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ion in scientific experimentation
using multimodal visual encoding†
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Andrea Giovannini, Federico Zipoli, Amol Thakkar, Antonio Foncubierta,
Matteo Manica and Patrick W. Ruch *

Capturing actions during scientific experimentation is a cornerstone of reproducibility and collaborative

research. While large multimodal models hold promise for automatic action (or activity) recognition,

their ability to provide real-time captioning of scientific actions remains to be explored. Leveraging

multimodal egocentric videos and model finetuning for chemical experimentation, we study the action

recognition performance of Vision Transformer (ViT) encoders coupled either to a multi-label

classification head or a pretrained language model, as well as that of two state-of-the-art vision-

language models, Video-LLaVA and X-CLIP. Highest fidelity was achieved for models coupled with

trained classification heads or a fine-tuned language model decoder, for which individual actions were

recognized with F1 scores between 0.29–0.57 and action sequences were transcribed at normalized

Levenshtein ratios of 0.59–0.75, while inference efficiency was highest for models based on ViT

encoders coupled to classifiers, yielding a 3-fold relative inference speed-up on GPU over language-

assisted models. While models comprising generative language components were penalized in terms of

inference time, we demonstrate that augmenting egocentric videos with gaze information increases the

F1 score (0.52 / 0.61) and Levenshtein ratio (0.63 / 0.72, p = 0.047) for the language-assisted ViT

encoder. Based on our evaluation of preferred model configurations, we propose the use of multimodal

models for near real-time action recognition in scientific experimentation as viable approach for

automatic documentation of laboratory work.
1 Introduction

Validating hypotheses based on factual results of experiments is
a cornerstone of the scientic method. The fact that those
results can be consistently reproduced and understanding
under which conditions they hold is what allows scientic
advancement. However, more than 70% of researchers have
reportedly failed attempts to reproduce other scientists' exper-
iments, and over 50% fail to reproduce even their own experi-
ments.1 In an analysis of 53 peer-reviewed publications in pre-
clinical drug development, the scientic ndings could only
be reproduced in six (11%) of the cases.2 Reproducibility suffers
in particular from awed or missing experimental data and
metadata.3,4 It is, therefore, desirable to document scientic
experimentation in as much detail as possible, while auto-
mating and standardizing the process to avoid encumbering the
researcher. Building on the idea of using machine learning to
perform activity recognition, we propose a novel approach that
3 Rüschlikon, Switzerland. E-mail: ruc@

tion (ESI) available. See DOI:

the Royal Society of Chemistry
improves the traceability of scientic workows by describing
the complete set of activities performed by a laboratory oper-
ator. In particular, foundation models (FMs) that are pre-
trained on broad datasets under self-supervision have demon-
strated their ability to be ne-tuned for specic downstream
tasks incorporating multiple data modalities such as language
and vision.5 The application of automated activity recognition
in lab environments fosters novel exploration on how FMs may
revolutionize the scientic method, and potentially accelerate
the discovery process. Extending the concept of activity recog-
nition for lifelogging,6 we propose that egocentric video
recording can be used to capture step-by-step experiments to
reduce and possibly eliminate the need for scientists to manu-
ally generate additional documentation. Notably, this approach
places FMs at the beginning of the scientic data capture
process, thereby complementing the meanwhile widespread
usage of FMs for language-centric interpretation of data7–10 and
generative tasks in scientic data modeling.11–14

In this work, we investigate the capacity of vision-language
FMs to capture sequences of actions related to scientic
experimentation based on egocentric videos. In particular, we
compare the performance of state-of-the-art vision-language
FMs trained on large-scale image and video datasets, X-CLIP15
Digital Discovery, 2025, 4, 393–402 | 393
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and Video-LLaVA,16 against related model architectures that
were trained on smaller, more domain-specic datasets con-
sisting exclusively of egocentric videos. We evaluate the
performance of the models in zero-shot settings as well as when
coupled to multi-class classiers trained under supervision on
the targeted action classes, studying the recognition of indi-
vidual actions and action sequences as well as the model
inference times.

