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Zeolites, such as MFI, are versatile microporous aluminosilicate materials that are widely used in catalysis

and adsorption processes. The location and the character of the aluminium within the zeolite framework

is one of the important determinants of performance in industrial applications, and is typically probed by
27Al NMR spectroscopy. However, interpretation of 27Al NMR spectra is challenging, as first-principles

computational modelling struggles to achieve the timescales and model complexity needed to provide

reliable assignments. In this study, we deploy advanced machine learning-based methods to help bridge

the time and model complexity scale by first utilizing neural network interatomic potentials to achieve

significant speed-up in structure sampling compared to traditional density functional theory (DFT)

approaches, and second by training regression models to cost-effectively predict the 27Al chemical

shifts. This allows us, for the H-MFI zeolite as a use case, to comprehensively explore the effect of

various conditions relevant to catalysis, including water loading, temperature, and the aluminium

concentration, on the 27Al chemical shifts. We demonstrate that both water content and temperature

significantly affect the chemical shift and do so in a non-trivial way that is highly T-site dependent,

highlighting a need for adoption of realistic, case-specific models. We also observe that our approach is

able to achieve close to quantitative agreement with relevant experimental data for such a complex

zeolite as MFI, allowing for the tentative assignment of the experimental NMR peaks to specific T-sites.

These findings provide a testament to the capabilities of machine learning approaches in providing

reliable predictions of important spectroscopic observables for complex industrially relevant materials

under realistic conditions.
1. Introduction

Zeolites are highly versatile microporous aluminosilicate
materials widely employed in various industrial applications,
including catalysis, adsorption and separation. Zeolite ZSM-5
stands out as one of the most extensively used zeolites in the
petrochemical industry, where it can serve as an efficient cata-
lyst for hydrocarbon transformations.1,2 The catalytic activity of
zeolites is primarily governed by their chemical composition,
with structural features such as channel shape, accessible pore
r Chemistry, Faculty of Science, Charles

ech Republic. E-mail: daniel.willimetz@

ESI) available: Detailed information on
ression model training, and molecular
ta is provided in the Zenodo repository
) including a trained kernel ridge
es for MOR, MFI, and CHA structures
itial congurations used in the study,
the KRR algorithm. See DOI:

the Royal Society of Chemistry
volume, and the positioning of aluminium atoms within the
framework signicantly inuencing their catalytic behaviour.2–4

Accurately determining the position, character or hydration-
state of aluminium atoms within the zeolite framework is useful
for understanding and optimizing catalytic properties.2,4

However, traditional techniques like X-ray crystallography have
inadequate sensitivity for distinguishing between aluminium
and silicon atoms (or between different types of aluminium
species) and thus they cannot be used for the determination of
the aluminium character and siting. Additionally, especially at
low Si/Al ratios, aluminium atoms may distribute unevenly
across T sites, which further complicates accurate determina-
tion of aluminium positions with diffraction methods. In
contrast, nuclear magnetic resonance (NMR) spectroscopy,
particularly 27Al NMR, has emerged as a powerful tool for
probing the local environments of aluminium atoms in
zeolites.5–7 In particular, several studies have attempted to
correlate experimental 27Al NMR spectra with specic T-sites in
the zeolite framework.8–13 However, sizable inconsistencies in
the calculated chemical shis reported in these studies
Digital Discovery, 2025, 4, 275–288 | 275
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illustrate the continuing challenges faced by researchers in this
eld.

Interpreting solid-state NMR spectra can be challenging due
to signal broadening and overlap. Theoretical calculations of
NMR parameters, including those derived from rst-principles
methods, can provide valuable insights.5,10,13–17 However, the
computational demands of these methods, especially for the
large unit cells typical of zeolites, oen require adoption of
various simplications, such as disregarding water molecules
and/or charge-compensating cations in the models, or repre-
senting the system using a single structure (putative global
minimum) forgoing the dynamical temperature effects.9,10 Such
simplications cast doubt over the relevance of these theoret-
ical NMR predictions, as, for example, experimental measure-
ments of (27Al) solid-state NMR spectra in zeolites are typically
performed under humid conditions11 with multiple water
molecules per Al center present in the framework,18 and with
zeolite frameworks, such as MFI being characterized by
a multitude of low-frequency vibrational modes and a plethora
of low-energy structural minima,19 which will be populated at
the NMR-relevant conditions.

Machine learning (ML) methods offer a promising alterna-
tive to rst-principles methods by signicantly accelerating
either the structure sampling via machine learning
potentials20–25 or the property predictions.26–28 In particular,
various ML methods have been tested and adopted for the
prediction of NMR-related properties with regression tech-
niques such as least absolute shrinkage and selection operator
regression, kernel ridge regression, and Gaussian process
regression proving effective in accurately predicting chemical
shielding values.29–33 Similarly, algorithms based on neural
networks have been successfully applied to determine chemical
shieldings.34,35 Recently, both regression and neural network
methods have also been used to predict the shielding tensors36
Fig. 1 A simplified workflow used in this work for evaluating (27Al) NMR
neural network potentials (NNP) for structure sampling and kernel ridge
structures. The KRR model was trained on a structural dataset selecte
shielding values computed via the DFT method. This trained KRR mode
driven molecular dynamics trajectories investigating the effect of numero
in parentheses refer to the sections discussing in detail the particular pa

276 | Digital Discovery, 2025, 4, 275–288
and the electric eld gradient (EFG) tensor components for
quadrupolar nuclei.37,38 These ML techniques signicantly
improve the efficiency of NMR modelling, enabling adoption of
more realistic models, while retaining the rst-principle
method accuracy.

This study leverages ML-derived interaction potentials
(MLPs) to comprehensively sample the conguration space of
a complex zeolite H-MFI at conditions relevant for the NMR
experiment (including humidity and temperature effects),
which is used both to generate a diverse reference set to train
and test various ML-based regression models for prediction of
27Al chemical shis and to obtain a representative ensemble of
structures for which the averaged 27Al chemical shis are eval-
uated cost-effectively using the herein trained regression
models. In particular, in the rst part, various regression based
models for prediction of 27Al chemical shi are trained and
their accuracy and reliability are validated with respect to the
reference chemical shi values obtained from density func-
tional theory (DFT) calculations. Then, the ML-based accelera-
tion of the simulations is exploited to comprehensively
investigate how various factors affect the chemical shi,
including water content, temperature, and aluminium
concentration. Lastly, the predicted chemical shis, evaluated
at conditions close to the experimental setup, are compared
both to previous computational studies and the existing
experimental NMR spectra, allowing us to propose an alterna-
tive assignment of T-sites to experimentally observed 27Al
resonances. Although the investigation is focused on the H-MFI
zeolite, the transferability of the best-performing kernel ridge
regression (KRR) model to a broader set of zeolite frameworks is
established as well as a simple strategy on how to extend it to
other zeolites. For the convenience of the reader, the structure
of the current work is summarized in Fig. 1.
chemical shielding under operating conditions using a combination of
regression (KRR) for chemical shielding prediction for NNP-sampled
d through the farthest point sampling (FPS) algorithm and chemical
l then predicted chemical shielding values on snapshots from a NNP-
us factors on the (27Al) NMR shieldings. For convenience, the numbers
rts of the workflow.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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2. Computational details
2.1 Models

The main MFI model used throughout the work (investigating
factors such as water dynamics, temperature, and the proximity
of Al atoms) is an orthorhombic cell of MFI containing 12 T-
sites. For discussion and comparison with experimental data
and other studies (see Section 4.1), the MFI model with
a monoclinic symmetry, the so-called ZSM-5, with 24 T-sites,
was also considered.

