
i

jaij2Eg

h
jgij4

i
þ
X
isj

a*i ajEg

h
jgij2

��gj

��2i (A12)

¼ 1

dðd þ 1Þ

 
2
X
i

jaij2 þ
X
isj

a*i aj

!
(A13)

¼ 1

dðd þ 1Þ

 X
i

jaij2 þ
 X

i

a*i

! X
i

ai

!!
(A14)

¼ 1

dðd þ 1Þ
�
Tr



Â

†
Âþ Tr



Â

†
�
Tr



Â

��	
; (A15)

where Eg½$� denotes Efgig�ℂℙd�1½$� and eqn (A13) holds because
of ref. 63, Theorem 2.6.

For the case of LCU decomposition, the Haar-averaged partial
variance in eqn (14) is identically determined over X and j as

Ef0 ;fk

"
Var



ÔX

�
F0k;j

#
¼ 1� 1

2d
; (A16)

by applying Lemmas 1 and 2 with Â = Ûj. Therefore, the sub-
optimal shot allocation,

m
ðsuboptÞ
jX ¼ bj

2kbk1
; (A17)

is obtained by replacing Var[ÔX]f0k;j in eqn (15) with the ex-
pected variance, where the denominator is set to satisfy the

normalization constraint,
P
jX

mðsuboptÞ
jX ¼ 1.

The variance with the sub-optimal shot allocation is derived
from eqn (13) by assigning eqn (A17), which is

VarðLCUÞ�H0k;m
ðsuboptÞ� ¼ 1

M

XNb

j¼1

2kbk12
 
2�

����hf0jÛ j jfki
����2
!
:

(A18)

Finally, by Lemma 1, the Haar averaging of jhf0jÛjjfkij2 both
over f0 and fk results in eqn (16).

Furthermore, because jfki = B̂kjf0i is an evolved state from
jf0i, we can consider averaging the variance over single state
jf0i, xing the evolution operator, B̂k. Then from eqn (A18),
jhf0jÛjjfkij2 = jhf0jÛjB̂

kjf0ij2 needs to be averaged over jf0i.
Using Lemma 3 with Â = ÛjB̂

k, we can show that

Ef0


����hf0jÛ jB̂
kjf0i

����� ¼ d þ
����Tr
Û jB̂

k
�����2

dðd þ 1Þ ;

and thus

1

d þ 1
#Ef0


����hf0jÛ jB̂
kjf0i

�����# 1;

because 0# jTr[ÛjB̂
k]j2 # d2. Finally, the total averaged variance

is bounded by
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2kbk12
M

#Ef0

�
VarðLCUÞ�# 2kbk12

M

�
2� 1

d þ 1

	
; (A19)

which is approximately less than the expected variance
considering the two states independently (eqn (16).)

In FH case, the shots for real and imaginary parts are iden-
tically allocated (mjR =mjI emj/2) because of Lemma 2, similar
to the LCU case. Therefore, the variances for the real and
imaginary parts in eqn (21) can be directly added, yielding

VarðFHÞ ¼
XNg

j¼1

2

mj

 
Var



ÔjR

�
F0;k

þ Var



ÔjI

�
F0;k

!

¼
XNg

j¼1

2

mj

 
2

*
ÔjX

2

+
F0k

� ��hf0jĤj jfki
��2!: (A20)

In eqn (21), the expected second moment is determined as
Ef0;fk

½hÔjX
2iF0k

� ¼ Tr½Ĥj
2�=d, while the last term,

Ef0;fk
½��hf0jĤjfki

��2� ¼ Tr½Ĥj
2�=d2 is obtained using Lemma 1.

Finally, the expected variance of jth fragment is derived as below:

Ef0 ;fk

"
Var



ÔjR

�
F0;k

þ Var



ÔjI

�
F0;k

#

¼ 1

d
Tr
h
Ĥj

2
i�

2� 1

d

	
;

(A21)

which results in a total averaged variance of eqn (22) with the
sub-optimal allocation mj f Tr[Ĥj

2]1/2.
Similar to the LCU case, if we take the expectation only on

jf0i, we have

Ef0

�
VarðFHÞ�# 2kgk2

M

�
2� 1

d þ 1

	
: (A22)

Appendix B: grouping Pauli operators

In this section, we review the partitioning of qubit Hamiltonian
in a form of LCU and FH. Also, the expressions of ‖b‖1 and ‖g‖1
are presented with respect to the Pauli coefficients.

