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Challenges and opportunities for machine learning potentials in
transition path sampling: alanine dipeptide
and azobenzene studies

One of the focuses of our team is the development and
applications of machine learning interatomic potentials for
advancing the simulations of chemical properties. In this study,
we show that general-purpose ML potentials can capture
interconversion trajectories and potential energy surfaces in
systems like alanine dipeptide. However, for more complex
molecules such as azobenzene, where bond breaking and
electronic effects accompany isomerization, domain expertise
and adequate level of reference theory are essential to ensure
realistic modelling and get insights into the model accuracy.
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Introduction

Challenges and opportunities for machine learning
potentials in transition path sampling: alanine
dipeptide and azobenzene studiesy

Nikita Fedik, ©*2® Wej Li,¢ Nicholas Lubbers, © < Benjamin Nebgen, 2
Sergei Tretiak @ 2° and Ying Wai Li® ¢

The growing interest in machine learning (ML) tools within chemistry and material science stems from their
novelty and ability to predict properties almost as accurately as underlying electronic structure calculations
or experiments. Transition path sampling (TPS) offers a practical way to explore transition routes between
metastable minima such as conformers and isomers on the multidimensional potential energy surface.
However, TPS has historically suffered from the computational cost vs. accuracy trade-off between
affordable force-field simulations and expensive high-fidelity quantum mechanical calculations. ML
interatomic potentials combined with TPS offer a new approach for the exploration of transition
pathways at near-quantum mechanical accuracy, while keeping the computational cost comparable to
classical force fields. In this study, we employ the HIP-NN-TS and ANI-1x neural network-based ML
potentials, both trained on the ANI-1x dataset of 5 million HCNO structures. We first verify the
correctness of our approach by applying it to alanine dipeptide and compare the resulting energy
surface and transition paths to the literature. Our findings suggest that proposed approach holds
promise for conformational searches, as evidenced by the chemical accuracy (errors <1 kcal mol™) for
thermal molecular dynamics trajectories of alanine dipeptide. While we were able to successfully
reconstruct alanine dipeptide's potential energy landscape using both HIP-NN-TS and ANI-1x
frameworks, we observed that ML models with a lower accuracy may still locate additional important
conformations. We also find that manual active learning, augmenting the training data by structures
taken from TPS trajectories, improved the accuracy by ~30% with small amounts of additional data.
Finally, we evaluated a more intricate case, azobenzene, and observed that seemingly simple torsions
may bear a challenge for ML potentials and limit their applications in TPS. Inability of HIP-NN-TS to
correctly describe the energetics of major rotational pathway in azobenzene isomerization highlights
deficiencies of the reference method in describing the electronic degrees of freedom. Our study
underscores the importance of domain expertise in selecting physically meaningful pathways for
benchmarking ML potentials, especially considering the intricacies of electronic structure in chemical
dynamics and non-equilibrium processes.

nuclear coordinates showing not only the critical minimum
energy structures of a system but also the relevant passages

The potential energy surface (PES) is a central concept for
modeling chemical and physical processes at the atomistic
scale. PES describes the energy of a system with respect to
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connecting them, which are crucial in various chemical trans-
formations such as chemical reactions or conformational
changes. Despite the importance of PES' and its maturity with
research occurring for more than a century,” theoretical chem-
istry still does not have a single recommended tool or method
for computing and exploring multidimensional PESs accurately
and effortlessly.

Specifically, given the 3N-6 degrees of freedom with respect
to the number of atoms N, exhaustive exploration of PES comes
at a significant computational expense even by standard
quantum mechanical (QM) calculations at density functional
theory (DFT) level, limiting dynamic simulations typically to
only 10-10° of atoms and picosecond timescales. Alternatively,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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classical interatomic potentials provide many orders of
magnitude speedup compared to DFT calculations, achieving
linear scaling with a small prefactor. However, classical force-
fields (FF)* are usually parameterized using a combination of
top-down (e.g. matching experimental protein folding) and
bottom-up (e.g. injecting quantum mechanical values) in order
to address specific processes or systems of interest,” for
instance, protein simulations.*® Moreover, in many cases,
potentials are parameterized explicitly for given molecular
topologies or fragments such as protein residues. This causes
classical FFs to be derived to match our intuition, leading to
inherent human biases in their predictions. Affordable FFs
dominate the field of biomolecular simulations, and their
parametrization to handle small molecules is very limited
except for a few examples of FFs applicable to arbitrary mole-
cules such as general AMBER force field (GAFF)® and
SMIRNOFF-based potentials.*