The MFI structure was obtained from the IZA database.39 To
determine the optimal unit cell dimensions for the models with
aluminium, one aluminium atom was substituted at the T12
site (Si/Al = 95). To generalize the model for both low and high
water loadings, 7 water molecules were introduced into the
structure. The unit cell dimensions obtained from the IZA
database were uniformly scaled by factors ranging from 0.96 to
1.06, and molecular dynamics (MD) simulations were per-
formed at a temperature of 350 K (see Section 2.2). A cubic t of
the unit cell volume versus average energy revealed the lowest
energy conguration, corresponding to a unit cell volume of
5301 Å3. The optimized lattice parameters were determined to
be a = 20.20 Å, b = 19.85 Å, and c = 13.22 Å, and these
parameters were used for all orthorhombic MFI unit cells in this
study. Further details can be found in Section S1 in ESI.†

Predominantly, the models with Si/Al ratio of 95 were
considered, with one silicon atom per unit cell substituted by
aluminium. An acidic form of the zeolite was considered, with
a hydrogen atom added to the oxygen atom bonded to the
aluminium, forming a Si–O(H)–Al group, i.e., a Brønsted acid
site (BAS). As mentioned above, the orthorhombic MFI unit cell
includes 12 distinct crystallographic T-sites, each connected to
four oxygen atoms, resulting in a total of 48 possible BAS
congurations. For models with lower Si/Al ratio, the same
modelling procedure was followed as for the unit cell contain-
ing one aluminium atom, where more silicon atoms were
replaced by aluminium, and subsequently, a proton was added
to a neighbouring oxygen to form a BAS.

For low water contents, water molecules were initialized close
to the BAS. For higher water content, the sorption module in
Materials Studio40 was used with the COMPASS27 force eld41 to
determine the optimal placement of water molecules. The water
loadings considered were 0, 1, 2, 3, and 17 water molecules per
unit cell. The 17 molecules represent the number of water
molecules required to completely ll the accessible pore volume
at a density of 1 g cm−3.39 This water content is consistent with
experimental measurements performed by Holzinger et al.11
2.2 Molecular dynamics

The molecular dynamics (MD) simulation was conducted over
a period of 1 ns with a time step of 0.5 fs, with the snapshots of
the system saved every 100 steps. The simulation was performed
in the NVT ensemble employing the Nosé-Hoover thermostat42 to
maintain a constant temperature of 350 K throughout the
simulation. The soware used for the MD simulation was the
atomic simulation environment (ASE), version 3.22.1.43 For
© 2025 The Author(s). Published by the Royal Society of Chemistry
interaction potentials and energy calculations, we employed
a previously derived neural network-based potential (NNP)21 –

these potentials were specically developed for acidic zeolite
systems containing water molecules and were constructed using
the SchNetPack 1.0 library,44 written in Python programming
language. The reference training database for this NNP was
generated at the meta-GGA DFT level (SCAN + D3(BJ)).45–47

2.3 DFT calculation

All the DFT calculations on a subset of MFI models were carried
out in the CASTEP soware package48 and employed the PBE
exchange–correlation functional49 with the plane-wave energy
cutoff of 700 eV and a k-point sampling grid of 1 × 1 × 1,
ensuring that the total energy was converged to within 10−8 eV
per atom. The NMR tensors were computed using the GIPAW
(gauge-including projector augmented-wave) method.50

2.4 Shielding to shi conversion

To convert the theoretical chemical shielding values to chemical
shis, i.e., to be able to compare directly to the experimentally
reported chemical shis, it is necessary to adopt a conversion
equation. Theoretically, a simple linear relationship between
these scalar characteristics is expected with a slope of −1.51

Although some studies suggest that this assumption may not be
universally applicable, with different elements exhibiting
varying slopes,52 Dib et al.12 demonstrated that the slope for 27Al
is generally close to −1. For example, Sklenák et al.10 used
a slope of −1 taking the chemical shi of a CHA sample with
a high Si/Al ratio, which provided a well-dened experimental
27Al signal, as a reference. Others proposed to use multiple data
points to t this linear regression dependence achieving slopes
mildly different from −1.29,53 However, employing multiple data
points to form the conversion equation can be problematic due
to uncertainties in modelling the exact experimental structure
at the experimental conditions.29

Therefore, in this study, we assumed a slope of −1 and used
Al(acac)3, a simple well-dened crystal structure, which is
frequently utilized in solid-state 27Al NMR experiments as
a solid reference and has a chemical shi of −4.2 ppm.54 Lei
et al. performed a 20 ps ab initio molecular dynamics (AIMD)
simulation at 300 K with 400 eV cutoff energy, where the
chemical shielding values were averaged over 100 snapshots
taken uniformly from the trajectory, resulting in an average
theoretical chemical shielding of 554.00 ppm.29 Based on the
assumption of a theoretical slope of −1, we derived the
following calibration equation:

d(Al) = −1s(Al) + 549.80 ppm (1)

This equation was used to convert the chemical shielding
s(Al) into the chemical shi d(Al).

2.5 Databases

The database of reference structures (and reference NMR data)
utilized in this work encompasses three types of zeolites: CHA,
MOR, and MFI, with 1771, 358, and 100 structures, respectively.
Digital Discovery, 2025, 4, 275–288 | 277
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The CHA and MOR data were obtained from a range of Born-
Oppenheimer AIMD simulations at various water loadings, Si/
Al ratios, and containing multiple aluminium species (see
Section S2 for details).

