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Both computational and experimental material discovery bring forth the challenge of exploring
multidimensional and multimodal parameter spaces, such as phase diagrams of Hamiltonians with
multiple interactions, composition spaces of combinatorial libraries, material structure image spaces, and
molecular embedding spaces. Often these systems are black-boxes and time-consuming to evaluate,
which resulted in strong interest towards active learning methods such as Bayesian optimization (BO).
However, these systems are often noisy which make the black box function severely multi-modal and
non-differentiable, where a vanilla BO can get overly focused near a single or faux optimum, deviating
from the broader goal of scientific discovery. To address these limitations, here we developed Strategic
Autonomous Non-Smooth Exploration (SANE) to facilitate an intelligent Bayesian optimized navigation
with a proposed cost-driven probabilistic acquisition function to find multiple global and local optimal
regions, avoiding the tendency to becoming trapped in a single optimum. To distinguish between a true
and false optimal region due to noisy experimental measurements, a human (domain) knowledge driven
dynamic surrogate gate is integrated with SANE. We implemented the gate-SANE into pre-acquired
piezoresponse spectroscopy data of a ferroelectric combinatorial library with high noise levels in specific
regions, and piezoresponse force microscopy (PFM) hyperspectral data. SANE demonstrated better

performance than classical BO to facilitate the exploration of multiple optimal regions and thereby
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Accepted 8th February 2025 prioritized learning with higher coverage of scientific values in autonomous experiments. Our work

showcases the potential application of this method to real-world experiments, where such combined
strategic and human intervening approaches can be critical to unlocking new discoveries in autonomous
research.
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Bayesian Optimization (BO)*® is an active learning method
which aims to autonomously explore the parameter space and

1 Introduction

Recent advancement of automated and autonomous experi-
ments has been transforming the landscape of scientific
research."” By integrating experiment automation with
machine learning-enabled data analysis and decision-making
processes, researchers can now conduct experiments at an
unprecedented pace, accelerating the discovery of new mate-
rials and the process of characterizing and understanding
complex materials systems.
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continually learns the unknown ground truth and its global
optimal region, where the ground truth function can be either
a black-box or expensive to evaluate, or both. Given a few eval-
uated training samples, the expensive unknown function is
replaced by a cheaper surrogate model (e.g. Gaussian
process),>™ and the surrogate model continues to learn the
human defined region of interests with adaptive selection (e.g.
acquisition function)>™* of locations for future expensive eval-
uations. BO is more popular than other design of experiment
methods (e.g. random sampling, Latin hypercube sampling,
etc.) as it is designed to converge to the optimality with minimal
expensive evaluations. Thus, BO has attracted special attention
in the materials science domain where accelerated BO driven
autonomous discovery has been particularly impactful,
enabling efficient identification of optimal conditions for
particular material properties without human intervention,
such as bandgap optimization,® small-molecule emitter
discovery, maximizing carbon nanotube growth rates,"” and so
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on. This type of autonomous workflow with BO has been widely
used in recent studies to adaptively explore expensive control
parameter spaces of physical/simulation models®*?** and
experiments,> material structure-property relationship
discovery*® and to develop autonomous platforms towards
accelerating chemical®**®” and material design.”®*?° Recently,
interactive BO frameworks through minor human intervention
(human in the loop) proved to have better material processing®*
and microscope experimental steering.**>*” A number of excel-
lent reviews on BO are available,**® and it is now implemented
in a broad range of Python libraries including BOtorch
(Pytorch)* and Gpax (Jax).*

However, the pursuit of optimal conditions, while valuable
for application-focused materials development, may not always
align with the broader goals of scientific discovery. In the
context of scientific and knowledge discovery, understanding
the relationships between the vast parameter space and
resulting material properties is crucial. The challenge arises
when the experimental process becomes overly focused on
finding a singular “optimal” condition. This focus can limit the
exploration of sub-optimal or diverse conditions that can offer
deeper insights into the material's behavior, ultimately
advancing our understanding of the underlying principles
governing material properties. Moreover, real-world experi-
ments are often subject to noise and other uncertainties, which
can lead to “fake” optima—conditions that appear to be optimal
due to experimental error or noise but do not represent the true
optima. Also, due to such noise, the overall parameter space
becomes very non-smooth. Here, we define non-smooth as (1)
multi-modal functions which have multiple local and global
optimal and (2) non-differentiable functions. So, in this context,
a non-differentiable function is a subset of the non-smooth
function category. Therefore, the search space becomes much
harder to explore, learn the parameter space and locate optimal
conditions. In the theory of optimization, numerical methods
generally struggle with highly non-smooth functions* and BO is
not an exception due to the surrogate model priors over the
belief of a smooth function. It is evident to say that it is even
harder to solve a black-box non-smooth function. One can,
however, project to a smoother function from such non-smooth
functions with the help of either domain knowledge® or by
fitting a cluster of GPs which learn each localized smooth
function.*” However, it is a challenging task to always possess
appropriate domain knowledge for such projections, or know
the number of clusters or region of non-smoothness a priori.
Previously BO had been applied to optimize on discrete graph-
structured search spaces, by projecting to a graph similarity
distance based continuous space via a special kernel function.*
However, a similar correlation cannot be derived always from
the noisy experimental data, particularly when the sources of
such experimental noises are random. Also, in the case of
structure-property learning, the exploration needs to be done
over the raw non-smooth function space rather than a projected
space to avoid losing critical insights. Thus, when exploring
over a non-smooth function due to noisy experiments, when the
decision-making process is based on these potentially
misleading optimal conditions, there is a risk of missing out on
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critical information that lies in other sub or near optimal
regions. As a result, the classical BO methods may inadvertently
limit the scope of exploration in autonomous experimentation.

