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Linda Hung, a Daniel Schweigerta and Ha-Kyung Kwon a

In this work, we introduce a computational polymer discovery framework that efficiently designs polymers

with tailored properties. The framework comprises three core components—a conditioned generative

model, a computational evaluation module, and a feedback mechanism—all integrated into an iterative

framework for material innovation. To demonstrate the efficacy of this framework, we used it to design

polymer electrolyte materials with high ionic conductivity. A conditional generative model based on the

minGPT architecture can generate candidate polymers that exhibit a mean ionic conductivity that is

greater than that of the original training set. This approach, coupled with molecular dynamics (MD)

simulations for testing and a specifically planned acquisition mechanism, allows the framework to refine

its output iteratively. Notably, we observe an increase in both the mean and the lower bound of the ionic

conductivity of the new polymer candidates. The framework's effectiveness is underscored by its

identification of 14 distinct polymer repeating units that display a computed ionic conductivity surpassing

that of polyethylene oxide (PEO).
1 Introduction

Polymers cater to a wide range of applications, spanning from
biodegradable materials and high-performance aerospace
composites to conducting elements in electronic devices and
smart materials in sensor technologies. Notably, polymer elec-
trolytes are a promising direction in the eld of energy
storage.1–4 Currently, several challenges are associated with
liquid electrolytes, which are the commercially used materials
in Li-ion batteries, including ammability,5,6 toxicity,7,8 and
instability of the electrode–electrolyte interface due to lithium
dendrite formation.9,10 Polymer electrolytes can address these
issues due to their inherent properties.2–4 Additionally, several
other advantages of polymer electrolytes, such as better adapt-
ability to current manufacturing processes compared to
ceramics11 and lower cost compared to ionic liquids,12 highlight
the potential of polymer materials to revolutionize energy
storage technologies.

Recent advancements in polymer electrolytes have emerged
from strategies including crosslinking, blending with additives,
Real, Los Altos, California 94022, USA.

ngineering, Massachusetts Institute of

dge, Massachusetts 02139, USA

tion (ESI) available. See DOI:

the Royal Society of Chemistry
and copolymerization.13–17 For example, He et al.18 improved Li-
ion mobility and electrochemical stability by moving the
carbonate group to the side chain and using a hydrocarbon
backbone, achieving a conductivity of about 1.1 mS cm−1 at
room temperature. Similarly, Zhang et al.19 enhanced poly-
ethylene oxide (PEO) electrolytes through crosslinking, result-
ing in a conductivity of 2.7× 10−4 S cm−1. Sun et al.20 developed
PEO-based electrolytes with fast Li+ transport and dendrite-free
Li-metal deposition, maintaining cell capacity over 1200 cycles.
Lin et al.21 designed block copolymer electrolytes with three-
dimensional networks, achieving a conductivity of 5.7 ×

10−4 S cm−1 and a high lithium ion transference number.
Despite these advances, solid polymer electrolytes still face
challenges in matching the ion transport properties of liquid
counterparts.

The vastness of polymer electrolyte design space, combined
with the necessity to balance multiple properties like mechan-
ical strength, electrical conductivity, and thermal stability,
makes the discovery process highly intricate. Given the need to
rapidly identify innovative materials, including advanced poly-
mer electrolytes for next-generation energy storage solutions,
more efficient and comprehensive approaches to polymer
discovery are needed.

Machine learning, particularly in the realm of generative
modeling, presents a potentially transformative approach to
this challenge. Generative models in machine learning have
shown promise in various domains, including material
science,22–26 by enabling the exploration of vast chemical spaces
Digital Discovery, 2025, 4, 11–20 | 11
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Fig. 1 Schematic illustration of the framework.
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with unprecedented efficiency. These models can quickly navi-
gate the intricacies of polymer chemistry, suggesting novel and
plausible compositions and structures for investigation, thereby
streamlining the discovery process.