A qubit Hamiltonian Ĥ is expressed as

Ĥ ¼
XNP

p¼1

apP̂p; (B1)

where P̂p ˛ {̂I, ŝx, ŝy, ŝz}
5Nq is an Nq-qubit Pauli operator and its

coefficient is ap ˛ ℝ.
First, we review the derivation of LCU in Pauli basis,54,55

which is described as

Ĥ ¼
XNb

j¼1

bjÛ j ¼
XNb

j¼1

X
p˛Aj

ap
ðAjÞP̂p: (B2)

Here, a Pauli term apP̂p can be separated to the multiple groups
fAjg. Thus, ap ¼

P
j:p˛Aj

ap
ðAjÞ for all 1 # p # Np, should be

imposed for the partitioned coefficients. Also, if the anti-
commutation conditions of different Pauli operators within
a group holds:n

P̂p; P̂q

o
¼ 2dpqÎ cp; q ˛ Aj ;cj; (B3)
964 | Digital Discovery, 2025, 4, 954–969
each partition,
P
p˛Aj

ap
ðAjÞP̂p, becomes a scaled unitary, bjÛ j. Then,

bj
2 ¼P

p˛Aj

ap
ðAjÞ2 is found consequently, and the norm becomes

kbk1 ¼
XNb

j¼1

 X
p˛Aj

ap
ðAjÞ2

!1=2

: (B4)

Furthermore, a circuit realization of controlled Ûj is known,
which requires OðNq

��Aj

��Þ two-qubit gates.55
Now, for the case of FH, Pauli operators are grouped together

if all pairs of the operators in a group commute:

Ĥ ¼
XNg

j¼1

Ĥj ¼
XNg

j¼1

X
p˛Cj

ap
ðCjÞP̂p; (B5)

where h
P̂p; P̂q

i
¼ 0 cp; q ˛ Cj ;cj; (B6)

and ap ¼
X
j:p˛Cj

ap
ðCjÞ. For each of Ĥj, one can construct a diago-

nalizing Clifford circuit, V̂ j, taking OðNq minðNq;
��Cj

��ÞÞ two-
qubit gates. Furthermore, one can nd the FH decomposition
norm, ‖g‖1 in terms of Pauli coefficients:

kgk1 ¼
1ffiffiffi
d

p
XNg

j¼1

Tr
h
Ĥj

2
i1=2

¼
XNg

j¼1

 X
p˛Cj

ap
ðCjÞ2

!1=2

: (B7)

Here, note that we used
1
d
Tr½P̂pP̂q� ¼ dp;q because the trace of

Pauli operators except the identity is zero.

The two norms described in eqn (B4) and (B7) shares
a common expression as the sum of the L2 norms of Pauli coef-
cients. We can consider decomposing eqn (B1) without grouping,
Ĥj = bjÛ j = ajP̂j, which is also an LCU and an FH simultaneously.
However, in such case, the norm ‖b‖1 = ‖g‖1 = ‖a‖1 becomes
larger than that of grouped Pauli case because the sum of L2
norms of grouped Pauli coefficients is smaller than the L1 norm.