For selected models, we further examine the effect of incor-
porating additional data modalities for action recognition.
Egocentric video recording systems oen provide multiple
modalities of information, e.g. gaze, depth, and motion. Since
some modalities may generally not be aligned or available in
matching quantities, there are challenges constructing FMs
that can analyze such data. Integrating multiple modalities,
however, is inherently challenging. The dimensionality of the
data is increased if the primary video modality is expanded with
additional channels to incorporate gaze and depth maps.
Similarly, the video length would increase if the frames from the
different modalities were concatenated one aer the other. In
both cases, there is the risk of large input sizes that are unfea-
sible to t in memory. To address some of these challenges, we
propose to use visual encoding of additional modalities to
incorporate those signals into egocentric videos. This way, we
seamlessly integrate modalities and leverage a pre-trained FM
without designing ad hoc models that accept multiple data
modalities in their native formats. We study the efficacy of this
approach on an egocentric laboratory action dataset augmented
with gaze coordinates, depth and object masks.

2 Related work

Documentation of experimental actions is a central element of
scientic research, being an essential prerequisite for collabo-
ration and to obtain machine-actionable scientic data.17 Key
challenges are the fragmentation and need for interoperability
of tools such as Electronic Lab Notebooks18,19 used by
researchers to manually annotate experimental activities,
leading to wide variations in the quality and granularity of
documented experimentation. Here, we explore how egocentric
video and additional modalities can be leveraged for action
recognition in scientic experimentation, with the potential to
greatly facilitate data capture and documentation in laboratory
environments. Sasaki et al. recently reported a study of object
detection and action recognition during chemical experimen-
tation from xed-perspective viewpoints, relying on YOLOv8 as
a one-stage model for object detection and 3D ResNet for action
recognition.20 In the present work, we are primarily interested in
understanding the point-of-view (POV) of the experimentalist in
order to evaluate the feasibility of transcribing end-to-end
workows.

With the emergence of wearable recording devices, the eld
of action recognition in lifelogging and egocentric video
received substantial attention from researchers.6,21–23 Multiple
datasets have been released to support research and bench-
marking in action recognition,24–26 with Ego4D26 being one of
the largest. The ability to leverage such datasets for pre-training
394 | Digital Discovery, 2025, 4, 393–402
and to subsequently ne-tune models for the domain-specic
semantics of scientic experimentation remains to be
explored. Moreover, from a multimodal perspective, there have
been efforts to combine visual appearance (RGB representa-
tions) and skeleton, infrared, depth, Inertial Measurement Unit
(IMU) data, motion or other modalities.27–29 One of the modal-
ities researchers have explored for egocentric action recognition
is gaze. Gaze has been used to inform machine learning
methods about the Region Of Interest (ROI) so that relevant
features are extracted.30 Gaze estimation in a multitask learning
setting has been found to improve the egocentric AR perfor-
mance.31 However, rather counter-intuitively, using the gaze
directly in an ad hoc gaze/vision model appears to have little to
no effect.32

Most of the literature on multimodal video understanding
encompasses the use of language and audio as additional
modalities.33–37 These three are very different in representation
format, with the language being symbolic, vocabulary encoded,
and the audio-visual signal nding a continuous encoding
along one and two dimensions, respectively. To deal with the
different representation formats, most of the existing works
focused on mid- and late fusion, where each modality is treated
independently by unimodal systems and then combined in the
middle of the model for mid-fusion and just before prediction
for late fusion. Simple average,33 weighted averages,34 bilinear
products35 and rank-minimization36 have been proposed as late-
fusion combination strategies. Recent approaches have
explored the use of large language models (LLMs) to obtain
a vocabulary-based encoding of all modalities, for instance, by
generating audio transcriptions and video captions and
combining all text inputs as a single input to the LLM.38 Finally,
purely multimodal architectures have been proposed to deal
with the raw signals in the original encoding formats. Among
these, the video–audio–text transformer in ref. 37 leverages
contrastive losses to obtain a purely multimodal representation
through modality-specic patches and positional embeddings.
Similarly, unied frameworks such as VideoCLIP39 were
proposed to fuse video and text captions in a unique latent
representation.