Over the last decade, machine learning (ML) techniques have
been increasingly and successfully used for the construction of
interatomic potentials.*° For instance, neural networks, one
of the backbones of ML, became capable of automated extrac-
tion of structural features from the atomic configuration of
a many-body molecular system and establishing a relationship
between features and fundamental properties such as energies
and interatomic forces.?*>* A sufficiently large (~10°-10°) and
diverse dataset of atomic configurations with corresponding
energies and forces from QM calculations, either DFT or higher-
fidelity electronic structure methods, are used in ML potentials
training based on one or several target metrics.”*> Machine
learning interatomic potentials (MLIPs) have been shown to
achieve near QM accuracy in predicting energies and forces
across diverse atomic configurations, while scaling linearly with
the number of atoms with a larger prefactor compared to clas-
sical potentials. Examples of such techniques include the high-
dimensional neural network potential,**?**3° Gaussian approxi-
mation potential (GAP),*** spectral neighbor analysis potential
(SNAP),"** and moment tensor potentials (MTP),>*** and end-
to-end neural network architectures.***

ML potentials have undoubtedly proven their capability to
provide accurate insights into complex atomistic systems near
equilibrium. Roughly, ML performance on near-equilibrium
systems can be assessed by straightforward metrics such as
root-mean square error (RMSE) for selected test sets. However,
simulations of chemical dynamics and reactivity rely on accu-
rate treatment of non-equilibrium structures and phenomena.
ML architectures, training procedures, and dataset collection
techniques are evolving to account for non-equilibrium
processes.*** This shift also implies that simple averaging
accuracy metrics should not be used alone to gauge the accuracy
of the ML models for complex PESs. This concern has been
raised several times** recently, justifying the importance of
evaluating ML methods beyond the error in energies/forces
alone. Examples include the radial distribution function,*®
dissociation, and torsion energy curves.*® Volker et al.*® sug-
gested evaluating the “correctness” of MLIPs by the ability to
correctly identify the minima and maxima of the PES for the
system of interest.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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For a dynamic process, one would rather evaluate a RMSE
metric or similar on a trajectory (Fig. 1A, left and middle panels)
instead of on a random near-equilibrium test set. Still, it would
only provide incomplete knowledge of the accuracy since most of
the chemical transitions proceed through multiple channels
(Fig. 1A, right panel). Computing reference QM data for valida-
tion on multiple trajectories obtained by molecular dynamics
(MD) is rarely feasible. Besides, while MD simulations can reliably
sample the stable reactant and product states, rare events at long
time scales such as high-energy barriers of transition states are
not easily accessible with direct MD. To access such states at
a higher frequency in MD simulations, several enhanced
sampling techniques have been developed in the past. These
include umbrella sampling,®* uncertainty-driven dynamics,*
metadynamics,** steered MD,* and transition path sampling
(TPS).>-** TPS is an attractive method because it samples reactive
trajectories in which the rare barrier-crossing events are guaran-
teed to occur, and it does not require a prior knowledge of the
reaction coordinate which can be complex. TPS creates an
ensemble of dynamical trajectories between the reactant and
product states; its computational cost is primarily dictated by the
underlying energy/forces calculator of MD simulations.

By leveraging ML potentials, transition path sampling can
immediately benefit from the improved accuracy, broader
extensibility compared to classical FFs, and improved scaling
compared to QM energy evaluations. Additionally, TPS can help
detect performance discrepancies between ML potentials for
rare and important configurations involved in transition
processes, beyond those found using ordinary MD algorithms.

To date TPS has mostly been combined with classical force
fields,”* tight-binding methods,* or pure electronic structure
computations.”* Only a few studies have explored the use of
machine learning for enhanced sampling,””> MLIPs for MD of
flexible molecules,”®”” and TPS's performance in condensed
phase through the lenses of MLIPs.”*” While recent pioneering
studies””® clearly demonstrated MLIPs can reproduce ensembles
of TPS trajectories and relevant regions of PESs, significant
knowledge gaps persist. First, there is limited understanding of
whether different MLIPs trained on the same data would produce
comparable TPS pathways. Second, previous works generated
data specifically for targeted reactions. A key advantage of MLIPs
is their potential to generalize to new systems with minimal or no
modification, yet it remains unclear whether general-purpose
datasets such as ANI-1x are suitable for this task.