Pauli groupings are not unique and can be translated to
a clique covering problem on the (anti-)commutation graph.
The commutation graph, denoted as GC ¼ ðV ;ECÞ, encodes the
commutativity between Pauli operators. Specically, the nodes
in V correspond to individual Pauli operators: V = {vp : 1 # p #

NP} with a node weight function w(vp)= ap. Also, undirected and
unweighted edges connect nodes whose corresponding opera-
tors commute ðEC ¼ fðvp; vqÞ : ½P̂p; P̂q� ¼ 0gÞ. The anti-
commutation graph, GA ¼ ðV ;EAÞ, shares the same node set
with GC but connects nodes with anticommuting operators
ðEA ¼ fðvp; vqÞ : fP̂p; P̂qg ¼ 0gÞ. Because any two Pauli operators
either commute or anticommute, these graphs are comple-
ments, meaning that Ec

A ¼ EC .
In such setting, minimizing eqn (B4) and (B7) translates to

nding a clique covering that minimizes the sum of the clique
weights. Each weight is dened as a L2 norm of node weights
covered by each clique. Like other clique covering problems,
this is an NP-hard problem. However, a heuristic and greedy
algorithm called oen outperform other
© 2025 The Author(s). Published by the Royal Society of Chemistry
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heuristic algorithms as demonstrated in ref. 39. The original
work on aimed to minimize the cost of
measuring standard expectation values, so it only considered
the commutation graph. However, we extend the algorithm to
the anticommutation case to reduce the cost of the LCU
measurements by simply modifying its grouping condition.

In the numerical results of Section V, the Ẑ-type operators,
which dominate the example Hamiltonians, correspond to the
number operators in the fermionic representation. In the LCU
decomposition, these operators are not grouped due to their
mutual commutativity, resulting in a larger LCU norm than FH
norm (‖bSI(Ĥ)‖$ ‖gSI(Ĥ)‖) because large coefficients are treated
separately. However, the shiing technique effectively eliminates
these operators, signicantly reducing the norm ‖bSI(Ĥ − T̂)‖. In
the FH decomposition, Ẑ-type operators are naturally grouped
together, which contribute to the norm less signicantly than the
LCU case. Consequently, the impact of the shiing technique is
less pronounced in the FH case compared to the LCU case.
Nevertheless, the shied FH decomposition still achieves
a smaller norm than the shied LCU decomposition.
Appendix C: Pauli covariance

In this section derives the Pauli covariance for measuring the
matrix element (eqn (41)). Starting from the partial variance in
eqn (25), and substituting N̂j ¼

P
p˛Gj

ap
ðGjÞP̂p, which is analogous

to eqn (B2) or (B5), we obtain:
Var
�
R0k;j

� ¼ X
p;q˛Gj

ap
ðGjÞaq

ðGjÞ


1

2

�
hf0jP̂pP̂qjf0i þ hfkjP̂pP̂qjfki

�
�Re

h
hf0jP̂pjfki

i
Re
h
hf0jP̂qjfki

i�
: (C1)
Comparing eqn (40) and (C1) suggests dening the covari-
ance as the expression within the bracket. However, this de-
nition violates the symmetric property of the covariance
because P̂pP̂q is not necessarily identical to P̂qP̂p. Therefore, to
ensure the symmetry, we superpose the product of operators in
both orders, (p, q) and (q, p). This results in the denition of the
covariance as eqn (41).
Appendix D: efficient shiing technique for electronic
structure problem

Here, we describe an efficient procedure of optimizing eqn (28)
for an electronic structure Hamiltonian. If T̂ is given as eqn (34),
the number of real parameters determining T̂ is:

Nparam ¼ ðNocc þNvirtÞ
 
1þ

 
Norb � 1

2

!!
; (D1)

where Nocc and Nvirt denote the number of occupied and virtual
orbitals, respectively. This number scales as O(Norb

3) and makes
the optimization computationally expensive. In the rest of the
© 2025 The Author(s). Published by the Royal Society of Chemistry
section, we show an alternative and efficient method for the
minimization of the norm by the shi technique.