As an alternative to the aforementioned approaches, this
work analyzes the impact of early fusion of different visual
modalities at the input level. Instead of working with audio and
language signals, we focus on inputs that share the same
representation in the 2D visual space and along a temporal axis.
For instance, we propose a simple yet effective strategy to
encode multimodal visual signals in a single visual input that
does not overload the input size.
3 Experimental
3.1 Recording devices

We recorded egocentric POV videos in laboratory environments
using head-mounted recording devices (Pupil Labs, Germany‡)
to capture RGB video and gaze coordinates. A sampling rate of
© 2025 The Author(s). Published by the Royal Society of Chemistry
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4 Hz was chosen for both modalities in order to track the hand
motions and scene manipulations in the encountered experi-
ments with sufficient temporal granularity while supporting
real-time data streaming and processing. The recording devices
were provided with a wired connection to a smartphone to
record and stream POV scenes via a dedicated mobile app.
Users were asked to wear the recording devices integrated in
their protective eyewear while performing predetermined
activities in the laboratory environment (cf. Subsection 3.3). The
video streams were discretized into 4 s clips which represents
the temporal granularity of annotations for training and action
recognition during inference. Video recording was triggered
and ended through user commands.
3.2 Activity recognition models

We studied four video-based model architectures (Fig. 1) with
respect to their use in action recognition in scientic
experimentation:

3.2.1 Vi-Cl. The VideoMAE40 backbone is used as vision
encoder and coupled to a linear layer with 768 hidden units for
multi-label classication (Fig. 1A).

3.2.2 Vi-LM. Using the same vision encoder as Vi-Cl, but
coupled with a pre-trained T5-Small language model41 as
decoder to generate labels instead of a classication head
(Fig. 1B).

3.2.3 X-CLIP. A minimal extension of image–text CLIP42 to
video classication using the eXpand technique.15 We used a 32-
patch pre-trained X-CLIP version trained on Kinetics-400,43 in
Fig. 1 Models evaluated for activity recognition in egocentric videos of sc
label classification head, (B) Vi-LM: a ViT encoder coupled with a T5 lang
classifier or coupled to a Random Forest or XGBoost classification hea
prompting and optionally coupled to a Random Forest or XGBoost clas
dicted by one of the models (A)–(D) is processed to compile a workflo
identifies the No action activity label.

© 2025 The Author(s). Published by the Royal Society of Chemistry
which the vision encoder has 123M parameters and the whole
model including the text encoder has 197M. X-CLIP is used in
two ways for zero-shot classication and for video encoding.
With the video encodings, a Random Forest (X-CLIP + RF) and
an XGBoost (X-CLIP + XGB)44 decision tree are trained as clas-
sication heads for activity recognition (Fig. 1C).

3.2.4 Video-LLaVA. An extension of the image–text LLaVA
model which can process either images or videos to provide
a unied representation of the visual and textual modalities.16

The video–text pairs used by ref. 16 for model pre-training are
derived from a subset of Valley.45 We leveraged the pre-trained
model version from LanguageBind/Video-LLaVA-7B.16,46 As for X-
CLIP, we use Video-LLaVA for zero-shot predictions or
coupled to Random Forest or XGBoost classication heads for
action recognition, as described in Subsection 3.4.
3.3 Datasets

We derived a subset of videos from the Ego4D dataset26

according to keywords that relate to activities that may be
encountered in laboratory environments (Section 1 in ESI†).
Subsequently, we extracted 4 s segments from this subset of
videos for which the accompanying annotated text contained at
least one of these specic keywords. If a segment's duration fell
short of 4 s, we extended the window by incorporating an
additional two seconds both before and aer the identied
segment. The resulting set of 4 s egocentric video clips was split
into 330K clips for training, 3324 clips for validation, and 3325
clips for testing.
ientific experimentation. (A) Vi-Cl: a ViT encoder coupled with a multi-
uage modeling head, (C) X-CLIP: used either as standalone multi-class
d, (D) Video-LLaVA: used to generate activity descriptions upon text
sification head after sentence encoding. (E) The action sequence pre-
w of actions. (A)–(C) denote three different activity classes while N/A

Digital Discovery, 2025, 4, 393–402 | 395
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To evaluate the activity recognition models, we created two
distinct datasets comprising POV videos recorded by 60
different users performing typical laboratory workows. The
individual action labels and descriptions of the activities for the
two datasets are reported in Table 1 while example frames for
each activity are shown in Section 2 of the ESI.† The Lab Actions
dataset provides an example of diversied activities that are
common in chemistry experimentation and can be combined or
repeated to build workows of various complexity levels. The
activity labels are a subset of the chemical actions described
previously in ref. 47. Instead, the Lab Motion dataset comprises
a smaller set of activities encountered in exploratory semi-
conductor chip processing and experimental workows with
alternating development and rinsing steps. The peculiarity of this
dataset resides in the more granular discrimination of the three
development activities which only differ in terms of the hand
motion pattern.