Within this realm, conditioned generative modeling pres-
ents a particularly relevant technique.22,27–30 By training models
on specic conditions or properties, it becomes possible to
generate content that meets predetermined criteria. In the
current landscape, while the concept of integrating machine
learning with material science to tailor polymer properties is
gaining traction, conditioned generative models specically for
polymers are still emerging. We, therefore, introduce
a comprehensive polymer discovery framework that leverages
the principles of conditioned generative modeling. This
framework is designed to iteratively improve and rene its
suggestions based on continuous feedback and evaluation, and
such a system could offer a more holistic and efficient pathway
to polymer material innovation.31–33

This proof-of-concept study demonstrates the application of
our discovery framework in the realm of polymer electrolytes.
We limit the scope of this study to dry (solid) linear chain
homopolymers and utilize the HTP-MD database,34 a recently
developed large database of polymer electrolyte properties
computed from MD simulations. Building on prior work
exploring conditional generation of polymer electrolytes using
a variety of model architectures,35 this work proposes an itera-
tive discovery framework and discusses its outcomes. We show
that our framework successfully designs polymer electrolytes
with ion conductivities superior to PEO, as assessed by molec-
ular dynamics (MD) simulations. It is worth mentioning that
PEO currently holds the record for one of the highest ion
conductivity in the form of dry (solid) polymers with around 1
mS cm−1 conductivity at 353 K, and Li+$TFSI− molality of
1.5 mol kg−1 and is still considered a benchmark material in
this eld.

While this study only explores a limited region of the poly-
mer design space and does not specically target other
requirements, such as thermal stability or varied operational
conditions, the framework has the potential to be extended in
future work to address these critical challenges, potentially
leading to safer, more durable, and higher-capacity energy
storage solutions.

2 Framework

Our framework (Fig. 1) is structured around an iterative and
self-sustaining workow comprising three essential compo-
nents: a conditional generative model, a computational evalu-
ation module, and a feedback mechanism. This integrated
system allows for continuous renement and evolution of the
discovery process, which we term a “discovery campaign”.

The conditioned generative model, the heart of this frame-
work, is tasked with proposing potential polymer candidates.
Tailored to incorporate specic target properties, this module is
responsible for generating polymers, either by constructing
repeating units, oligomers, polymer chains, or 3D structures.
For this work, our focus is on generating the 2D representation
12 | Digital Discovery, 2025, 4, 11–20
of repeat units of polymers. Several aspects heavily inuence the
performance of the generative model: the (seed) data, the model
architecture and hyperparameters, and the training strategies.
Different from traditional regression models, where a numer-
ical loss is clearly dened, the generative tasks are more
ambiguous and difficult to evaluate and oen require domain
knowledge. The process of formulating a comprehensive and
domain-relevant evaluation schema and performing the
benchmarking across a series of model architectures and
training strategies presents its own set of challenges studied in
our related work.35

Once a batch of polymers is proposed by the generative
model, the evaluation module takes over. This component is
responsible for assessing the target properties of the proposed
polymers, employing both simulation and experimental vali-
dations. In the current study, we rely on MD simulations for
computational validation. While experimental validation would
serve as the denitive conrmation for computationally
discovered polymers, it is signicantly more costly in time and
resources and has not been integrated into the current
framework.

Establishing a feedback mechanism is pivotal to allowing
active learning and continuously guiding the model to newly
found promising search space. At the end of each campaign
iteration, all computed results are recorded in a database, and
strategically sampled for enriching the training data. The model
is then retrained to the new data to become increasingly adept
at targeting the desired polymers. Acquisition strategies could
range from the simple scheme used in this work to more
sophisticated models, perhaps in the future leveraging uncer-
tainty quantication of the generative model to balance explo-
ration and exploitation.

The initialization and deployment of the framework are
crucial steps of the discovery campaign. The seed data chosen
by the user describes the initial design space, and its quality and
variety are paramount for each campaign's success. With the
chosen dataset and clearly dened target properties, the
framework is designed to be capable of operating with minimal
© 2025 The Author(s). Published by the Royal Society of Chemistry
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subjective intervention. This capability underlies the frame-
work's potential for high-throughput, efficient discovery
campaigns.