We consider that the Hamiltonian Ĥ is given as an electronic
structure Hamiltonian in eqn (33), whose the indices are
determined for the unique terms:

Ĥ ¼
XNorb

r# s

hrsÊrs þ
X

ðp;q;r;sÞ˛P
gpqrs

�
ÊpqÊrs þ ÊrsÊpq

	
; (D2)

where

P :¼

8>>>>><>>>>>:
ðp; q; r; sÞ : ð1# p# q#NorbÞ
^ð1# r# s#NorbÞ
^ððp\rÞnððp ¼ rÞ^ðq# sÞÞÞ
^:ðp ¼ q ¼ r ¼ sÞ

9>>>>>=>>>>>;
:

The set P with the size of jPjzNorb
4=8 represents the

indices of Hermitian two-body operators avoiding the duplica-
tion from the following eight-fold symmetries:

gpqrs = gqprs = gpqsr = gqpsr = grspq = gsrpq = grsqp = gsrqp,

and squared number operators (p = q = r = s), which are
absorbed into one-body number operators due to the idempo-
tent property (n̂p

2 = n̂p).
In order to realize the efficient optimization, we nd a part

affected by the shi among the terms in eqn (D2). The terms
relevant to eqn (34) are selected to construct the partial
Hamiltonian, Ĥ(s):

Ĥ
ðsÞ ¼

X
r˛F

2~hrrn̂r þ
XNorb

r\s

~hrsÊrs þ
X
q˛F

X
rs˛Eq

~grsqqÊrsn̂q; (D3)

where the modied coefficients are

~hrs ¼ hrs þ drss

X
q˛½Norb�\fr;sg

grqsq

~grsqq ¼ 4grsqq � 2grqsq:

Such coefficients are determined by the following trans-
formation to make the form of the Hamiltonian consistent to
the shi operator:

grqsqÊrqÊsq þ grsqqÊrsÊqq þ h:c:

¼ grqsqÊrs þ
�
4grsqq � 2grqsq

�
Êrsn̂q;

(D4)

for all r s q and s s q. Because the rest of the Hamiltonian
(Ĥ − Ĥ(s)) is invariant to the shiing with respect to the term-
wise grouping algorithm, denoted as T, we focus on the
following norm minimization:
Digital Discovery, 2025, 4, 954–969 | 965
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min
s
kgT

�
Ĥ

ðsÞ � T̂ðsÞ
�k: (D5)

Here, Ĥ(s) − T̂(s) is given as

Ĥ
ðsÞ � T̂ðsÞ ¼

X
r˛F

�
2~hrr � sð1Þr

�
n̂r

þ
X
r\s

 
~hrs þ

X
q˛occ\fr;sg

sð2Þqrs

!
Êrs

þ
X
q˛F

X
rs˛Eq

�
~grsqq � sð2Þqrs

�
Êrsn̂q: (D6)

Note that the each operators in eqn (D6) contributes to the
norm as shown below:

1ffiffiffi
d

p Tr
�
n̂r

2
�1=2 ¼ 1ffiffiffi

2
p ;

1ffiffiffi
d

p Tr

"
Êrs

2

#1=2
¼

ffiffiffi
2

d

r
Tr


�
Êrsn̂q

�2�1=2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3drs þ 1Þ

2

r
;

(D7)

for r s q and s s q. Therefore, the norm with term-wise
grouping is determined as

kgT

�
Ĥ

ðsÞ � T̂ðsÞ
�
k ¼

X
r˛F

1ffiffiffi
2

p ��2~hrr � sð1Þr

��
þ
X
r\s

1ffiffiffi
2

p
�����~hrs þ X

q˛occ\fr;sg
sð2Þqrs

�����
þ
X
q˛F

X
rs˛Eq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3drs þ 1

2

���~grsqq � sð2Þqrs

���r
: (D8)

The rst summation becomes zero by assigning

sð1Þr ¼ 2~hrr cr ˛ F : (D9)
Fig. 3 A pictorial approach for the optimization of eqn (D14). For the simp
is two-dimensional and A > 0. In figure (a), for a fixed m+, the green diamo
such that ‖m‖1= ‖m+‖1 and P(m)= P(m+), respectively. It is shown that P(m+

to be established, and thus m+ exists. In figure (b), for a fixed ‖m‖1, the
sponding optimal value of P(m+) + ‖m+‖1= A. By varying ‖m‖1, these points
plots are symmetrically transposed about the origin, resulting in the opt
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Furthermore, because the variables, s(2)qrs for ðq; r; sÞ ˛ T such
that