The Lab Actions dataset consists of a total of 6877 video clips
of 4 s each for a total recording time of z8 h. The number of
workows is 193, each consisting of an end-to-end sequence of
actions of total average duration 143 s. The average time per
action ranged between 11 s and 25 s depending on the action.
The Lab Actions dataset was split into 5911/301/655 video clips
for training/validation/testing. The Lab Motion dataset includes
6478 video clips of 4 s (z7 h total time) corresponding to 139
workows lasting on average 186 s each. Individual actions
lasted between 53 s and 69 s on average. The clips were split into
sets of 5799/336/343 for training/validation/testing. Each video
clip was manually annotated with the corresponding activity
labels in Table 1, whereby a No action label was assigned to clips
in which none of the activity labels could be assigned.

3.4 Training and prompting

The Vi-Cl and Vi-LM models rely on a vision encoder based on
the ViT48 backbone and joint space-time attention trained with
tube masking, following the same approach as the VideoMAE40

model. We focus on the respective base variant of the model,
which has 12 layers and 87M parameters in total. We pre-
trained the vision encoder from scratch on the lab-oriented
selection of egocentric videos from Ego4D (cf. Subsection 3.3)
for 10 full epochs (∼10K steps) using a masking probability of
0.90, batch size of 32, AdamW optimizer,49 and weight decay of
Table 1 Action classes used in this work to describe procedures in ego

Dataset name Activity label

Lab Actions Add
AnalyticalMeasurement
CollectLayer
MeasureSolid
MeasureLiquid
PhaseSeparation
Stir

Lab Motion Development (circular)
Development (gure eight)
Development (puddle)
Rinsing

396 | Digital Discovery, 2025, 4, 393–402
0.01. The initial learning rate was 1 × 10−3, which decayed
constantly for the rst 3 epochs by a factor of 0.5 per epoch and
then for the rest of the epochs by a factor of 0.01. In the case of
Vi-Cl, the pre-trained vision encoder was coupled to a linear
classier that was trained to associate the video embeddings
with the activity labels in Table 1. For Vi-LM, the encoder and
decoder components were ne-tuned together using clips from
the Lab Actions or Lab Motion datasets (Table 1) as inputs to
generate a caption describing the action performed by the
researcher, where the ground truth is dened by manual
annotations (cf. Subsection 3.3). We trained for 60 epochs using
an initial learning rate of 3× 10−4, and then a constant learning
rate decay by a factor of 0.04 per epoch, batch size of 64, AdamW
optimizer and weight decay of 0.01.

The version of X-CLIP15we use for action recognition is based
on computing a contrastive similarity score between a video and
a list of labels, and is not adequate for open-ended prompting in
the zero-shot task. Instead, a video and a list of labels (Table 1)
is provided as input for inference. The second approach for
benchmarking uses the frozen video encoder of X-CLIP to train
a classier, RF or XGBoost, with pairs of video encodings and
labels. Before encoding, videos are subdivided into clips of 4 s
where each clip demonstrates an action and the classier
predictions are on a per-clip basis. We tuned the hyper-
parameters of the classiers using the validation split (Section 4
in the ESI†).