3 Experiment setup
3.1 Conditional generation

The core of this demonstration revolves around a conditional
generative model based on the minGPT36 architecture, which is
trained to generate a polymer electrolyte candidate given lead,
prompt signaling what kind of property is needed (with high or
low ionic conductivity), just like the popular large language
models. We use the Simplied Molecular Input Line Entry
System (SMILES)37 code of polymers' repeating units to repre-
sent the polymer electrolyte candidates. To direct the model
towards polymers with high ionic conductivity, we implement
a method to incorporate the properties of the input during
training. This involves the modication of tokenized SMILES
strings of known polymer electrolytes prexed by their ionic
conductivity classes. Specically, given the range (0.007–0.506
mS cm−1) and distribution (mean= 0.062 mS cm−1, std= 0.036
mS cm−1) of ionic conductivity in our dataset, we assign
different class labels to high-conductive (top 5%) and low-
conductive (lower 95%) polymers and use this class as the
leading digit in the input to the model. The dividing line
between the “high-conductivity” (labeled with class 1) and “low-
conductivity” (labeled with class 0) categories is set to be 0.012
mS cm−1, and this is xed throughout the experiment. Addi-
tionally, to maintain the importance of the property class in
comparison to the lengthy SMILES, and to ensure themodel can
be effectively guided towards desirable structures, we replicate
the property class tokens ve times, which we nd results in
better polymer electrolyte candidates. Therefore, the effective
prompt that signals the conditioned generative model to
generate polymer electrolyte candidates with high ionic
conductivity is a leading string of “11111”, and the model will
then complete the string by generating a SMILES code that
represents a specic polymer candidate.

Inspired by the simple design of the benchmark PEO, which
has a very short repeat unit (OCC), we use the model to generate
small repeating units with SMILES strings containing 10 or
fewer tokens (excluding the end tokens) during the iterative
polymer generation loops. This approach proves crucial for the
model's ability to generate high-conductivity polymers. Short
repeat units oen result in the short distance between nega-
tively charged atoms, such as oxygen atoms, in the polymer
backbone that coordinates with Li ions, and this is an effective
coordination environment can help with salt dissociation to
individual ions and the easier hopping of cations from one
coordination site to another.38,39 Regardless of the imposed
restriction on the length of repeat units, the model shows
a tendency toward generating short repeat units, which is
mainly due to oversampling PEO that will be discussed in
Section 3.3.

It is worth mentioning that, given our goal of designing new
polymers, we address duplicate generated polymers in two ways.
First, exact matches for SMILES in the training set and in each
© 2025 The Author(s). Published by the Royal Society of Chemistry
batch of generation are automatically ignored. For SMILES that
are not exact duplicates but still represent the same polymer
(due to mirror and translational symmetries, repeated patterns,
and combinations of these scenarios), we lter them out during
post-processing. In our discovery campaign, we generate 50
candidates in each iteration which are not exact duplicates. We
identied 2 duplicates during post-processing in the rst iter-
ation, 7 in the second, and 20 in the third (not included in the
manuscript). A list of all generated SMILES strings in the rst
two iterations, also including these post-processed duplicates
and those that failedMD simulations, is provided in our GitHub
repository.

3.2 Model details

In this study, we use a transformer-based generative model and
a workow described in full in our concurrent study,35 which is
tailored for polymer design.

The generative model is based on aminimal implementation
of the GPT model.36 The model rst converts a sequence of
tokens (SMILES vocabulary) to two embeddings, including
token embedding and positional embedding. Token embed-
ding represents the meaning of individual words or symbols in
a high-dimensional space, while positional embedding encodes
the order or position of tokens within a sequence to provide
contextual information to the model. These embeddings are
then passed through multiple layers of transformer blocks.
Each transformer block mainly consists of a multi-headmasked
self-attention layer and a feed-forward neural network,
following the original transformer architecture.40 The loss
function is cross entropy loss comparing tokens in the gener-
ated and actual sequences.