To address these limitations, we have developed a BO driven
Strategic Autonomous Non-Smooth Exploration (SANE) work-
flow that is designed to navigate and mitigate the challenges
posed by noisy experimental data and the tendency to become
trapped in local optima. Our SANE framework emphasizes the
exploration of a broader range of conditions, including sub-
optimal and diverse points within the parameter space. This
approach ensures a more comprehensive understanding of the
material system being studied, enabling the discovery of new
insights and correlations that may otherwise be overlooked. We
implemented this SANE approach in two distinct experimental
datasets: (1) a piezoresponse spectroscopy hysteresis loop
dataset across composition spread of Sm-doped BiFeO; with
high noise levels in specific regions, and (2) a grid piezores-
ponse spectroscopy hyperspectral dataset over various domain
structures of a PbTiO; thin film. These two datasets have been
explored in our previous studies,**™® indicating that they are
good model experimental datasets to demonstrate the applica-
tion of newly developed ML approaches. In both cases, SANE
demonstrated its ability to avoid becoming stuck in noisy
regions or singular optima and facilitated the exploration of
multiple optimal and sub-optimal conditions. This not only
improved the robustness of the optimization process but also
provided a more complete picture of the parameter space.

We further enhance our SANE method by adapting a recently
developed gated active learning approach*® that allows for the
incorporation of human expertise and domain knowledge into
the autonomous experimentation process. This hybrid
approach leverages the strengths of both autonomous systems
and human intuition, allowing for more targeted and effective
exploration. By guiding the optimization process with human
input constraints, we can prioritize the parameter space that
has higher scientific value, thereby improving the overall
performance and outcomes of autonomous experiments. Our
work showcases the potential of this method through its
application to noisy experiments, demonstrating its efficacy in
avoiding local optima and uncovering a richer understanding of
the material systems under study. As the field of materials
science continues to evolve, the development and adoption of
such strategic approaches will be critical in unlocking new
discoveries and pushing the boundaries of what is possible in
autonomous research. Previously Eriksson et al.* designed
a TurBO to identify multiple global and local optima using
several local searches with a trust region method. While the
general problem domain overlaps with our method, however,
there are some major differences in the type of problem these
methods will be better suited to. Unlike in TurBO, our method
is designed to search over noisy experimental space which
generates both true and false optima, no prior knowledge of the
number of true local and global optimal regions, and the
significance of exploiting a local region can be higher than
exploiting a global region based on domain experts’ intended
goals.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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2 Results and discussion
2.1. SANE framework

Fig. 1 provides the overall architecture of the proposed SANE
workflow with human-intervened dynamic constrained gate,
developed over the naive BO workflow. Unlike in traditional BO,
where the acquisition function assumes uniform cost during
exploration over the search space, SANE performs a goal
orientation exploration with a non-uniform cost of the search
space. Cost acquired BO has been developed earlier,**>°
however, the cost function is formulated based on the invari-
able cost of the experiments over the search space. In this case,
we formulate the cost function based on the strategies of (1)
discovering a potential global or local region of interest, (2)
guiding the exploration centered on new regions of interest and
(3) guiding the exploration centered on the previously found
region of interests. SANE is initialized as BO where we set the
total number of iterations as N. N can be defined as the total
cost based on a reasonable time the autonomous experimen-
tation can be performed. As the iteration i progresses, after
every n < N iteration, we have a check for discovering a new
region of interest. If a solution superior to the current focused
solution is found within the samples explored between the
current check and previous check, a current or potential global
region of interest is found else we perform an optimization
routine to find a local optimum sampled after the current
focused sample, and then a probabilistic check to determine if
the local optimum belongs to a potential region of interest. This
optimization scheme is formulated as per eqn (1)-(5). Once the
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local optimum is found, the binary check of belonging to
a region of interest (1 — Yes, 0 — No) is governed by the
sampling from logistic distribution with probability, proi—; and
as proi—o respectively, per eqn (6). Let's assume, at iteration 7, we
have already determined k focused locations. Here, f; is defined
as the absolute distance in the normalized parameter space
between the current focused location Xy and the location
sampled after Xy;. f is defined as the ratio between the output
of the location sampled after X and the output ys; at Xz Here,
f3 is defined as the mean of the absolute distance in the
normalized parameter space between each of the previously
focused location X; and the location sampled after Xg. As
a strategic approach to discover the new region of interest, we
would prefer to choose the sample with the farthest distance
from all the current and previously focused locations, and
closest to the output of the currently focused location. Thus, as
per the optimization (maximization) routine, the higher values
of the combined product of f;, f5, f3 are chosen. Though it is not
always that this best solution belongs to another region of
interest, the strategic approach does mean that the likelihood
increases with higher values of fi, f,. Therefore, we make
a probabilistic decision whether to navigate to the new focused
location via sampling from the logistic distribution with prob-
ability of mean value of fi, f,. With higher probability, we are
likely to add and navigate towards the new focused location
(Xzx+1) and with lower probability, we are likely to consider the
current focused location (Xzi.; = Xg) for the upcoming navi-
gation governed by the strategic cost function.