To ensure a representative selection of MFI structures, we
employed the furthest point sampling (FPS) algorithm55 to the
datapoints obtained from molecular dynamics simulations of
models with various water loadings (0, 1, 2, 3, and 17 water
molecules per unit cell) and a Si/Al ratio of 95, all performed at
a temperature of 350 K. FPS reduces the density of the initial
point cloud by iteratively selecting points that are farthest from
previously chosen ones – this ensures that the sampled struc-
tures are well-distributed across the dataset helping to data-
efficiently cover a wide range of aluminium environments. As
a result, the nal database is characterized by structures
covering a diverse range of water loading conditions, varying Si/
Al ratios, and differing chemical compositions, including even
some zeolites containing sodium atoms. Each aluminium atom
within the selected structures serves as a datapoint, resulting in
a set of over 4000 unique Al environments.

To illustrate the distribution aluminium environments in
the database across multiple zeolite types, we projected the
high-dimensional Al-centered smooth overlap of atomic posi-
tions (SOAP) vectors,56 calculated using the Python package
DScribe 1.2.2,57 to two dimensions using the t-distributed
stochastic neighbor embedding (t-SNE) method, as shown in
Fig. 2 t-SNE is a widely used technique for reducing the
dimensionality of large datasets, preserving local similarities
and revealing inherent structure within the data. This method is
particularly valuable for visualizing high-dimensional data in
a low-dimensional space, making it easier to identify clusters
and patterns.21,58 The t-SNE visualization demonstrates that
while CHA data cover a larger portion of the conguration
space, it fails to densely cover some of the MOR and MFI-
relevant Al-based congurations. Clearly, the MOR structures
consistently cluster closer to MFI structures, indicating a higher
similarity between MOR and MFI zeolites. This observation can
be further quantied by calculating the similarity of Al-centered
SOAP descriptors averaged over the zeolite topology in question.
The similarity K20 is computed using the normalized dot
product of the averaged SOAP descriptors of aluminium envi-
ronments c, as described by the following equation:
Fig. 2 Heterogenity of aluminium environments (represented as Al-ce
datapoints represent aluminium environments in CHA, red in MFI and gr

278 | Digital Discovery, 2025, 4, 275–288
KðA;BÞ ¼ KðA;BÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðA;AÞKðB;BÞ

q (2)

where

KðA;BÞ ¼ cA � cB

The similarity score between MFI and MOR is 0.9924, while
the similarity between MFI and CHA is 0.9338. These results
underscore the signicance of including MOR zeolites in the
database to capture the diverse environments present in MFI
structures.
2.6 Chemical shis calculation

There are multiple methods to calculate chemical shielding,
each varying in accuracy and computational cost. The most
computationally intensive approach involves using ab initio
methods, such as DFT, to calculate the chemical shielding
values. Despite its high accuracy, the substantial computational
cost makes it impractical for large numbers of structures, e.g.,
as is needed to properly account for dynamical effects. The
simplest approach proposed by Lippmaa et al.59 predicts
directly the 27Al NMR chemical shi d(Al), i.e., circumventing
the calculation of the chemical shielding altogether, and
approximates d(Al) as a function of the average T–O–T angle
aðT� O� TÞ; as described by the following equation:

dðAlÞ ¼ �0:50� aðAl�O� SiÞ þ 132 ppm: (3)

Several alternative methods for calculating chemical shis
have been developed beyond the Lippmaa's approximation. The
2-parameter (2p-LASSO) eqn (4) and the 5-parameter (5p-LASSO)
eqn (5) were proposed by Lei et al.29 These models were devel-
oped using the least absolute shrinkage and selection operator
(LASSO) regression, which is a linear regression technique that
adds an L1 regularization penalty, shrinking some coefficients
to zero, which simplies the model by selecting only the most
relevant features. These models utilize various descriptors
based on bond lengths d and bond angles a to predict chemical
shielding with a semi-quantitative accuracy with mean absolute
error (MAE) of 1.27 ppm,29 providing a computationally efficient
ntered SOAP vectors) present in database visualized via t-SNE. Blue
een in MOR.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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alternative to ab initio methods while allowing for interpret-
ability of the predictions.

sðAlÞ ¼ 180:60� dðAl�OÞ þ 0:80� aðAl�O� SiÞ
þ 64:15 ppm (4)
Table 1 The mean absolute errors (MAE) of various models for pre-
dicting chemical shifts with respect to the reference DFT calculations
[in ppm]. The testing set was selected to cover the entire range of
chemical shift values observed in the calculations of MFI zeolite

Water loading Lippmaa 2p-LASSO 5p-LASSO KRRa

sðAlÞ ¼ 185:34� dðAl�OÞ � 15:6� ðmax½dðAl�OÞ� �min½dðAl�OÞ�Þ
& doublehyphen; 57ptþ 2:94� dðAl� SiÞ þ 0:73� aðAl�O� SiÞ

& doublehyphen; 77pt� 1:40� aðO�Al�OÞ þ 209:33 ppm

(5)
To develop a quantitative prediction model for 27Al NMR
chemical shieldings in zeolites, we employed a kernel ridge
regression (KRR) model from the scikit-learn 1.1.3 Python
package,60 which has previously shown excellent accuracy in
predicting chemical shieldings in aluminosilicate glasses.30 In
the KRR model, the SOAP descriptors56 of aluminium atoms
with a cutoff of 5 Å are used as input features, accurately
capturing the local atomic environments.

The kernel function used in the KRRmodel employed herein
is a simple dot product kernel, dened as:

Kij = k(ctrain
(i), ctrain

(j)) = (ctrain
(i) × ctrain

(j)) (6)

Here, Kij represents the element of kernel matrix Ktrain,
expressed as a dot product between the SOAP descriptors of
aluminium environments c of training samples i and j.

The ridge regression algorithm is applied to the kernel
matrix from eqn (6), minimizing the following cost function:

minu{‖Ytrain − Ktrainu‖
2 + l‖u‖2} (7)

In this formulation, Ytrain represents the training labels (i.e.,
the DFT reference chemical shieldings), u denotes the expan-
sion coefficients and l is the regularization parameter that
controls the trade-off between tting the training data accu-
rately and keeping the model complexity low to avoid over-
tting. To optimize the regularization parameter l, a grid search
was conducted over a range of values from 10−7 to 10−2. The
model with l = 5.5 × 10−6 yields the lowest error. Technical
details about the training are described in Section S3 in ESI.†
The nal KRR model, trained on the database introduced in
Section 2.5, achieved a training MAE of 0.2 ppm and a testing
MAE of 0.5 ppm, indicating the achievement of the quantitative
prediction accuracy. For comparison, this performance
surpasses the testing MAE of over 1 ppm reported previously by
Chaker et al.30 for aluminosilicate glasses.
0 5.46 1.97 2.09 0.77 (0.90)
1 4.73 1.55 1.98 1.51 (0.54)
2 5.28 1.38 2.20 1.29 (0.83)
3 3.52 1.47 1.63 1.00 (0.78)
17 3.29 1.71 1.53 0.54 (0.53)

a Model trained on database from Section 2.5 in parenthesis.
3. Results
3.1 Benchmarking the chemical shi prediction models