We perform a grid search to tune the hyperparameters of
minGPT. The mean values of six metrics assessing the gener-
ated polymers (chemical validity, uniqueness, novelty, synthe-
sizability, similarity, diversity) are utilized as the evaluation
metric for each model's performance. It is important to note
that in this study, novelty is dened as a polymer structure that
has not been seen by the model during the training process and
is not based on literature novelty. We search over three inde-
pendent hyperparameters: model architecture, temperature,
and the total number of training epochs. For model architecture
we choose between various transformer-based architectures,
specically “gpt-2”, “gpt-mini” and “gpt-nano” from Hugging-
Face.41 The model temperature is varied between 0.1, 0.5 and
1.0, where higher temperature results in higher “creativity” for
the model. Models are trained between 1000 to 10 000 epochs
with a uniform interval of 1000. The best performance is ob-
tained with the “gpt-nano” model (which has 0.12 million
parameters) with temperature set to 1.0 and trained for 6000
epochs. Additional hyperparameter selection and the grid
search details can be found in the ESI Tables S1–S4.†

3.3 Data

The initial dataset used in this study is a subset of polymers
from HTP-MD database,34,42 consisting of 6024 linear chain
homopolymers. The polymers in HTP-MD database are
Digital Discovery, 2025, 4, 11–20 | 13
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composed of the elements H, C, F, S, P, O, and N, previously
ltered from 53 362 structures in the ZINC database43 to
improve the likelihood of synthesizability and potential appli-
cation as electrolytes.44 To skew the model towards high-
conductivity polymers, we randomly oversample the top 5%
ionic conducting polymers to provide a training set that
includes the same number of polymers from low-conductive
and high-conductive classes. Additionally, PEO is added and
oversampled 4000 times in the seed data. This method of
selective oversampling is instrumental in guiding the model
towards generating more promising polymer candidates. It
should be noted that in the current study, oversampling is
performed by including duplicate SMILES strings, and we have
not tried other methods, such as randomization.45
Fig. 2 Distribution of MD-predicted ionic conductivities of polymers
in the training set (green), first iteration (orange), and second iteration
(purple). The dotted vertical lines show the mean ionic conductivity in
each distribution, and the solid black line is the MD-predicted ionic
conductivity of PEO.
3.4 Evaluation and feedback

For evaluation purposes, the 50 polymer candidates generated
at each iteration of the discovery process have their ionic
conductivities evaluated through MD simulations. These
simulations adhere to the same protocol previously used in
creating the initial dataset (HTP-MD: ref. 42).34,44

We carry out MD simulations on polymer–(Li+$TFSI−)
systems at a temperature of 353 K and a salt concentration of
1.5 mol kg−1 using LAMMPS46 with the PCFF+.47 The charges of
Li and TFSI ions were adjusted using a scale factor of 0.7
according to ref. 48. The PCFF+ force eld has been employed in
previous studies to explore various properties of electrolyte
systems.44,49–54 Additionally, multiple studies have compared the
MD predictions obtained using the PCFF+ force eld with
experimental data and density functional theory (DFT) calcu-
lations for both polymer44,55,56 and liquid57–59 electrolytes.

The simulation process includes initial relaxation and
equilibration of the polymer–salt mixture, followed by
a production phase to gather data for computing ion transport
properties, such as ionic conductivity. The equilibration stage
involves running sequential NVT (constant number of particles,
volume, and temperature) and NPT (constant number of parti-
cles, pressure, and temperature) ensembles to achieve densities
close to theoretical values. For the production run, an NVT
simulation at 353 K is conducted for 5 ns with a 2.0 fs time step.
The resulting trajectories are then analyzed to compute ion
transport properties using the cluster Nernst–Einstein equa-
tion.49 The analysis code used to compute ionic conductivity is
consistent with the one used to generate the HTP-MD database
and is available at https://github.com/TRI-AMDD/htp_md.
More details about MD simulations, dataset composition, and
computing ionic conductivity have been included in 3.3
section, as well as previous studies.34,42,44,60

The repeat units of the generated polymers are polymerized
to have at least 150 heavy atoms (non-H) in their backbone, with
the two ends terminated by methyl groups. This approach is
consistent with the method used to generate the HTP-MD
database, allowing us to compare the performance of newly
generated polymers with the training set. Also, to ensure
robustness, each candidate undergoes ve independent simu-
lation replicas to determine its conductivity. Given the
14 | Digital Discovery, 2025, 4, 11–20
randomness in MD simulation results originating from
different conformation sampling, this rigorous step is crucial
for ascertaining the potential of each proposed polymer.