ML policy: Prediction Models

1. Surrogate model for
objective prediction

2. Surrogate model for gate
prediction

Mean Gate map Image space

& | Feasible location

Parameter Values

Human-intervened
constrained-gate
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I intervened dynamic constrained-gate

ML policy: Strategic acquisition function
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Fig. 1 Workflow of Strategic Autonomous Non-Smooth Exploration (SANE) with a partial human-intervened dynamic constrained gate. Here,
the SANE workflow is shown over AFM experiments but can be implemented in any material characterization technique or any microscopy
measurement. Here, the research contribution is the development of the ML policy for a strategic acquisition function, which is subcategorized
into (a) probabilistic discovery of region of interest, (b) cost-driven navigation and (c) penalized navigation to explore on feasible search space
only, as defined from a partial human-intervened dynamic gate. Here the subject matter expert assesses the quality of the experimental result
(e.g. spectral structure) at the initialization of the SANE, and an initial estimated gate map is defined. Then, the estimated gate map is updated with
strategic BO driven autonomously sampled new data, without any human intervention.
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Next, we define the navigation strategy considering all the
focused locations. In SANE, strategic exploration is defined as
the likelihood of discovering a new region of interest while
avoiding becoming trapped over the discovered regions of
interest. However strategic exploitation is defined as the likeli-
hood of unearthing critical information over all the discovered
regions of interest (optimal and suboptimal points), without
only focusing on the singular optimal region. This navigation is
governed by a strategic cost function and thus depending on the
current state (say iteration i), the cost function puts variable
weightage of performing exploration or exploitation. The stra-
tegic cost-based acquisition function can be described step by
step as follows. Given the mean and variance of the unexplored
data from the prediction model as fitted from the explored data,
the standard acquisition values of all the unexplored locations
are calculated as u(X), X & D,. Here, we can follow any standard
acquisition functions in BO such as Probability of Improvement
(POI), Expected Improvement (EI) or Upper or Lower Confi-
dence bound (UCB/LCB). Then, the cost driven acquisition
function u(X) can be either exploitative in preference to choose
the next sample for function evaluations with the closest
distance from the current and previously focused locations, or
explorative to prefer to choose the same with the farthest from
the current and previously focused locations. It is to be noted
that the designed exploration strategy differs from the explo-
ration with considering the model uncertainty only. These
would be similar if the problem is smooth where the model
uncertainty also monotonically increases with region far away
from explorations. However, the case is not the same when the
function is very non-smooth.?” Thus, the scope of the paper is
not to fully rely on GP based predictions (which assume on prior
smooth function) but derive a cost function to heuristically
explore. The acquisition function can be mathematically
formulated as per eqn (8), assuming at iteration 7 and k focused
locations. Here, s is a switching parameter trajectory with iter-
ative binary choices between strategic exploitation and explo-
ration. s can be pre-defined from the domain expert preference
of navigation in the parameter search space. Additionally, to
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avoid any navigation instability arising due to negligible stan-
dard acquisition values almost over the entire search space, we
perform the cost driven acquisition function with fully localized
search when g = a. 6 = 10 is a very small value for numerical
stability and « is a user defined value between 0 and 1, rec-
ommended to be anything a = 0.75. This navigation instability
can arise when the standard acquisition function provides false
values of negligible information gain in exploring in almost any
location during the phase of near optimal learning. However, in
a real scenario, this is often not true due to the complex and
noisy parameter space and more search is needed and potential
better insights can be learned. For strategizing a fully localized
search, we would prefer to exploit the current focused locations
and avoid exploring again to previously focused locations. This
is because such scenarios occur mostly at near optimal
learning, where most of the previously focused locations are
already exploited and therefore to save cost, we put weight on
the local exploration and exploitation only rather than global
exploration and exploitation. Thus, we choose the next best
sample which has the minimum distance to the current focused
locations and maximum distance to the previously focused
locations.

u(X) _ o
R g=a,5=0
= w0 x (h+£), g=as =1 (®)
H-fi sz
~ max(u(X))+6
ST iER) ©
Xe&D;

Finally, the SANE workflow is further enhanced with
a human assessed constrained gate, to avoid exploring and
exploiting “fake” regions of interest due to noisy measure-
ments, thereby avoiding gathering false insights. It is to be
noted that the distinction between the strategy of earlier
mentioned probabilistic finding of region of interest and the
human assessed gate is that the constrained gate narrows down
the feasible search space, and within the search space SANE
aims to discover the region of interest with the probabilistic
approach. In other words, without the gate, SANE can guide to
focus on a “fake” region of interest with high probability.
Without the region of interest finding strategy, the gate itself
will only separate the feasible space but not the discovery of the
multiple optimal and suboptimal points (hills in the case of
maximization). Previously, human in the loop based autono-
mous exploration workflows have been developed which proved
to have better performance and alignment with the expectation
of the experimentalists, than a purely data driven active
learning method.?***375%5 To avoid the increment of the
exploration cost (time) in SANE, we include the human assess-
ment during the initialization only where the quality of the
initial samples can be accessed (good or bad) via visualization
from domain experts. To transform the assessment into
a quantitative metric, we compute the mean distance drbetween

© 2025 The Author(s). Published by the Royal Society of Chemistry
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selected locations and all feasible assessed locations X; g0a,
and mean distance diy between a selected location and all
infeasible assessed locations X; paq respectively. It is to be noted
that X; o504 and X; paq combine the initial sampled locations
DX . Then we compute the constraint function as per eqn (10),
where a positive value indicates feasibility and a negative value
indicates infeasibility.