To decide which of the methods introduced in Section 2.6
(Lippmaa's approximation, 2p-LASSO, 5p-LASSO, and KRR) to
adopt for calculation of chemical shis, we rst benchmark
© 2025 The Author(s). Published by the Royal Society of Chemistry
their performance. The 2p-LASSO, 5p-LASSO, and KRR models
were trained on the original database from Lei et al.,29 con-
taining aluminium atoms in a tetrahedral conguration within
the MOR and CHA zeolites, varying in water content and Si/Al
ratios. To compare their prediction accuracy, we generated
a new testing set composed of a set of structures from NNP-
driven MD simulations of MFI zeolites with Si/Al ratio of 95
and with ve different water loadings (0, 1, 2, 3, and 17 water
molecules per unit cell). For each water loading, two BAS
congurations were chosen. The selected initial BAS congu-
rations, as well as details of the procedure are provided in
Section S4.† Ten structures were sampled from each of these
models (different water loading and BAS congurations, i.e.,
a hundred structures in total), and the chemical shis were
calculated using each method. These predicted values were
then compared with the reference DFT chemical shis, and the
mean absolute error (MAE) was calculated to assess the accuracy
of each method.

TheMAE of the chemical shi predictions are in Table 1. The
average MAE for KRR across all water loadings is 1.0 ppm. The
5p-LASSO and 2p-LASSO models also demonstrated reasonable
accuracy, with errors between 1 and 2 ppm, depending on the
water loading. The error of the LASSO models can be partially
related to the small systematic offset (Fig. 3). Note that the KRR
model trained on an extended database generated in this work
(Section 2.5), and which is used in the following sections,
provided mildly improved chemical shis predictions over the
KRR model discussed herein, with an MAE of 0.7 ppm (see
Table 1 and Section S5† for further details).

A similar observation can be made based on the correlation
plots in Fig. 3, which highlight that both the KRR and 5p-LASSO
methods have strong correlations with DFT predictions, as
indicated by R-squared (R2) values exceeding 0.9. Lippmaa's
method shows the poorest correlation with DFT-calculated
Digital Discovery, 2025, 4, 275–288 | 279
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Fig. 3 The correlation between chemical shifts predicted viamultiple models considered in this work (Lippmaa, 2p-LASSO, 5p-LASSO, and KRR)
and the reference DFT calculated values across the MFI testing set with varying water loading.
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values, and the 2p-LASSO method, while generally reasonably
accurate, fails to predict chemical shi of certain structures
accurately. These outliers are associated with unique structural
motifs for low water loadings, specically those involving
a hydrogen bond between the BAS proton and a framework
oxygen, which stretches the Al–O bond. This structural motif is
sparsely represented in the original training database, however,
the 5p-LASSO method manages these outliers more effectively
by accounting for the asymmetry of this bond length. The KRR
model exhibits the best correlation overall, with an R2 score of
0.97, indicating its robustness in predicting chemical shis
across diverse structural environments.

In practice, despite its well-documented limitations,10,61,62

Lippmaa's approximation, correlating the chemical shis only
to T–O–T angles, continues to be used as a common method for
assigning experimental NMR resonances to specic zeolite
structures.11,13,63 However, based also on the tests presented in
this section, the superior accuracy of the 2p-LASSO method
suggests that Al–O bond lengths are more critical in predicting
chemical shis than previously believed, challenging the earlier
conclusions by Liu et al.,64 who provided a theoretical explana-
tion, based on bonding orbitals, for the contribution of the
T–O–T angles to be dominant. Importantly, the KRR model,
which outperformed all other methods across the board, was
particularly accurate in predicting shis for hydrated struc-
tures. This is especially important because NMR measurements
are typically performed on hydrated zeolites, where the water
molecules can solvate the acidic proton. This simplies the
intepretation of the spectrum as the presence of an unsolvated
280 | Digital Discovery, 2025, 4, 275–288
proton bound to the framework creates an asymmetric envi-
ronment, which leads to the increase of the electric eld and
broadens the spectrum.65 Due to its superior performance, the
KRRmodel is the main method of choice used in the remainder
of this study. However, the 2p-LASSO and 5p-LASSO models are
still valuable for the interpretation of the qualitative trends
observed in the following sections.
3.2 Chemical shi calculation at nite temperature

The local optimization approach is a common approach applied
for determining chemical shi values in computational chem-
istry to moderate the outsized computational costs of ab initio
methods. It typically involves optimizing a single structure to
nd the (local) minimum on the potential energy surface, with
a tacit assumption that such minimum is close to the global
minimum and that its weight in the ensemble of nite-
temperature structures is very high. However, in complex
systems like zeolite MFI, identifying the global minimum is
particularly challenging, and even if successful, its importance
in the nite-temperature structure ensemble may be low as
many low-energy local minima are present as well.19

To assess the inherent variance of this simpliedmethod, we
locally optimized 20 000 structures generated from a molecular
dynamics simulation of an MFI system with 17 water molecules
per unit cell, containing a single aluminium atom substituted
for silicon in the T5 position. All optimizations were performed
using neural network potentials (NNP). While this does not
strictly test the quality of the single-structure method (which
would require comparing the prediction of the putative global
© 2025 The Author(s). Published by the Royal Society of Chemistry
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minimum against the MD average and experimental data), it
provides insights into the variation present across a set of local
minima. For each locally optimized structure the chemical
shis were calculated using the KRR method. The goal was to
assess whether this extensive application of the local optimi-
zation method could yield stable and reproducible chemical
shi values or if the MD based approach, which averages the
chemical shi values over the (un-optimized) snapshots from
the trajectory, provided a more reliable result.

The results showed that the chemical shi distribution from
these 20 000 optimized structures spans a range exceeding
12 ppm, as illustrated in Fig. 4. Such range is comparable to the
variation observed across all the T-sites in the experimental
studies.10,11 While certain chemical shi values, such as 59.5,
58.3, and 55.3 ppm, appeared slightly preferred, the mass of the
distribution is signicantly spread out across the whole range,
with a very low mass associated with the MD-predicted average
chemical shi at approx. 57.2 ppm (see also Table 2).

To further compare the reproducibility of the two
approaches, ve structures with mildly different structural
parameters were generated. These initial structures exhibited
a range in average T–O–T angles of 0.2° and a variation in
average Al–O bond lengths of 0.8 pm. As presented in Table 2,
the MD approach achieved a standard deviation (SD) in chem-
ical shi prediction of just 0.04 ppm across these structures
Fig. 4 The chemical shift distribution observed in locally optimized
structures sampled from the MD simulation trajectory.