The feedback mechanism of our framework plays a vital role
in its iterative learning process. Aer evaluation, we add both
PEO and newly discovered polymers showing conductivity
higher than PEO to the training set and oversample 4000 in total
from all newly added polymers. This is to ensure the model can
still explore polymers that are different from PEO. This enriched
dataset is then used to retrain the generative model, with the
aim of proposing increasingly relevant and high-performance
polymers in subsequent iterations.
4 Application: polymer electrolyte
discovery
4.1 Framework iterations

We examine how the distribution of polymers evolves across
iterations of our framework (Fig. 2). In the initial iteration, the
generated polymer candidates exhibit a shied distribution of
ion conductivity with a notably higher mean value (0.75
mS cm−1) when compared to the training set (0.06 mS cm−1,
excluding the added PEO polymers), an improvement by a factor
of 11.5. At the second iteration, the average ion conductivity of
the generated polymers (0.85 mS cm−1) improves by a further
15%. Further, the lowest ion conductivity resulting from the
second iteration batch (0.136 mS cm−1) is 3.6 times that of the
rst iteration (0.037 mS cm−1, ignoring the 0 conductivity of
polyethylene).

Although we observe an increase in the minimum and
average ionic conductivity, there is a decrease in the maximum
ionic conductivity of generated polymers from the rst iteration
(1.61 mS cm−1) to the second iteration (2.04 mS cm−1). We
believe this decrease is due to the exhaustion of the limited
search space. Since we are exploring linear chain homopoly-
mers composed of only a few heavy atoms, the search space is
narrow. The increasing number of duplicate candidates gener-
ated (mentioned in Section 3.1) also provides evidence of search
space saturation. We, therefore, only perform two full iterations
© 2025 The Author(s). Published by the Royal Society of Chemistry
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of exploration. We believe that by extending the chemistry to
a wider range of atom types and incorporating more diverse
polymer structures (e.g., aromatic structures), a saturation of
performance increase would occur at later stages. This high-
lights the necessity of developing more creative generative
models that can extrapolate the search space, which has been
the focus of other researchers' studies.31

Despite this limited search space, the framework generates
polymer electrolyte candidates with high conductivity,
including those exceeding the PEO benchmark. The box-and-
whisker plot in Fig. 3 highlights the new repeating units
discovered through this process and their ionic conductivity
computed from MD simulations. In the rst iteration, 7 poly-
mers have MD-computed conductivities greater than PEO, and
in the second iteration, again 7 polymers exceed PEO. The
distribution of computed conductivity for individual polymers
is due to the effect of random initialization of different simu-
lation replicas with a standard deviation within the range of
20% of the average conductivity values consistent with previous
studies.61 Other ion transport properties of the generated poly-
mer in the two iterations, including density, ion diffusivity,
ionic conductivity, and transference number, are listed in the
ESI (Tables S5 and S6†).
4.2 High-performing polymers

In Fig. 4, we introduce the 14 generated polymer repeating units
whose ionic conductivities, as predicted by MD simulations,
surpass that of PEO. To facilitate discussion, we assign a unique
ID to each polymer in Fig. 4, where the rst number in the ID
represents the iteration number and the second indicates the
polymer's ranking in terms of average conductivity. Polymers 1–
Fig. 3 Ionic conductivity of polymers generated from two iterative cand
the mean and standard deviation in 5 MD simulations performed for ea
values. The dashed and dotted lines show the mean and the standard de

© 2025 The Author(s). Published by the Royal Society of Chemistry
2, 1–4, 1–5, 2–1, and 2–5 are polyacetals, which are polymers
with a high oxygen-to-carbon ratio, similar to PEO, which
facilitates efficient lithium salt solvation and creates effective
pathways for lithium ion transport. A few of these polyacetals,
while not part of our initial dataset, have been previously re-
ported. For example, polymer 1–2 is poly(1,3-dioxolane) (P(EO-
MO), *OCCOC*), a polyacetal with a repeating unit of 1,3-
dioxolane. MD simulations in this work predict its ion
conductivity to be 1.515 (±0.199) mS cm−1, but its experimen-
tally measured conductivity has been reported to be lower at 0.4
mS cm−1.62 Nevertheless, its potential as a polymer electrolyte
candidate remains signicant due to its improved ion transport
efficacy. Similarly, polymer 1–4 is poly(diethylene oxide-alt-
oxymethylene) (P(2EO-MO), *OCCOCCOC*), which has been
previously synthesized and investigated, and shows slightly
lower ionic conductivity of 1.1 mS cm−1 compared to PEO's 1.5
mS cm−1 at 90 °C.63 Finally, polymer 2–5 is polyethylene oxide-
alt-trimethylene oxide (P(EO-TMO) *OCCCOCC*). Previous MD
simulations have supported the higher ionic conductivity of
P(EO-TMO) compared to PEO.64