c=0=>dy—dr=0 (10)
n_good
Z |X - AXLgood|
i_good=1
df = == n gOOd ) Xz'_good EDXO (11)
n_bad
) Z |X - )(Lbzld
di': i_bad=1 7X.i . =D 12
/ n_bad -bad = (12)
DX0 = {/Yi_goods A/i_bad} (13)

After the initialization as the iteration i progresses, the new
samples are not assessed as this would increase the cost of the
SANE workflow. Indeed, if the human provides assessment of
new experimental data at every iteration, the constraint learning
would be better but that will completely increase the cost
significantly. Thus, such a trade-off is required. In other words,
it is not an appropriate approach for the experimentalist to
assess the quality of every SANE navigated sample, as this will
completely diminish the purpose of an autonomous workflow.
The goal for any human or domain intervened autonomous
system would be at the level of minimal intervention with
maximum improvement. Thus, the human intervention in the
gated-SANE is limited to initialization. During the BO process,
for any new samples we have computed the average distance
from the bad samples and the good samples which were only
initially assessed as X; go0d, Xi bada & Dx, Where Dy, contains only
the initial samples assessed. So, during the BO, we are
approximating the feasibility of the new samples based on
initial human assessments to balance the acceleration as well,
as human assessment at every iteration of constraint validation
will decelerate the entire process. However, if more frequent
human interaction is required in other application cases, the
workflow can be simply adapted for it. Also, in this paper, we
have assumed that the human operator is indeed a domain
expert. Although the assessment can vary between two domain
experts, we have seen that the assessment from non-domain
experts (purely random assessment) or attacking users (nega-
tive assessment) can derail from the appropriate knowledge.**
However, SANE is entirely not dependent on human interven-
tion. The human intervention in SANE first reduces the
parameter space to focus on feasible regions, where then the
hybrid acquisition function aims to maximize the feasible
global and local regions of interest over exploring non-smooth
functions at minimal cost compared to traditional BO. Once
the initial assessment is done, an initialized assessed gate
constraint datum c is fitted to a surrogate model 4., and after
training, the mean estimation ¢ is calculated for all the

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

locations in the parameter space to define the mean estimated
gate constraint map. With newly explored locations, the
training data are augmented, the gate-surrogate model 4, is
retrained, and the mean estimated gate constraint map is
updated. Then, the gate constraint is linked to the strategic
acquisition function with a penalty factor P as per eqn (14). § is
the order of magnitude (ceiling factor) of the maximum value of
u/(X), to avoid the imbalance order of magnitude between u(X)
and ¢(X).

u(X), ¢X)=0

ue(X) = {uC(X)—o—Px B x e(X), (X)) <0 (14)

To validate the SANE workflow, we attempt to implement it
over a synthetic 2D search space. In this paper, we validated
SANE performance based on (1) if SANE has found more regions
of interest than BO for a given number of iterations, (2) for
a given local region of interest, how many samples have been
used to exploit and (3) how many samples have been used in
exploring the infeasible region. The 2D test function is the
multimodal Branin function,* containing one global optimum
and two local optima. The formulation of the function is
provided in the ESI.T The prediction model for data 4y is
considered as a Gaussian process (GP) regression model with
Radial Basis kernel function (RBF), and the standard acquisi-
tion function u(X) is considered as the Expected Improvement
(EI). The detailed formulation of the GP model and EI acquisi-
tion function is provided in the ESI.f Here, the switching
parameter trajectory is setas s; =0, i <25and s; = 1,25 <i = 50.
Here, the total number of iterations N = 50. Throughout the
paper we consider checking for a new region of interest after
every n = 5 iterations. However, the interval number 7 is set as
user input and can be arbitrarily changed as per the user’s
choice based on the knowledge of the multi-modal structure of
space and how aggressively the user wants to search for a new
region of interest. Notably, an arbitrary threshold can also be
used to generalize the process along with user choice input,
however, a more detailed analysis is required to enable this,
which will be updated in the near future. It is evident to say that,
since these are non-physical synthetic data, no human-
intervened constraint is relevant and therefore we ignore the
gate implementation in this example. Fig. 2 shows the overview
of the strategic navigation from SANE, to discover and exploit
the global and local regions of interest. Fig. 3 shows the
comparison of the exploration between the proposed SANE and
standard BO, with two initializations. The initial samples for
Run 1 are similar to those in Fig. 2a where the initial samples
are far away from all the regions of interest. Compared with BO
(Fig. 3a), we can clearly see that SANE (Fig. 3b) provides better
exploration with high volume of exploitation in all the regions
of interest, and better-balanced exploitation among those
regions of interest. Contrastingly, BO only focused on exploiting
the global region of interest and explored many uninteresting
locations rather than exploiting local regions. We see that the
estimated function map has a good agreement with the ground
truth as well, which again signifies the redundant sampling of
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Fig.2 Overview of navigation of Strategic Autonomous Non-Smooth Exploration (SANE) on a synthetic 2D search space. Here, the ground truth
has one global optimum and 2 local minima. (a) The state of initialization with 10 starting samples randomly selected (denoted by red dots). (b)
After 15 iterations, we find the global optimal region and therefore (c) shows the discovery of the global optimal point (denoted by the green dot).
(d) The exploitation of the global region of interest and discovery of the first local region of interest (denoted by the green dot) following the
probabilistic approach as per egn (1)-(7). (e) The exploitation of the first local region of interest and discovery of the second local region of
interest (denoted by the green dot). (f) The final strategic explored map at iteration 50 with exploitation of both the global and local regions of