Table 2 Chemical shift values [in ppm] obtained by the local optimi-
zation and the molecular dynamics approach for different initial
structures with standard deviation being 2.90 ppm and 0.04 ppm,
respectively

Single structure Molecular dynamics

58.84 57.24
57.38 57.20
55.91 57.16
61.66 57.23
53.01 57.26

© 2025 The Author(s). Published by the Royal Society of Chemistry
starting at the slightly different initial conditions, compared to
an SD of 2.90 ppm for the local optimization approach.

These ndings indicate that using a single optimized struc-
ture, i.e., using a local optimization approach, is unlikely to
yield a representative chemical shi value for a complex system.
The MD simulation approach, which averages across an
ensemble of accessible nite-temperature structures, leads to
more reproducible and representative chemical shi values,
providing also a measure of statistical uncertainty, and is thus
better suited for comparison with the experimental
measurements.

3.3 MFI models with isolated aluminium

3.3.1 Effect of water loading. In computational studies of
zeolites, the inclusion of water molecules is oen overlooked,
even though most experiments on zeolites are conducted under
hydrated conditions, both for experimental convenience and
because the presence of water signicantly reduces 27Al NMR
peak broadening.6 However, the amount of water molecules
surrounding each aluminium atom is not directly accessible to
the experimental probe and may vary across the sample. Hence,
it is essential to understand how varying water loading condi-
tions inuence the chemical shi predictions.

To probe the effect of water loading as well as to obtain the
values of 27Al NMR chemical shis in MFI under realistic
hydrated conditions we considered the following water load-
ings: 0, 1, 2, 3, and 17 water molecules per unit cell. The model
of 17 water molecules is expected to correspond to fully
hydrated zeolite at ambient conditions, as justied by the
experimental measurements of Holzinger et al.,11 who reported
15 ± 1 water molecules per unit cell present for H-ZSM-5 with
a Si/Al ratio of 50. These water loadings were probed for MFI
models with one aluminium atom per unit cell (Si/Al = 95) and
all crystallographically inequivalent T-sites in MFI (12 T-sites)
were considered. In addition, various initial BAS congura-
tions in the vicinity of each T-site were considered (see details in
the Section S6†).

To evaluate the water loading effect irrespective of a partic-
ular T-site, Table 3 presents the chemical shis averaged across
all T-sites for each water loading, employing multiple chemical
shi predictors. Interestingly, all the tested methods except
Lippmaa's approximation span a similar range of chemical shi
and exhibit similar trends, such as a mild increase (1–2 ppm) in
chemical shi upon increasing the water loading from one to
two water molecules per unit cell and a minor decrease (up to 1
ppm) in the shi going from two to seventeen waters per unit
Table 3 The chemical shift values averaged over all T-sites as
a function of water loading, predicted by several models

Water loading Lippmaa 2p 5p KRR

0 60.1 � 4.6 51.7 � 3.3 53.0 � 3.0 51.7 � 3.7
1 59.9 � 3.3 52.8 � 2.8 53.6 � 2.6 52.3 � 2.7
2 60.1 � 2.8 54.5 � 2.4 54.7 � 2.3 54.0 � 2.6
3 60.0 � 3.3 54.2 � 2.6 54.2 � 2.5 53.7 � 2.5
17 59.6 � 3.3 53.9 � 2.6 53.9 � 2.6 53.0 � 2.4

Digital Discovery, 2025, 4, 275–288 | 281
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Fig. 5 Chemical shift values calculated by the KRRmodel as a function
of water loading and the T-site type.

Fig. 6 27Al chemical shift of the aluminium exchanged in T5 position in
MFI for variable water loading as a function of temperature.
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cell. These observations suggest that the trends are likely
general and that they primarily stem from geometry variations
in the immediate vicinity of the Al center, i.e., from variation in
the T–O–T angle and Al–O bond lengths, despite the fact that
these local geometry variation can be a consequence of more
complex processes taking place far away from the Al center.

Next, to examine the T-site dependent effects of water solva-
tion on chemical shi, Fig. 5 illustrates the variation in chemical
shi with respect to water loading across all twelve T-sites for the
reference KRR model. This allows a detailed investigation of the
response of each T-site to varying water content.

Moving from the dry zeolite model to one with one water
bound to BAS, the chemical shi behaves inconsistently and is
highly dependent on the local structural environment around
the individual T-site. However, a consistent increase in chem-
ical shi is observed when the water loading is increased from 1
to 2 molecules per unit cell. This change is likely due to the
decrease in the Al–O bond length associated with the addition
of the second water molecule. This additional water molecule
interacts with both the BAS proton and the other Al-adjacent
framework oxygen atoms, allowing for an intermittent proton
transfer, which leads to shortening of the average Al–O bond
length, resulting in a higher chemical shi. The average Al–O
bond length variation is approximately 0.005 Å, which corre-
sponds to a change in chemical shi of about 1 ppm according
to eqn (5) (see Table S6 in ESI† for more details). A similar
mechanism accounts for the general decrease in chemical shi
observed when increasing the water loading from 2 to 17
molecules per unit cell. Upon increasing the water loading
further from 2 to 17 molecules, the additional water molecules
fully solvate the BAS proton, with the proton removed rather far
from the framework, effectively reducing the direct interaction
between protonated water cluster (the hydrogen atoms) and the
framework (oxygen atoms) at the nearby Al-center. This
decreased interaction leads to larger T–O–T angles and smaller
Al–O bond lengths, which when combined, result in a lower
chemical shi. The structural characteristics and their effects
on chemical shi are described in detail in Section S7.† These
results demonstrate that water loading signicantly affects the
predicted chemical shi values (by up to 2–3 ppm), making it
282 | Digital Discovery, 2025, 4, 275–288
a crucial factor to include in calculations. Note also, that the T9
site consistently exhibits the highest chemical shi values,
which can be attributed to its T–O–T angle being the smallest
among the T-sites (see Table S8 in ESI†). Interestingly, this is is
not observed in the locally optimized structure of the zeolite,
rather it is a consequence of the dynamical sampling.

To better analyze the similarities between behavior of
different T-sites as a function of the water loading, a principal
component analysis (PCA) was carried out on vectors composed
of relative changes in chemical shis with water loading for
each site, and the resulting principal components for each T-
site were clustered with the K-means algorithm. This resulted
in separation of the T-sites into three distinct groups (see
Fig. S8†), which could be roughly related to their positions in
the MFI framework (sinusoidal or straight channel and other
positions). The analysis of the PCA components showed that the
main distinction between these groups lies in the way how
chemical shi changes for low water loadings (0 to 2 water
molecules), while the chemical shi behavior for higher water
loadings (3 waters and above) is similar for all T sites (see
Section S7† for further details).