For action recognition with Video-LLaVA, two approaches
were followed. In the rst, we provided a text prompt to the pre-
trained model for zero-shot predictions with the question
“Which action is being performed among Add, Analytical
Measurement, Collect Layer, Measure Solid, Measure Liquid, Phase
Separation, Stir and none of them?”. We embedded the text
outputs with the BAAI/bge-base-en-v1.5 (ref. 50) model using the
SentenceTransformer framework51 and obtained a prediction of
each video based on the greatest cosine similarities between the
prediction embedding and all the activity label embeddings. In
the second approach, we prompt the model with the question
“What action is being performed?” to generate an open-ended text
description of each 4 s video clip. We then embed each
description by leveraging the same SentenceTransformer
module. As in the case of the X-CLIP pipeline, we trained either
a Random Forest or an XGBoost model on the embeddings
centric videos of scientific experimentation

Description

Addition of liquid solutions to vials
Measurement with analytical instruments such as pH meters
Collection of organic or inorganic phases
Weighing of solid powders
Measurement of liquid volume in graduated cylinders
Separation of materials in different phases
Stirring of liquid solution
Develop chip with circular motion
Develop chip with gure-eight motion
Develop chip with puddling motion
Rinse chip with water jet

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Example of the different multimodal visual encodings. From left
to right, top to bottom (G indicates that the gaze was added to the
frame): pure visual signal (V, VG), object mask signal (M, MG), depth
signal (D, DG), mask and depth signal (MD, MDG), visual and depth
signal (VD, VDG), and visual, depth and object signal (VDM, VDMG).
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obtained from SentenceTransformer (Fig. 1D). We tuned the
hyperparameters of the model heads using the same validation
splits as for the other approaches (Section 4 in the ESI†).

3.5 Performance analysis

To evaluate the action recognition performance at level of
individual 4 s video clips, we compute the weighted F1 score for
all modeling approaches for both laboratory video datasets in
Table 1. As Vi-LM can generate labels outside the list of possible
activities used to train the model, the predictions not included
in the list of activities were converted to No action before
computing the F1 score.

To measure the workow recognition performance at the
level of action sequences, we aggregate predictions over all the
videos related to the same experiment (Fig. 1E). The aggregated
activity label sequence is then processed to lter out No action
labels and to merge consecutive activity labels. For the Lab
Motion dataset, we apply an additional lter that removes
spurious predictions that are isolated in time, given the longer
characteristic times of the activities in that dataset. We compute
a similarity measure between workows based on the normal-
ized Levenshtein distance,52 where we represent each workow
by a sequence of characters mapped to the steps in the work-
ow. For Lab Actions, a workow step corresponds to one of the
activity labels in Table 1, while for LabMotion there are only two
workow steps (development and rinsing). Then, we measured
the similarity between the sequences derived from the model
predictions and the ground truth. In particular, we report the
Levenshtein ratio, which takes values in the range between
0 (absence of workow similarity) and 1 (perfect workow
prediction) and is calculated as 1− d, where d is the normalized
Levenshtein distance. We report the average Levenshtein ratio
on the test split of each dataset.

To evaluate the tness of the system for real-time action
recognition in lab settings, we measured the inference execu-
tion time for all the considered models. The timing environ-
ment contains a single NVIDIA Tesla V100-SXM2 GPU, 4 Intel
Xeon Scalable Processors and a total maximum memory of 20
GB is allowed per model. Inference times are reported starting
from the availability of video encodings until label prediction,
with the models tested under identical conditions. For actual
production deployment, we expect that greater resource allo-
cation would further lower the inference time.

3.6 Multimodal visual encoding

To investigate how laboratory activity recognition may benet
from additional input modalities, we extend our analysis of the
Lab Actions dataset (cf. Subsection 3.3) using the Vi-Cl and Vi-
LM models by incorporating additional gaze information rep-
resented by (x, y) coordinates for each RGB video frame. We
introduce additional modalities by processing the RGB videos
with two off-the-shelf models: a depth modality that we
computed using DINOv2 (ref. 53) on each frame, and
a segmentation modality, labelling all the objects per frame,
that we obtained by leveraging the segmentation capabilities of
SAM.54
© 2025 The Author(s). Published by the Royal Society of Chemistry
To make the various signals compatible with the vision
models, we performed visual encoding as follows: the visual
appearance signal (V) was kept as recorded by the device in the
RGB color space, the depth signal (D) was represented in RGB
gray levels, the object masks signal (M) was represented as
a colored label map also in RGB. When combining V or M with
D, the depth was used as a scalar factor on all RGB channels,
and when combining V, M and D, these were mapped to HSV
channels (M was mapped to Hue, Depth to Saturation, and the
brightness of V was mapped to value). The gaze signal (G) was
incorporated as constant color lled circle on each frame for
any of the modality combinations. Fig. 2 contains examples of
the appearance of the modalities for a video frame extracted
during an Add activity taking place in a chemistry laboratory.