interest.
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Fig. 3 Comparison of exploration between BO and SANE on a synthetic 2D search space at two different random initializations. Figures (a) and
(c) shows the exploration of BO while figures (b) and (d) shows the exploration of SANE. In figures (b) and (d), the left figures are the explored
samples over ground truth, the middle figures are the GP predicted mean and the right figures are the GP uncertainty.
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BO and better navigation strategy of SANE. In other words,
unlike in standard BO, SANE spends more time on finding
insights in good regions, while it still performs a good agree-
ment with the overall ground truth. We see similar interpreta-
tions with the second initialization, where at least one of the
initial samples is within each of the regions of interest (refer to
Fig.S1 in the ESIt). Here also the standard BO did not exploit in
the local region (Fig. 3c) whereas SANE did (Fig. 3d). To quantify
the SANE performance, here we can see that for both cases,
SANE exploits 3 out of 3 regions of interest (high function value)
while BO exploits only 1. Also, BO explores with an average of
39/60 samples in the true region of interest while SANE explores
with an average of 48/60 samples in the true region of interest.

Additionally, we test the SANE by adding different levels of
random noise from normal distribution into the ground truth.
Fig. 4 shows the comparison of performance between SANE and
standard BO. We can see that at low to medium levels of noise
(scale ranges at 10% and 20% of ground truth), SANE outper-
forms standard BO with the objective to identify and exploit
both local and global regions. To quantify the SANE perfor-
mance, here we can see that for both cases, SANE still exploits 3
out of 3 regions of interest (high function value) while BO
exploits only 1. Also, BO explores with an average of 32/60
samples in the true region of interest while SANE explores
with an average of 45/60 samples in the true region of interest.
When the noise level is too high (scale ranges at 50% of ground
truth), SANE performance deteriorates but still gives a compar-
ative result with standard BO. Here we can see that both SANE
and BO exploit 2 out of 3 regions of interest (high function
value), where BO explores with 55/85 samples and SANE
explores with 56/85 samples in the true region of interest. One
of the reasons for the deterioration is exploiting a fake optimum
at the early iteration (see ESI Fig. S21) due to having a fake noisy
initial sample. However, with more knowledge (data collection),
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SANE is able to identify the fake optimum and avoid further
exploitation. However, it is to be noted that with high level of
noisy ground truth an error minimization approach is needed
before solving with any optimization algorithm.

2.2. Implementation in piezoresponse spectroscopy of
composition spread combinatorial library Sm-BFO

We first implemented the strategic BO in a combinatorial
library ferroelectric Sm-doped BiFeO; (Sm-BFO) dataset.*
Details regarding materials of this dataset have been reported in
our previous work.* Briefly, the dataset, acquired by our
AEcroscopy platform® with a NanoSurf Driven AFM, comprises
a spectrum of piezoresponse vs. voltage hysteresis loops across
the composition spread of Sm-BFO. Sm-BFO comprises transi-
tion with an increase of Sm content from the ferroelectric state
BiFeO; to a non-ferroelectric state of 20% Sm-doped BiFeOs;; as
such, the hysteresis loops corresponding to 15-20% Sm-doped
BFO are mostly closed, without much information regarding
ferroelectric characteristics. The input space is the chemical
composition of the sample. The sample used in this work is
a composition spread combinatorial library sample, which has
systematically varied chemical compositions at different loca-
tions of the same sample. This creates a system to effectively
explore the relationship between chemical composition and
material properties. The sample here is a 1D composition
spread library (Sm,Bi; ,FeO;) with varying Sm and Bi ratios.
The physical scalarizers extracted from these closed hysteresis
loops consist of very high noise, potentially misleading the
autonomous discovery. In this example, the non-smoothness of
the function arises due to high experimental noise, and is
defined as having multi-modal function (multiple optima) and
non-differentiability of the function. In this work, we consider
two such scalarizers: (1) nucleation voltage and (2) coercive

iN.
X
E X1(

2) Standard BO
i ;g .
s % « S
Mean function map

Explored points over
ground truth

c) 50% noise

1) SANE

x1
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Fig. 4 Comparison of exploration between BO and SANE on a synthetic 2D search space at (a) 10%, (b) 20% and (c) 50% of random noise from

normal distribution.

© 2025 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2025, 4, 853-867 | 859


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00299g

Open Access Article. Published on 18 February 2025. Downloaded on 11/8/2025 5:30:15 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

voltage, where we aim to study both independently. The coer-
cive voltage and the nucleation voltage describe distinct aspects
of a ferroelectric material's behavior during polarization
switching. The coercive voltage is the voltage required to flip the
direction of polarization; it corresponds to the voltage on the
hysteresis loop where the polarization becomes zero during the
switching. The nucleation voltage is the voltage at which the
nucleation of reversed domains begins during the polarization
switching process; it is typically the voltage at which the
switching starts and is often lower than the coercive voltage.
Here, we aim to locate regions which have lower values of
nucleation and coercive voltages. These parameters are critical
for ferroelectric materials as they determine the electric field
required to switch the polarization direction and initiate
domain formation, which influence the materials' energy effi-
ciency, switching speed, and overall applicability in e.g,
memory devices and sensors.