These ndings indicate that the impact of water loading is
both extensive, shiing the position of the NMR peak by up to
3 ppm, and that it is greatly inuenced by the specic structural
environment around each aluminium atom in the zeolite. This
implies that one must precisely take into account each T-site
and relevant water concentration for a proper model of the
NMR response.

3.3.2 Temperature dependence of the chemical shis. The
effect of temperature is oen neglected in computational
studies that evaluate 27Al chemical shi, because ensemble
averaging is computationally much more expensive than the
local optimization approach (see Section 3.2) that is typically
used.10,12 Herein the dependence of the 27Al chemical shi on
the temperature was evaluated for the T5 position at the inter-
section by considering a temperature range from 250 K to 500 K
with a step of 50 K. All possible BAS were modeled and sub-
jected to MD simulations at different temperatures with varying
water loading. The results are presented in Fig. 6, which depicts
the change of the chemical shis with temperature.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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For the dehydrated MFI model, the chemical shi remains
nearly constant until a signicant increase of about 1 ppm is
observed between 350 K and 400 K. This sudden increase can be
explained by the interaction of the BAS proton with the
surrounding framework. At lower temperatures, the proton
forms a hydrogen bond with another framework atom, i.e., an
intrazeolitic hydrogen bond (IZB),66 leading to signicant
distortion of the aluminium environment. As the temperature
rises, thermal motion reduces the contribution of the intra-
zeolitic hydrogen bonding mode in the structural ensemble (see
Fig. S11 in ESI†), i.e., the IZB is partially broken, as was also
observed in some previous works.67 This reduction in intra-
zeolitic hydrogen bonding directly correlates with the observed
jump in chemical shi, reecting changes in the aluminium
environment.

For the MFI model with 1 water molecule per unit cell, the
27Al chemical shi stays almost constant across the entire
temperature range considered. However, for MFI models with 2,
3, and 17 water molecules per unit cell, a consistent and
signicant decrease of 1.5 ppm is observed with increasing
temperature. The latter phenomenon can largely be attributed
to changes in the average T–O–T angles, which increase by
approximately two degrees with rising temperature. This
increase in angle is likely an indirect consequence of the change
in dynamics of water molecules – as the temperature rises, the
average water distance from the oxygen atoms next to the
aluminium atom increases, leading to a more relaxed Al envi-
ronment with larger T–O–T angles (see Table S10 in ESI†). The
slight increase in chemical shi observed for the model with
two water molecules between 250 K and 300 K can be attributed
to a minor decrease in bond length, which leads to the observed
increase in chemical shi (see Fig. S10†). This may also be
linked to variations in the trend of hydrogen atom distances to
framework oxygen, as shown in Table S10.†

These results indicate that temperature signicantly impacts
the 27Al chemical shi, varying in the actual effect depending on
the particular water content in the MFI zeolite. In models with
higher water content, temperature indirectly inuences the
chemical shi by altering the water dynamics, which in turn
affects the local environment of the aluminium atom. In dehy-
dratedMFI, the temperature changes the local geometry of the Al-
center, e.g., by weakening the intrazeolitic hydrogen bonding.
Fig. 7 The effect of introducing an additional aluminium atom into the
framework on the 27Al chemical shift of the originally isolated
aluminium atom located in the T12 site. The effect is plotted as
a function of the distance between the aluminium pairs, forming the
next-nearest neighbour (NNN) and next-next-nearest neighbor
(NNNN) pairs. The black line represents the chemical shift of an iso-
lated aluminium located in the T12 site. The variation in chemical shift
is plotted for both dehydrated (left) and fully (17 waters) hydrated
models (right).
3.4 MFI models with increased aluminium content

Introducing an additional aluminium (and proton) into the
zeolite unit cell perturbs the original isolated aluminium envi-
ronment and thus also the 27Al chemical shis. This effect is
typically disregarded in computational studies as it introduces
a combinatorial increase in the number of possible congura-
tions, making it challenging to treat extensively and compre-
hensively at the ab initio level. The extent of this perturbation/
interaction was shown to correlate very weakly with the
distance between aluminium atoms by a previous study,68

which aligns with our ndings below and suggests a more
complex underlying dependence.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Herein, to investigate the effect of introducing an additional
aluminium atom to the framework, MFI models with two
aluminium atoms per unit cell, i.e., with an aluminium pair,
were considered. A total of 20 models containing aluminium
pairs were considered, with at least one of two T-sites occupied
by aluminium located in the T12 site. The T12 site is located at
the intersection of the straight and sinusoidal channels and is
considered in the literature as one of the most commonly
occupied T-sites by aluminium in MFI.69,70 Aluminium pairs
that are separated by one and two T-sites were considered,
termed as next-nearest neighbour (NNN) and next-next-nearest
neighbour (NNNN) pairs, respectively. The nearest neighbour
aluminium pair, i.e., a pair separated only by only one frame-
work oxygen atom is not considered due to the Löwenstein
rule.71 Altogether, 12 NNN and 8 NNNN aluminium pairs were
modelled and their 27Al chemical shis calculated. For each
aluminium pair, two water loadings were adopted (0 or 17 water
molecules). A detailed description of the aluminium pairs is
provided in Table S12† accompanied by the validation of the
KRR predictions of 27Al chemical shis for aluminum pairs
against the DFT reference (Fig. S12†). This validation conrms
the accuracy of the KRR model also in this setting (MAE = 0.8
ppm).

Fig. 7 depicts the impact of introducing an additional Al
atom into the framework on the chemical shis of aluminium
at the T12 position, comparing the effects in both dehydrated
and hydrated frameworks. In the dehydrated framework, the
average absolute change in the chemical shi due to nearby
aluminium averages to 1.3 ppm, compared to 0.8 ppm in the
fully hydrated MFI framework. Specically, the largest increase
in chemical shis is observed in the dehydrated state, reaching
1.9 ppm, whereas in the hydrated state, it can increase by as
much as 2.2 ppm. Conversely, the decrease in chemical shi
appears to be more pronounced, falling by up to 4.7 ppm in the
dehydrated framework, and as much as 2.2 ppm in the hydrated
case. These ndings are consistent with those reported by
Dědeček et al.,68 who observed a maximum decrease of 3.8 ppm
and maximum increase of 1.5 ppm from the chemical shi of
Digital Discovery, 2025, 4, 275–288 | 283
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isolated Al in dehydrated cluster models with NNN aluminium
pairs.

Analyzing the structural characteristics of the aluminium
pairs reveals that the changes in chemical shis do not follow
a consistent pattern based on the position or distance of the
additional aluminium atom. Instead, these chemical shi
values can be attributed to variations in the average T–O–T
angles and Al–O bond lengths. The average T–O–T angle can
vary by up to 3° from that of the isolated aluminium atoms, and
bond lengths can differ by up to 0.6 pm. Both of these structural
variations can lead to variations in the chemical shi of up to
3 ppm (see Section S10 in ESI† for more details).