T ¼ fðq; r; sÞ : 1# r ¼ s#Norb; q ˛F \frgg
Wfðq; r; sÞ: 1# r# s#Norb; q ˛ virt\fr; sgg; (D10)

are only included in the third summation, they are also deter-
mined as

sð2Þqrs ¼ ~grsqq cðq; r; sÞ ˛ T : (D11)

However, the rest of the variables, s(2)qrs for ðq; r; sÞ˛T c occur
both in the second and the third summations, where

T c ¼ fðq; r; sÞ : 1# r\s#Norb; q ˛ occ\fr; sgg: (D12)

Aer the assignment of eqn (D9) and (D11), the minimiza-
tion problem of eqn (D8) is then reduced to

kgT

�
Ĥ

ðsÞ � T̂
0�
s
ð2Þ
T c

��k ¼ 1ffiffiffi
2

p
X
r\s

"�����~hrs þ X
q˛occ\fr;sg

sð2Þqrs

�����
þ

X
q˛occ\fr;sg

���~grsqq�sð2Þqrs

���# (D13)

where T̂ 0ðsð2ÞT c Þ denotes the shi operator T̂ with the partial
assignment and s

ð2Þ
T c denotes the set of variables, s(2)qrs with

ðq; r; sÞ˛T c. Furthermore, minimizing eqn (D13) is identical to
the separated optimizations:

min
mðrsÞ˛ℝjUrs j

�
Prs

�
mðrsÞ�þ kmrsk1

�
(D14)

for each (r,s) with respect to the variables,
mðrsÞ ¼ fmq

ðrsÞ ¼ ~grsqq � sð2Þqrs: q ˛ U rsg, where Urs ¼ occ\fr; sg and

Prs

�
mðrsÞ� ¼ �����Ars �

X
q˛Urs

mq
ðrsÞ
�����; (D15)
licity, the super- and subscripts (rs) are omitted, and it is assumed that m
nd-shaped plot and the orange parallel lines denote all the points of m
) + ‖m+‖1$ Amust be satisfied for the intersections between two plots

optimal points are found, as indicated by the red line, with the corre-
are expanded to the shaded area in figure (c). For the case of A# 0, the
imal points of 0 # ‖m+‖1 # − A and m1

+,m2
+ # 0.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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and Ars ¼ ~hrs þ
P
q˛Urs

~grsqq. We provide a pictorial procedure to

solve eqn (D14) in Fig. 3. Although the solution for 2-dimen-

sional problem is shown, this can be extended to jU rsj-dimen-

sional problem by considering hyperplane instead of lines in

the gure. Every sð2Þ+T c satisfyingX
q˛Urs

���sð2Þ+qrs � ~grsqq

���# jArsj;

sign
�
sð2Þ+qrs � ~grsqq

�
¼ signðArsÞ

(D16)

for all r and s, identically results in the optimal value of eqn
(D14), which is

kgT

�
Ĥ

ðsÞ � T̂
0�
s
ð2Þ+
T c

��k ¼ 1ffiffiffi
2

p
X
r\s

�����~hrs þ X
q˛occ\fr;sg

~grsqq

�����: (D17)

Note that assigning s(2)+qrs = ~grsqq for all r; s; q ˛ T c satises
eqn (D16), which is analogous to eqn (D11).

Therefore, we conclude that the parameters

s(1)r = 2hrr (D18)

s(2)qrs = 4grsqq − 2grqsq (D19)

lead to the optimal shi with respect to the term-wise grouping
algorithm. However, strictly to say, the above simplication only
holds for the fragment Hamiltonian, as n̂r and Êrsn̂q are Her-
mitian, not unitary. Although n̂q can be written as a unitary
operator (r̂q = 2n̂q − 1), our current understanding of repre-
senting a unitary operator as a linear combination of one-body
excitation operators remains insufficient to establish an anal-
ogous reduction for the LCU case. Therefore, this work adopts
the same shi operator for both LCU decomposition as an
interim solution, leaving the parameter reduction for the LCU
case as a future work.
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