The remaining candidate polymers feature elements like
nitrogen and sulfur (1–1, 1–3, 1–6, 1–7, 2–2, 2–3, 2–4, 2–6, and 2–
7), marking a shi from the conventional focus on poly-
carbonates composed solely of carbon and oxygen. Polymer 1–1
(ONCCOC) has the highest conductivity among all polymers in
our study – roughly twice that of PEO. Unfortunately, most of
these polymers, including 1–1, have unstable bonds and motifs
such as N–O, S–O, S–N, O–O–NH, and O–NH–O bonds (1–1, 1–3,
1–6, 1–7, 2–2, 2–4, and 2–6). Likely due to difficulties in syn-
thesizability and stability, there are no previous experimental or
theoretical studies on these specic polymers. However, related
research on polyethylenimine (PEI, CCN) polymer
idate generations computed from MD simulations. The box plots show
ch listed polymer, and the diamond symbols are outlier conductivity
viation of ionic conductivity of PEO as computed from MD simulation.
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Fig. 4 Discovered polymers from two iterative generation cycles. The polymer listed for each iteration exhibited an ionic conductivity superior to
that of PEO.
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electrolytes65,66 and their blends with PEO67,68 have been docu-
mented. Polymers 2–3 and 2–7 do not have the unstable bonds,
and we did not nd any prior studies of these candidates.
4.3 Factors inuencing conductivity

The calculated ionic conductivity, derived from the cluster
Nernst–Einstein equation, arises from both ion diffusivity and
clustering. To elucidate the mechanisms underpinning the
superior ionic conductivity observed in generated polymers, we
conduct a comparative analysis of conductivity, ion diffusivity,
and concentrations of free ions between PEO and the polymers
exhibiting enhanced performance (see Fig. S1†). In this context,
“free ions” denote those not incorporated into any clusters and
moving freely, with their concentration determined as an
average across simulation durations. The analysis reveals that
the augmented conductivity in the most effective polymers from
the rst two iterations is attributed to both an increase in ion
diffusivity and a higher prevalence of free ion clusters. Inter-
estingly, it is also noted that several of the developed polymers
exhibit a more efficient dissociation of the Li+$TFSI− salt
compared to PEO, indicating a potential for improved ion
transport properties.

Salt concentration is a crucial design parameter that inu-
ences ion pairing in polymer electrolytes. Both ionic conductivity
and free ion concentration initially increase with higher salt
concentration, but at very high concentrations, ion clusters of
cations and anions form. These clusters reduce effective
conductivity due to charge cancellation within each cluster.49 The
optimal salt concentration depends on how strongly polymer
atoms coordinate with ions, which affects salt dissociation.
Consequently, this optimal concentration varies for different
polymers. Generally, a practical electrolyte system for lithium-ion
batteries requires a moderate to high salt concentration to ach-
ieve enhanced ionic conductivity,69 mechanical strength,70 elec-
trochemical stability,71 and solid electrolyte interphase (SEI)
formation.72 We examined the ionic conductivity of several top
candidates across various salt concentrations at 353 K to illus-
trate this concept (see Fig. S2†). The MD simulation results
indicated that maximum conductivity occurs at slightly different
16 | Digital Discovery, 2025, 4, 11–20
salt molalities, generally around 1.5–2.0 mol kg−1. Although the
salt concentration in the training set used to generate the poly-
mers in this study was 1.5 mol kg−1, exploring this parameter
further as a design factor is recommended for future research.
5 Outlook

In this manuscript, we presented an iterative polymer discovery
framework and applied it to generate new polymer electrolytes
in their SMILES representations. We have demonstrated that
this approach generates polymer structures that outperform
benchmark materials like PEO in MD simulations. The gener-
ated candidates include polymer candidates that other
researchers have investigated in recent years, as well as new
candidates that are as of yet unstudied.