The effect of adding an Al atom is signicant across both
next-nearest-neighbour (NNN) and next-next-nearest-neighbour
(NNNN) aluminium pairs. Also, there is no clear correlation
between the interatomic distance separating aluminium atoms
and the effect on the chemical shi. The lack of clear-cut
distance dependency, in this distance range, may be due to
the inherent complexity of the MFI structure, however, a simi-
larly large effect of the rather distant NNNN pairs have been also
reported recently for a simpler framework (CHA).29 These
results indicate that the magnitude of the 27Al chemical shi is
very sensitive even to a rather minor perturbation, e.g., origi-
nating in the introduction of additional aluminium as far as 8 Å
away, reecting the nuanced interactions within the zeolite
framework over rather large distances.

4. Discussion
4.1 Comparison to experiment and previous theoretical
predictions

The majority of the experimental NMR characterization and the
corresponding theoretical simulations have been carried out for
the ZSM-5 system, a zeolite with MFI topology but with the unit
cell of a lower symmetry containing 24 T-sites. Hence, to allow
one-to-one comparison to these data, we also adopted the H-
ZSM-5 zeolite model which was directly obtained from the IZA
database,39 considering all T-sites (with Si/Al = 95), fully
hydrating the ZSM-5 zeolite structure and modelling it at 350 K
to closely replicate experimental conditions.11 The 27Al chemical
Table 4 27Al chemical shifts for the ZSM-5 models with a single
aluminium in the unit cell located at one of the 24 T-sites

T-site d(27Al) (ppm) T-site d(27Al) (ppm)

T1 54.5 T13 57.7
T2 52.4 T14 55.8
T3 55.8 T15 54.1
T4 54.9 T16 52.7
T5 55.8 T17 55.0
T6 54.6 T18 56.7
T7 53.9 T19 53.7
T8 51.1 T20 56.6
T9 55.4 T21 55.4
T10 55.8 T22 53.3
T11 54.0 T23 51.8
T12 54.4 T24 56.9

284 | Digital Discovery, 2025, 4, 275–288
shis predicted by the KRR method and averaged over the NNP-
driven MD simulations for each of the 24 T-sites are presented
in Table 4 spanning a range of 6.6 ppm.

These predictions can be directly compared with the works
of Holzinger et al.11 and Sklenák et al.,10 who have both calcu-
lated chemical shi values for every T-site and compared them
with experimental 27Al NMR data in the H-ZSM-5 zeolite. Firstly,
there is a sizable discrepancy with respect to the range of the
experimental (and DFT-calculated) chemical shis provided by
Sklenák et al.,10 which is about 10 ppm. However, Sklenák et al.10

considered H-ZSM-5 samples with much higher aluminium
content, with Si/Al ratios of 15 and 22.5. At higher aluminium
content the aluminium atoms are more closely spaced, which
may lead to broadening of the range covered by the chemical
shis as illustrated in the previous Section 3.4. To test this
hypothesis, we constructed a series of 45 models (adopting MFI
unit cell with 12 types of T-sites for simplicity). These 45 models
contained randomly placed aluminium atoms with Si/Al ratios
ranging from 15 to 23 and were subsequently loaded with 17
water molecules per unit cell. The resulting range of calculated
27Al chemical shi values was found to be 11 ppm, which closely
approximates the experimental range reported in the cited
study10 (see Section S11 in ESI† for details). Based on these
ndings we suggest that such a broad range of experimental
27Al chemical shis can be attributed to the presence of nearby
aluminium atoms in the framework, especially for low Si/Al
models. In fact, the breadth of the chemical shis may even
serve as a novel approach to probe aluminium proximity in the
experimental ZSM-5 samples. This observation is supported by
comparing the current prediction with the work of Holzinger
et al.11 who have conducted a thorough study using ZSM-5
samples with a Si/Al ratio of 140, which has a high probability
of containing mostly isolated aluminium atoms.72 The range of
experimental values observed was 6.5 ppm, which is very similar
to the 6.6 ppm range predicted by the KRR method herein.

Since it is experimentally challenging to detect closely
spaced aluminium atoms72,73 and their effect on the chemical
shi is large, comparison of the predicted values with the
experimental data has to be done with caution. To overcome
this challenge, it is advisable to consider for comparison only
zeolite samples with a very high Si/Al ratio. In such samples,
closely spaced aluminium pairs are less common, making it
Fig. 8 Comparison between the chemical shifts predicted by the KRR
method and the experimental resonances observed by Holzinger
et al.11

© 2025 The Author(s). Published by the Royal Society of Chemistry
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easier to validate the predictions and assess their accuracy. This
approach minimizes the complications associated with
aluminium pair interactions and provides a clearer comparison
between predicted and experimental chemical shi values.

The comparison between the chemical shis predicted by
the KRR model and the experimental11 resonances is shown in
Fig. 8. In this gure, the KRR predictions for individual T-sites
were assigned to the experimental ones using an almost
constant correction (z1 ppm) that accounts for a systematic
offset which may stem, for example, from the approximation
used for conversion from chemical shielding to chemical shi
(see Section 2.4), or from inaccuracies of the reference DFT
level, exploration of which are beyond the scope of this
contribution.

The current assignment of the experimental 27Al shis to
aluminium located in specic T-sites differs from previous T-
site assignments.10–12 This discrepancy is to be expected, as
prior calculations of chemical shis typically relied on either
Lippmaa's approximation or the single-structure approach (see
Sections 3.1 and 3.2 for reference), and thus we expect our
assignments to more closely represent the realistic conditions
of the NMR experiment. We also note that 2D 29Si–27Al NMR
correlation spectra may help to improve the assignment of the
Al siting, as they are able to reveal the spatial correlation
between Al–Si sites.12 Hence, as an example, we attempted to
construct a KRR model using a small database of DFT 27Si NMR
shieldings obtained from available NNP MD trajectories of H-
MFI models (see Section S14 in ESI† for details). We
compared its performance against the experimental 29Si NMR
data for purely siliceous MFI.74 The KRR model for 29Si NMR
shis performs reasonably well (MAE = 0.7 ppm, with a corre-
lation coefficient of 0.87), despite a limited dataset used for
training, which indicates that accurate prediction of 2D
29Si–27Al NMR features is a feasible goal.