During the initialization of SANE, where the initial samples
are chosen from Latin hypercube sampling, we formulate the
human knowledge driven constrained gate (refer to eqn (10)-(14))
through voting as shown in Fig. 5a. To attain meaningful sca-
larizer values of nucleation and coercive voltages, an appropriate
spectral structure is necessary (Fig. 5b). Based on this domain
knowledge, the assessment of the initial samples has been con-
ducted as per Fig. 4a. We can clearly see the role of human
intervention in passing knowledge to the ML policy regarding the
feasibility of the experimental results, as the spectrum of the best
(over the lowest nucleation voltage) training sample does not
form a hysteresis loop to consider a feasible structure. To obtain

a)
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broad coverage of the parameter space during initialization and
thereby better early human assessment, we utilized the Latin
hypercube sampling technique instead of random sampling.
Here, the prediction models for data 4p and gate 4 are
considered as Gaussian process (GP) regression models with
a Matern kernel function (refer to the ESI}), and the constraint
penalty factor is chosen as P = 1000 through exhaustive analysis
with different penalty factors. The standard acquisition function
u(X) is considered as the Expected Improvement (EI). Here, the
switching parameter trajectory is setas s;=0,i<15and s; =1, 15
< i = 30, where the total number of iterations, N = 30. Fig. 6
shows the comparison of the autonomous exploration between
standard BO and SANE. We can clearly see (Fig. 6b and e) that the
pure data-driven BO suggests exploring significantly over the
noisy region in the parameter space due to inaccurately measured
low values of nucleation and coercive voltages, with insufficient
exploitation of the true global region and non-exploitation of the
local regions. In SANE, the dynamic gate (Fig. 6¢c and f) avoids
exploration of those human defined infeasible regions and
exploits the feasible global region (highlighted by the green
dashed circle). We can see that the gate is tuned with more BO
iteration (see ESI Fig. S37). Secondly, we can also see the exploi-
tation of the local regions (pointed with black arrows) aiming to
provide deeper insight into the material behavior. One of which
would be the understanding of the local robustness of the
material behavior, given the physically relevant experimental
measurements (feasible spectral structure). For Case 1, in Fig. 6c,
we can see a comparison of two local regions of interest; the left
local region (pointed by solid black arrow) gives lower nucleation
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Fig. 5 Human assessment of the initial samples to define the feasibility of the noisy experiments. In figure (a), the spectral structure images
highlighted in green are the positive assessments while the spectral structure images highlighted in red are the negative assessments. These initial
samples are generated via the Latin hypercube sampling method. Figure (b) defines the scalarizers such as nucleation and coercive voltages,

given the spectral structure of the hysteresis loop.
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Fig. 6 Comparison of standard BO and SANE exploration in a combinatorial library ferroelectric Sm-doped BiFeO3z (Sm-BFO) dataset. In Case 1,

the objective is the minimization of the nucleation voltage and in Case 2,

the objective is the minimization of the coercive voltage. Figures (a) and

(d) are the noisy experimental ground truth data for these two cases, where the red dots are the initially LHS-driven selected samples. Figures (b)

and (c) are the standard BO and the SANE exploration, respectively, for
black solid lines are the respective estimated mean of the ground truth

Case 1, and figures (e) and (f) are the same plots for Case 2, where the
function, and the black shaded regions are the uncertainty. The red "x”

points are the 30 autonomously driven samples for each case study. The red vertical dashed line in the left figures of (c) and (f) are the estimated
constraint boundaries or gate ¢ = 0 where the left region of the boundary is the feasible region ¢ > 0, and the right region of the boundary is the

infeasible region ¢ < 0. The right figures of (c) and (f) are the estimated

voltage and lower local fluctuation/noise than the right local
region (pointed by dashed black arrow). To quantify the SANE
performance, here we can see that SANE explores just 1 additional
sample over the infeasible noisy region while BO exhausts more
than 50% samples over the infeasible region. Also, SANE exploits
3 out of 3 regions of interest (the global region is denoted by the
green circle and local regions are denoted by the black arrows)
while BO exploits 1 (global) region. Also, BO explores with approx.
5/30 samples in the true feasible region of interest while SANE
explores with approx. 26/30 samples in the true region of interest.
Case 2 observation has more interesting trade-offs where, in
Fig. 6f, we can see a comparison of two local regions of interest.
The left local region (indicated by the solid black arrow) gives
higher coercive voltage but lower local fluctuation/noise than the
right local region (indicated by the dashed black arrow). Also, the
right local region is very close to the estimated infeasible space.
We can see from the standard BO that this local exploitation has
not been suggested within the same cost of exploration, due to
being overly exploring on the infeasible region and ignoring
potentially interesting local regions. Furthermore, we can observe
similar quantitative performance of SANE and BO as in Case 1.