Different combinations of modalities were studied for
training and testing, respectively, as reported in Section 4.
4 Results & discussion
4.1 Activity and workow recognition

We report the F1 score for activity recognition and the Lev-
enshtein ratio to assess workow recognition in Table 2. While
Vi-LM outperformed Vi-Cl for the Lab Actions dataset, the F1
score for Vi-Cl was substantially higher (+0.15) than for Vi-LM
for the Lab Motion dataset. Thus, the model comprising
a language component performed worse in differentiating the
three development activities (cf. confusion matrices in Section 3
of the ESI†), while it could adequately resolve the two different
workow steps (development and rinsing) in sequence as evi-
denced by the high Levenshtein ratio. Indeed, the three devel-
opment activities correspond to different motions of the same
action type. For such types of activities, Vi-Cl resulted in the best
F1 score (0.56) out of all model congurations, demonstrating
better ability to resolve temporally correlated actions. This
result emphasizes the impact of the video modality on the
recognition of similar activities that are mainly distinguished by
motion patterns rather than distinct scenes and objects, and
underscores the benet of domain-specic data for model ne-
Digital Discovery, 2025, 4, 393–402 | 397
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Table 2 Activity recognition performances at the video clip level (F1
score) and workflow level (Levenshtein ratio). Uncertainty ranges
correspond to 95% confidence intervals. The baseline metrics for the
random predictor were obtained as the mean over 10 repeated
predictions against the test set, after weighting the random prediction
by the relative occurrence of each class in the respective training set

Model

Lab actions Lab motion

F1 score
Levenshtein
ratio F1 score

Levenshtein
ratio

Vi-Cl 0.49 0.59 � 0.08 0.56 0.78 � 0.08
Vi-LM 0.52 0.63 � 0.09 0.41 0.82 � 0.10
X-CLIP 0.12 0.30 � 0.09 0.19 0.66 � 0.10
X-CLIP + RF 0.46 0.67 � 0.10 0.52 0.81 � 0.07
X-CLIP + XGB 0.57 0.75 � 0.08 0.52 0.86 � 0.04
Video-LLaVA 0.03 0.48 � 0.06 0.14 0.70 � 0.07
Video-LLaVA + RF 0.44 0.64 � 0.08 0.30 0.78 � 0.08
Video-LLaVA + XGB 0.43 0.65 � 0.06 0.29 0.79 � 0.07
Random weighted 0.22 0.35 � 0.03 0.20 0.37 � 0.09

Table 3 Mean inference time per 4 s video clip for a batch of 100 test
clips. The mean and standard deviation are calculated over 10 runs

Execution time for inference

Model # Parameters Time/clip (s)

Vi-Cl 87M 0.46 � 0.01
Vi-LM 147M 1.44 � 0.01
X-CLIP + RF 123M 0.52 � 0.03
X-CLIP + XGB 123M 0.50 � 0.04
Video-LLaVA + RF 2B 2.05 � 0.07
Video-LLaVA + XGB 2B 2.46 � 0.08

Table 4 Activity recognition and workflow level performances on
multimodal Lab Actions datasets. Uncertainty ranges correspond to
95% confidence intervals