Interpreting NMR spectra for complex zeolite structures,
such as H-ZSM-5, is challenging due to signal overlap and the
quadrupolar nature of the 27Al nucleus. In particular, the
chemical shi region between 53 and 56 ppm is expected to
represent signals from 16 different T-sites (see Fig. 8), and
considering that the 27Al nucleus causes broadening of spectral
peaks with line widths ranging from 0.9 to 2.3 ppm at 14.1 T,11 it
is easy to see that this will signicantly complicate the assign-
ment of experimental NMR signals. Nevertheless, as an
example, we attempted to calculate the complete NMR spectra
going beyond isotropic chemical shis including the quad-
rupolar broadening testing various reasonable simplied esti-
mates of the CQ parameter, obtaining, as expected, a range of
sizably different NMR spectra (see Section S12 in ESI† for
details) exemplifying the problems with the reliable signal
assignment. Moreover, these difficulties are further exacerbated
when cations are attached to the zeolite framework, as they can
further broaden the NMR signals. To mitigate this, NMR
measurements are typically conducted on fully hydrated
zeolites, where the presence of water leads to narrower peaks.6

Note, however, that recent studies have begun incorporating
additional parameters, such as chemical shi anisotropy to
distinguish overlapping signals more effectively.75 Similarly,
© 2025 The Author(s). Published by the Royal Society of Chemistry
a few recent computational studies36–38 have proposed machine
learning models capable of predicting full NMR shielding and
EFG tensors. A combination of these approaches holds promise
to overcome the challenges in assignment and interpretation of
the 27Al NMR spectra.

Lastly, we tested the generality and transferability of the
herein-trained KRR model (as well as that of the NNP-driven
structure sampling) for different zeolite frameworks,
including TON, MTT, MOR, and CHA topologies in their high
silica forms (see Section S13† for details). For MOR and CHA
frameworks, i.e., for frameworks partially included in the KRR
training database (see Section 2.5), the KRR predicted chemical
shis exhibit similar behavior as for the MFI topology discussed
above and are consistently 1–2 ppm lower than experimental
values.76,77 However, for TON and MTT frameworks, the KRR
predicts unusually low chemical shis (around 45–50 ppm).
This failure is clearly related to the comparatively high average
T–O–T angles in these frameworks, which are not represented
in the training data, thus causing the model to extrapolate.
These tests, while revealing some shortcomings in trans-
ferability of the current KRR model, also show a clear direction
along which to extend the structural (and 27Al chemical
shielding) database towards the goal of obtaining a KRR model
that is capable of covering a broad range of zeolite topologies.

5. Conclusions

The presented work shows that a proper consideration of
dynamics, temperature, explicit solvation, aluminium concen-
tration and distribution is necessary to achieve a close agree-
ment with experiment, and even allows for the assignment of
27Al NMR peaks in realistic model zeolites (such as MFI zeolite
studied herein primarily) under experimental conditions. We
have reaffirmed some ndings in the literature, such as the
quantication of the role of Si/Al ratio, and we have dispelled
some persistent inaccuracies, including the use of single
structure models, the neglect of temperature and the use of
averaged background charge models for high-water conditions.

First, we provided a comparative analysis of the performance
of various statistical methods in predicting chemical shi with
respect to the reference DFT values, ranging from simple linear
regression models based on a very few local structural
descriptors (bond lengths and angles nearby Al-center) to
advanced non-linear kernel ridge regression (KRR) that utilize
complex SOAP descriptors of the local aluminium environment.
Unsurprisingly, the KRR method was found to outperform all
other tested methods for all zeolite models by more than 1 ppm.
However, even a simple two-parameter regularized linear
regression (LASSO), depending only on the value of the T–O–T
angle and Al–O bond length, exhibited qualitatively correct
description, enabling interpretation of the trends observed in
chemical shis as a function of temperature, solvation and
aluminium content. We also showed that a linear correlation
between the T–O–T angle and chemical shi originally
proposed by Lippmaa et al.59 is too simple to provide qualita-
tively accurate predictions, proving that the Al–O bond length is
a crucial factor in determining the 27Al chemical shis.
Digital Discovery, 2025, 4, 275–288 | 285
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The water loading in the zeolite system was found to have
a sizable impact on the predicted chemical shi, with the
magnitude of the effect being as much as 3 ppm and heavily
depending on the position (T-site) of the aluminium atom in the
framework. The 27Al chemical shi in zeolites also varies with
temperature and water loading, with a steady decrease for
higher water loadings due to enhanced water mobility. This
observation strongly suggests that the presence of water mole-
cules has a signicant impact on the local aluminium envi-
ronment, contradicting one of the rationales for using
background charge and dehydrated models. Additionally,
increased Al content can shi the 27Al chemical shi by over
4 ppm, complicating NMR spectral assignments in zeolites with
low Si/Al ratios and numerous inequivalent T-sites.

For samples with a sufficiently high Si/Al ratio, we show that
even for MFI (ZSM-5) zeolite, one might be able to reliably assign
NMR peaks to specic T-sites if realistic models are adopted,
achieving almost quantitative agreement between the experi-
mentally and computationally predicted range of NMR peaks and
their positions. Indeed, given the quantitative agreement ob-
tained, the increased range of measured NMR resonances might
be used as an indication of the formation of the Al pairs and Al
zoning. Clearly, one has to be cautious not to over-interpret the
tentative assignments, which is unfortunately not uncommon in
the eld – for instance, within a narrow, 3 ppm range, signals for
16 different T-sites are expected, leading to signicant overlap.
Hence, achieving a denitive assignment of calculated chemical
shis to experimental peaks is challenging and to overcome this
limitation, e.g., additional NMR parameters (such as chemical
shi anisotropy) or multi-dimensional measurements (such as
2D 29Si–27Al NMR or 27Al MQMAS) will be necessary to extract
more detailed information from the NMR spectrum.

In summary, via a combination of machine learning
potential-driven dynamics to sample relevant conguration
space and statistical models to predict 27Al chemical shis
based on the structures sampled, we managed to model
a complex zeolitic system (H-MFI) under experimentally rele-
vant conditions, taking into account the effects of temperature,
water solvation and specic Al location within the framework.
Our results align well with the relevant experimental data and
are capable of explaining some of the apparent disagreements
(e.g., due to Al pairing in the experimental samples). In addi-
tion, we are able to predict how temperature and water loading
affects the 27Al chemical shis as well as provide mechanistic-
level explanations/interpretations. Hence, this combined
approach provides an important case study on how highly effi-
cient machine learning algorithms can be coupled to offer
predictive accuracy and deeper insights into the structural
properties of extremely important industrial catalysts, the
aluminosilicate zeolites, under realistic conditions.

Data availability
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ridge regression model training, and molecular dynamics
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zenodo.14063109) including a trained kernel ridge regression
(KRR) model, training databases for MOR, MFI, and CHA
structures with labeled DFT chemical shieldings, initial
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the KRR algorithm.
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