3 Implementation in BEPS PTO data

The second model dataset is the vertical band excitation pie-
zoresponse spectroscopy (BEPS) data of a PbTiO; (PTO) thin
film.*® Here, we aim to locate regions which have higher values

© 2025 The Author(s). Published by the Royal Society of Chemistry

constrained gate function ¢ with feasible region of ¢ > 0.

of loop area for advanced memory device application. In this
example, the non-smoothness of the function, which arises due
to high experimental noise, is defined as having multi-modal
function (multiple optima). We initialize the SANE with 30
LHS driven initial samples and their domain expert assess-
ments. Here, the prediction models for data 4, and gate 4 are
considered as deep kernel learning (DKL) regression models®®
with Matern kernel and RBF kernel functions (refer to the ESI 1),
and the constraint penalty factor is chosen as P = 1000. For high
dimensionality problems, deep kernel provides better estima-
tion of the structure-property relationship than a standard
GP.”” DKL is built on the framework on fully-connected neural
network (NN) where the high-dimensional input image patch is
first embedded into low dimensional kernel space (in this case
set as 2), and then a standard GP kernel operates, such that the
parameters of GP and weights of NN are learned jointly. This
DKL technique has been implemented for better exploration
through active learning in experimental environments.***
Here, we utilized a DKL implementation from the open-source
Gpax software package. Here, for a selected sample co-
ordinate as suggested by the acquisition function, we input
a local structure image patch (high dimensional data) to the
DKL which predicts the output (loop area). Unlike in the stan-
dard GP, through DKL we can provide prior knowledge about
the local correlation of the structural image patches. The stan-
dard acquisition function #(X) is considered as the Expected
Improvement (EI). Here, the switching parameter trajectory is
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setas s; =0,i<60and s; =1, 60 <i = 100, where the total
number of iterations, N = 100.

Fig. 7 compares the performance between the standard BO
exploration and SANE exploration after 100 iterations. On the
SANE exploration, we considered three workflows—(1) without
gate, (2) with a relaxed gate and (3) with the hard gate. The
relaxed gate is designed with only estimation of the constrained
gate map with initial data and is not being updated with selection
of new samples. The hard gate is designed as described earlier.
The constrained gate maps are provided in ESI Fig. S4.f
Comparing with BO, we can clearly see the diversification of the
search in all SANE explorations where the standard BO concen-
trated mostly on a single region (top left boundary of the image
space), assuming no potential good solutions can be found in
other areas. Whereas all the SANE workflows discover another
optimal region (left bottom corner of the image space indicated
with red arrow) where we can see the desired spectral structure
with a large loop area. Among all the SANE workflows, the relaxed
constrained SANE achieves discovery of another optimal region
where we can see the desired spectrum (indicated by the red
arrow in Fig. 6¢) with a large loop area. With further investiga-
tion, we understand that the region is very close to infeasibility
for the estimated hard gate and is therefore not being explored.
SANE explores a lot of infeasible regions over the unconstrained
search space and therefore failed to locate the true feasible
optimal region. This shows the role of human intervention to
reduce the search space and subsequently, intelligent co-
navigation to locate the optimal regions in the narrow space.

b) SANE: no gate

a) Standard BO

View Article Online
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However, we need to ensure the proper balancing of the location
of the gates and therefore proper tuning of the penalty factor P is
required, which is problem dependent. To quantify the SANE
performance, here we can see that all the SANE architectures
locate additionally 2-3 optimal regions than the standard BO. To
understand that the additional local optimal solutions are truly
optimal, we manually investigated the respective spectral struc-
ture as shown in the figure, which matches the desirability of the
user. Comparing the mean absolute error between the ground
truth and the prediction over the estimated feasible space,
defined by the hard gate, we can see that SANE has lower error
than BO. However, it is to be noted that SANE is not designed to
guarantee to always minimize the prediction of the overall
feasible multi-modal or non-differentiable parameter space than
BO, which is a task for the prediction model. Here, the purpose of
SANE is to reduce the over-dependencies of the prediction model
and explore strategically to avoid being stuck in a single region
and probabilistically hop to explore other regions of interest,
when the parameter space is too complex due to noisy experi-
ments. To design or integrate a better predictive model** to learn
a complex non-smooth function is a future scope. Comparing the
computational and resource usage among standard BO and
different SANE architectures for a fixed experiment, it depends on
the number of surrogate predictions for gate mapping. While
standard BO and SANE without gate show nearly similar
computational cost, the computational cost for SANE with
a relaxed gate has one additional surrogate prediction for gate
mapping, while the total SANE with the hard gate has double

c) SANE: relaxed gate d) SANE: hard gate

7 7

Fig.7 Comparison of standard BO and SANE exploration in BEPS data of a PbTiOz (PTO) thin film: figure (a) is the exploration from standard BO,
figure (b) is the SANE exploration without implementation of the human-intervened gate, figure (c) is the SANE exploration with relaxed human-
intervened gate, figure (d) is the SANE exploration with hard human-intervened gate. For each subfigure, the top figure is the explored points over
the ground truth (loop area) after 100 iterations. The color of the explored points indicates the loop area value where red indicates the higher
values (optimal regions) and blue indicates the lower values. The bottom figure is the absolute error map over only the feasible region between
the ground truth and the prediction with mean values of ue = 0.064, ue = 0.061, ue = 0.061, ue = 0.059, respectively.
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Fig. 8 Comparison of standard BO and SANE exploration in BEPS data of a PbTiOz (PTO) thin film. Figures (a)-(d) are the comparison of the
histogram between the ground truth and the prediction at the estimated feasible region; driven by standard BO, SANE without implementation of
the human-intervened gate, SANE with relaxed human-intervened gate, and SANE with hard human-intervened gate. Figure (e) is the
comparison chart of the histograms among ground truth samples (blue), BO-driven samples (orange), SANE without constrained gate driven
samples (green), SANE with relaxed constrained gate driven samples (red) and SANE with hard constrained gate driven samples (purple).

computational cost for gate mapping at every iteration. However,
in view of the practical application for autonomous data collec-
tion over expensive experiments, the computational cost for an
additional gate mapping is negligible in comparison to the cost
of a single experiment.