While this study demonstrates the capabilities of our
framework, it also highlights important directions for rene-
ment and improvement, which will strengthen our ability to
translate discoveries to experiment and the real-world perfor-
mance of new materials.

One direction would be to include other relevant properties
or metrics for optimization, as well as enabling multi-property
optimization. In this study, we selected ionic conductivity as
the primary metric to identify new polymer electrolytes.
However, a more holistic measure is efficacy, dened as the
product of conductivity and cationic current fraction.62,73

Furthermore, conductivity and efficacy could be more accu-
rately predicted by using more accurate MD – reactive force
elds, machine learned potentials, and ab initio MD – and by
incorporating experimental feedback. Our framework could
also potentially be adapted to evaluate additional polymer
properties such as glass transition temperature (Tg), bulk
density, and mechanical properties. Another important metric
would be the synthesizability of polymers, which can be
approximated through the SA score, based on factors such as
the number of plausible synthesis recipes, required synthesis
conditions, and the kinetics of the routes, and/or determined
through a feedback loop incorporating real-world testing of the
synthesis recipes.74
© 2025 The Author(s). Published by the Royal Society of Chemistry
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The second direction would be to improve the models inte-
grated into the framework. Models could be rened with
improved data (over)sampling and to account for polymer
symmetries. Furthermore, a deeper understanding on metrics
of generative model performance would aid in identifying the
best models during hyperparameter searches.35 In addition, the
use of SMILES strings limits the information available to the
model, since they represent molecules as linear sequences and
may be inadequate for capturing the complexity of branched or
cross-linked polymer structures. Models that incorporate 3D
structural information may be more performant.

The third direction is to expand the search space available to
the framework. The current work focuses on the design of
monomers of linear chain homopolymers via SMILES string
consisting of just a few atom types. The use of this represen-
tation in fact allows us to easily extend our discovery framework
to use cases including molecular discovery, e.g., for liquid
electrolytes composed of small molecules. However, to thor-
oughly exploit the polymer design space, we must enhance the
framework to accommodate more complex representations.
These should capture the multiscale and stochastic character-
istics of polymers, enabling the exploration of diverse structures
such as cyclic and aromatic backbones, copolymers, and vari-
ations in tacticity. Further strategies to expand the search space
might involve the incorporation of additives like plasticizing
solvents, blending of distinct polymer architectures, or the
integration of various salts. These tactics have demonstrated
potentials in experimentally optimizing ionic
conductivity.13,14,67,75–81

Finally, the implementation of our approach presents an
opportunity for further improvement. The workow of our
framework could be further modularized and automated to
provide more exibility and expedite development. Regardless,
throughout the discovery campaign, the current process already
includes minimal subjective intervention, laying the ground-
work for developing a fully automated system. The existing
platform and available code provide a basis for future efforts,
which could enable compatibility with various generative
models and evaluation methods, streamline the discovery
process, and also expand the platform's utility across different
domains of polymer research.
Code and data availability

A subset of HTP-MD dataset (https://www.htpmd.matr.io/) has
been used for training the generative models. This dataset can
be accessed at https://github.com/TRI-AMDD/PolyGen/blob/
main/PolyGen-train-set-from-HTP-MD.csv [https://doi.org/
10.5281/zenodo.14261933]. The code for training the
generative models can be found at: https://github.com/TRI-
AMDD/PolyGen/tree/main/minGPT [https://doi.org/10.5281/
zenodo.14261787]. The code for running the MD simulations
can be found here: https://github.com/TRI-AMDD/PolyGen/
tree/main/Example-simulation-les. Consistent with the
trainset, the MD simulation trajectories were analyzed, and
the ionic conductivity of the generated polymers has been
© 2025 The Author(s). Published by the Royal Society of Chemistry
computed using HTP-MD code available at https://
github.com/TRI-AMDD/htp_md.
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