Data

F1 score Levenshtein ratio

Vi-Cl Vi-LM Vi-Cl Vi-LM

V 0.49 0.52 0.59 � 0.08 0.63 � 0.09
VG 0.47 0.61 0.67 � 0.08 0.73 � 0.09
VDG 0.47 0.58 0.65 � 0.10 0.65 � 0.10
VDMG 0.44 0.55 0.58 � 0.11 0.65 � 0.08
VDM 0.48 0.57 0.65 � 0.09 0.69 � 0.08
VD 0.51 0.54 0.66 � 0.08 0.69 � 0.09
D 0.39 0.43 0.62 � 0.11 0.66 � 0.06
DG 0.42 0.49 0.65 � 0.08 0.65 � 0.09
M 0.38 0.50 0.65 � 0.09 0.69 � 0.09
MG 0.38 0.46 0.58 � 0.11 0.65 � 0.08
MD 0.37 0.51 0.62 � 0.08 0.66 � 0.10
MDG 0.39 0.51 0.62 � 0.10 0.58 � 0.08
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tuning. The zero-shot action predictions of X-CLIP and Video-
LLaVA performed poorly for both datasets, since such models
were not ne-tuned on scenes recorded in laboratory settings
with the domain-specic classes. In fact, these models perform
worse in terms of F1 score compared to a random predictor
weighted by the relative occurrence of each class in the training
set (Table 2). When adding classication heads to the pre-
trained X-CLIP encoder or Video-LLaVA prediction embed-
dings, the performance metrics increase substantially. In
particular, for the Lab Actions dataset, X-CLIP + XGB provided
the highest performance scores, boosting the F1 score from 0.12
to 0.57 and Levenshtein ratio from 0.30 ± 0.09 to 0.75 ± 0.08
compared to the zero-shot prediction, thereby outperforming
Vi-Cl and Vi-LM models. Generally, the X-CLIP model tended to
predict more No action labels (Section 3 in ESI†) than the other
models, resulting in less spurious activity predictions within
a workow and better Levenshtein ratios. X-CLIP was found to
produce effective embeddings that can be used to train classi-
cation heads and adapt the model to laboratory applications.
We attribute the enhanced performances of the X-CLIP vision
encoder also to its training on the Kinetics-400 dataset,43 which
comprises 400 human action classes, including human-object
interactions. Instead, while Video-LLaVA coupled with
Random Forest or XGBoost classiers produced performances
that approached the scores of the other models in the Lab
Actions dataset, its F1 score for the Lab Motion dataset was
signicantly worse than the other approaches. This nding
highlights the challenges in obtaining effective textual activity
descriptions for very similar actions in the absence of domain-
specic ne-tuning. Example video captioning using Video-
LLaVA for both Lab Motion and Lab Actions is reported in
Section 5 of the ESI.†

Regarding the feasibility of using the investigated models for
real-time laboratory activity recognition, we report the inference
execution times in Table 3. The fastest model was Vi-Cl followed
by the pre-trained X-CLIP embedding + classier congura-
tions. Models comprising a generative language component
398 | Digital Discovery, 2025, 4, 393–402
were the slowest, as expected. Vi-Cl was also the most light-
weight, with the least amount of parameters (87M), making
such model conguration an efficient choice for a real-time
applications.

4.2 Multimodal visual encoding for activity and workow
recognition

Table 4 shows the F1 scores for activity recognition obtained
with Vi-Cl and Vi-LM trained on multimodal visual encoding
datasets. Contrary to inference on the lone RGB video modality,
Vi-LM yields the best result when combining video and gaze
(VG) modalities. Applied to the multimodal datasets including
the original video modality (V), Vi-LM yields better F1 scores
than congurations comprising only D, G, M, and their aggre-
gations, also outperforming the lone V modality. Interestingly,
Vi-LM outperforms Vi-Cl in each modality combination and
yields the highest F1 scores on the multimodal datasets VG (F1
= 0.61), VDG (F1 = 0.58) and VDM (F1 = 0.57), which match or
exceed the activity recognition performance of the best-
performing model on the lone video modality (X-CLIP + XGB,
Table 2).