For further performance validation of SANE, we compared the
histograms between the ground truth and the predictions over the
estimated feasible space and compared the ground truth with the
explored samples after 100 iterations as in Fig. 8. From the
histogram of the ground truth, we can clearly see that the majority
of the areas are non-interesting regions with narrow patches of
scattered local and global optimal regions. Along with the noisy
experiment (fake optima), the low ratio of the true region of
interest makes the exploration even harder, like finding a needle
in a haystack. It is understandable why standard BO focuses on
one region of interest and could not find suitable learning to
exploit other regions. Therefore, we can see that it fails to provide
a better overall prediction at the estimated feasible region where it
has the lowest (ssimpo = 0.217) similarity to the ground truth
histogram (refer to Fig. 8a). The similarity index for all the SANE
workflows (Fig. 8b-d) are much higher and comparable with each
other. From Fig. 7e, we can see that all the SANE workflows overall
explore a better ratio of different optimal regions, as they locate
a higher percentage of spectral structure having higher loop areas
(indicated by the green circle). This is supported by the analysis in
Fig. 7 where SANE discovers multiple optimal regions. We can
clearly see that BO fails to do so as it mostly explores near the
single region of interest and ends up locating spectral structure
with loop areas ranging between 0.5 and 0.7. This is because in

© 2025 The Author(s). Published by the Royal Society of Chemistry

traditional BO, the acquisition function is built to locate global
optima only and does not provide enough priority to exploit local
optima, once a global solution is found. Here, the goal of SANE is
to maximize the finding of multiple local and global optimal and
exploit those with similar priority. Thus, SANE aims to locate
more local optima, irrespective of any global solution found. It is
to be noted that there could be more local regions which SANE is
not able to detect yet with the current number of iterations, and
thus more iterations would be required. However, with similar
number of iterations, we can easily see better performance of
SANE than traditional BO. To understand the role of the gate
constraint in this context, as the ground truth of the constraint is
unknown, we have run SANE with standard expected improve-
ment acquisition function, but with integrating the gate (see ESI
Fig. S51). We observe that though the gate helps to explore better
and locate 1 good region, it also fails to locate another good region
as other SANE model did. Additionally, the exploration is
concentrated on a particular region and does not exploit the local
regions found, which is expected from the standard acquisition.
This shows that both the hybrid acquisition and the gate in SANE
have roles to play for better guidance of the exploration, particu-
larly when the exploration space contains multiple and fake
optima. However, it is to be noted that the dominating factor
between them depends on the complexity of the problem.

4 Conclusion

In conclusion, we have developed a Strategic Autonomous Non-
Smooth Exploration (SANE) framework, which demonstrates

Digital Discovery, 2025, 4, 853-867 | 863


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00299g

Open Access Article. Published on 18 February 2025. Downloaded on 11/8/2025 5:30:15 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

advancements in exploring multidimensional parameter spaces
with multi-modal and non-differentiable black box functions
for materials and physics discovery. Traditional BO methods,
while powerful, often lead to the risk of over-focusing on
singular optimal conditions and the potential for becoming
trapped in noisy regions or local optima. SANE integrates a cost-
driven probabilistic acquisition function, a more robust and
exploratory approach, to address these limitations in autono-
mous experimentation. SANE actively seeks out multiple global
and local optima, ensuring a more comprehensive exploration
of the parameter space. The application of the SANE framework
in two complex material systems, i.e., Sm-doped BiFeO;
combinatorial library and PbTiO; ferroelastic/ferroelectric thin
films, has demonstrated its efficacy. In both cases, SANE out-
performed traditional BO by avoiding entrapment in noisy
regions and/or singular optimum, enabling the discovery of
multiple optimal conditions and uncovering a broader spec-
trum of material behaviors. Moreover, by incorporating
a dynamic constrained gate driven by human domain knowl-
edge, we have further enhanced the SANE framework by prior-
itizing scientifically valuable regions of the parameter space.
Comparing the computation and resource efficiency between
SANE and traditional BO, SANE does not provide any significant
increment of cost as the cost driven functions are cheap to
evaluate and we have limited human intervention till the early
initialization stage. As for future tasks, we aim to expand the
human intervention in the SANE process with automated trig-
gering of human input for steering based on periodic moni-
toring of the constraint validation. In future, we also aim to
expand SANE to explore over joint multiple functional and
fidelity spaces and compare with more advanced BO methods.
This approach not only mitigates the challenges posed by
experimental noise and uncertainties but also ensures that the
exploration aligns with broader scientific discovery goals.

As autonomous experimentation for accelerated research
continues to evolve, the integration of advanced autonomous
exploration methods like SANE, coupled with human expertise,
will stand as a critical tool for pushing the boundaries of what is
possible in autonomous research, more comprehensive explo-
rations of complex material landscapes and driving new scien-
tific discoveries. The approach developed here can be applied in
a broad materials science field including materials synthesis,
characterization, and computation, offering a more compre-
hensive and effective path forward in autonomous research.

Data availability

The analysis reported here along with the code is summarized
in Colab Notebook for the purpose of tutorial and application to
other data and can be found at https:/github.com/
arpanbiswas52/SANE.
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