A more granular view of the test results with multimodal
visual encoding is shown in Fig. 3, where we report the F1 scores
for all activities in the Lab Actions dataset. The impact of
modality combination on the F1 score is different depending on
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 F1 score for activity recognition of singular video, evaluated on the Lab Actions dataset. The plots distinguish between different visual
encodings (x-axis) and between the different activities (colors). Left: results using Vi-Cl. Right: results using Vi-LM.
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the activity. We observed a tendency of the Vi-Cl model to
predict No action steps, resulting in higher performances for the
No action label. On the contrary, Vi-LM provides more similar
performances across different activities, with the Analy-
ticalMeasurement activity being the most recognized for all sets
that include V in the data modality combination. We tentatively
attributed this effect to the distinct color and location of the
analytical instrument (pH meter) used in videos representing
this action. Instead, the MeasureLiquid activity was the most
recognized for all the other modality combinations that do not
comprise the V modality. We suggest that this is due to the
distinguishing shape of the objects used during this activity
(e.g., the graduated cylinder and the bottle including water at
the foreground of the scenes). We tested the usefulness of the
data modalities in Fig. 4, where we compare the performance of
the Vi-LM model trained on each data modality combination in
terms of F1 score for inference on the test set of each modality
combination. Interestingly, Vi-LM trained on video with gaze
Fig. 4 F1 score of Vi-LM models for predicting activities on Lab
Actions dataset videos with different data modalities. The diagonal
shows the performance of the model trained and tested on the same
data modalities and corresponds to Table 4.

© 2025 The Author(s). Published by the Royal Society of Chemistry
(VG) also performed better for inference on the test set
comprising only the video modality, suggesting that gaze helps
better distinguish the activities in the model latent space, in
line with using gaze in multitask training.31

The evaluation of the similarity between workows compiled
from the predicted activity label sequences and the respective
ground truths for the multimodal visual encoding datasets is
reported in Table 4. Consistent with the F1 score results, the
highest delity workow transcription was achieved with Vi-LM
on the video with gaze (VG) modalities. Despite observing
variability in the results (uncertainty ranges of 95% condence
intervals), we found statistically signicant differences in
performances for the Vi-Cl model with VG modalities against
the Vi-Cl model with only the Vmodality (Mann–Whitney U test,
p = 0.027), as well as for the Vi-LM with VG modality against Vi-
LM with only the V modality (Mann–Whitney U test, p = 0.047).

Finally, we compare the accuracy of laboratory action
recognition with the performance of state-of-the-art action
classication on common video datasets. In general, the scale of
domain-specic data in the Lab Actions and Lab Motion data-
sets is inferior compared to general activity video datasets such
as Kinetics (>400 clips per class),43 Something–Something
(average of 620 clips per class)55 or ActivityNet (average of 137
videos per class).56 In the present study, the diversity of data was
limited to an average of 82 (Lab Motion) and 86 (Lab Actions)
distinct videos per class from which all training clips were
extracted. The base variant of the VideoMAE model, which
shares the same backbone for vision encoding as the Vi-Cl and
Vi-LM models reported here, achieves 81.5% top-1 accuracy on
Kinetics-400 and 87.4% top-1 accuracy when using the ViT-
Huge backbone.40 Thus, we expect that the best F1 score for
action classication of 0.61 reported in the present work for Vi-
LM on the VG multimodal dataset can be further improved by
increasing the quantity and diversity of training data as well as
increasing the number of model parameters. Both of these
approaches, however, come at the expense of increased energy
consumption during training, and, in the case of larger model
size, also incur a penalty in terms of latency during inference.
Contemplating the application of these systems to support data
capture by researchers during laboratory experimentation, we
propose that the trade-off between accuracy and efficiency
Digital Discovery, 2025, 4, 393–402 | 399
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should be evaluated as a whole given the desired levels of
automation within specic constraints of the target
environment.

5 Conclusions

We demonstrate how multimodal vision-language models can
be adapted for near real-time action recognition during scien-
tic experimentation in laboratory environments. Models based
on pre-trained vision encoders coupled with multi-class classi-
ers and trained on domain-specic examples tend to perform
best in terms of F1 score, tracking of scientic workows and
inference time on RGB videos. Moreover, our ndings empha-
size the usefulness of domain-specic training data to differ-
entiate similar actions and capture time-resolved details of
experimental procedures. Our work also proves that incorpo-
rating language models as decoders appears to offer benets in
terms of exploiting additional modalities in the input data.
Notably, the best performance for individual action recognition
as well as end-to-end workow transcription was obtained by
a vision-language model conguration combining video and
gaze coordinates as input modalities. We propose that ne-
tuning the aforementioned model congurations on relatively
small, domain-specic datasets can produce useful results for
action recognition in scientic experimentation to aid docu-
mentation, reproducibility and collaboration in laboratory
research.

Data availability

Egocentric videos from the Lab Actions and Lab Motion data-
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