In this work we evaluate ML potentials beyond structural
equilibrium and simple error metrics. In particular, we examine
TPS dynamics associated with transitions between metastable
states, a general non-equilibrium problem. We do not aim at
establishing a completely new metric for evaluating the accu-
racy of ML predictions for dynamic systems, rather we highlight
what factors are important for validating a PES for rare events.
Specifically, we evaluate the accuracy and suitability of two ML
potentials, ANI-1x***® and HIP-NN-TS,**** among other tools in
MD and TPS simulations for two seemingly simple test cases,
alanine dipeptide (AD, Fig. 1B) and azobenzene (AZ, Fig. 1D).
We show that conscious choice of test systems, physics-guided
trajectories, and underlying QM level are essential to approach

Digital Discovery, 2025, 4, 1158-1175 | 1159
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(A) Scatter correlation plot (left) is a standard way to evaluate a MLIP emphasizing the accuracy of predictions for a test set. However, the

benchmark often spans a narrow set of test structures like a specific trajectory (middle). In reality, transition from state 1 to state 2 is a collection of
different paths (right) which renders single-trajectory benchmarks inadequate for assessing accuracy of the MLIP. Qualitatively, discovery of
known trajectories (solid and dashed lines) and relevant basins (1 and 2) by ML-TPS can serve as an indicator of good performance. (B) Alanine
dipeptide (AD) structure and relevant dihedral angles ¢ and ¢ used to differentiate between states. A, right panel abstractly exemplifies multitude
of possible transitions when phase space of both angles is considered. AD is a prototypical example of conformational interconversion. (C)
Azobenzene (AZ) structure with relevant dihedral angle w highlighted. Note that in contrast to conformer switching, isomerization requires

rearrangement of atoms or chemical bonds.

the problem at the right angle. Otherwise, traditional RMSE
metrics may give a misleading perception of the accuracy for
unphysical processes. In addition, we explore possible benefits
of active learning for improving MLIP performance for non-
equilibrium structures generated by TPS.

Molecules for test cases

For the benchmarking of MLIPs using TPS simulations we
focused on two torsional transformations, which come in two
distinct flavors: conformational interconversion and isomeri-
zation. We selected two well-studied cases: alanine dipeptide
(AD) (Fig. 1B) and azobenzene (AZ) (Fig. 1C). AD, “a hydrogen
atom of biomolecules”, is extensively studied both
theoretically”>*** and experimentally,**®” and is regarded as
a simple and insightful model for parametrizing protein back-
bone torsion potential.®® The various reported”*"*° PESs of
AD exhibit different energy minima and barrier heights,
depending on the effective potential model. Note that stable
and metastable states of AD are conformers as they are con-
nected through rotations along single bonds.

160 | Digital Discovery, 2025, 4, 158-1175

Projection of the PES onto the ¢ (C1-N1-Ca-C2) and v (N1-
Co~C2-N2) backbone dihedral angles suggests many possible
transition paths (see Fig. 1A, right panel for abstract example)
by which the molecule can interconvert among the basins of the
PES. We use TPS to explore the transition paths that connect the
two main metastable conformers, denoted as C5 and C7.q
(Fig. 3), using different ML potentials. This probes the capa-
bility of the ML potentials in regions corresponding to very rare
events undersampled by ordinary MD simulations.

AZ is a molecule composed of two phenyl rings linked by two
nitrogen atoms, presenting a geometrically simple configura-
tion. It is recognized as a molecular switch sensitive to external
stimuli,**** triggering cis-trans isomerization. While AZ initially
appears less intricate compared to AD due to fewer structural
degrees of freedom (it has only one relevant dihedral angle (w)),
this system was chosen because of its complex electronic
structure.”*>°*¢ Jsomerization, in general, is a more intricate
process requiring higher activation energy and rearrangement
of chemical bonds, in contrast to conformer interconversion
seen in AD. We deliberately choose AZ to challenge the MLIP-

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Hyperparameters and architecture details of MLIPs used in this work

HIP-NN-TS ANI-1x
#N trainable parameters 652 k 2613 k
Descriptor Learnable Fixed vector of symmetry functions see'®! for parameters
20 sensitivity functions
Architecture 24 linear layers 16 linear layers
2 interaction blocks 384 input features
4 atomic layers with 128 features
Max epochs 150 Unlimited
Loss function Energy + gradient Energy + gradient
Batch size 512 2560
Learning rate 0.5 x 107° 1x10°°
Optimizer ADAM ADAM

aided TPS in evaluating relevant trajectories that are highly
dependent on electronic degrees of freedom.

MLIP models and data

All calculations in this study were performed at wB97X/6-
31G(d)**® DFT level (see Computational methods in ESIY),
which is consistent with the ANI-1x** dataset. ANI-1x**?¢
contains 5 M energies and atomic gradients of equilibrium and
nonequilibrium structures (but not transition states). It was
constructed by active learning to cover diverse regions of
chemical space. Furthermore, we trained the hierarchically
interacting particle neural network with tensor sensitivity, HIP-
NN-TS,* which generalizes interaction layers to pass tensor
information between atomic sites. We emphasize that the “TS”
suffix is not related to the common abbreviation of transition
state, and this variant of HIP-NN is still a general atomistic
network not tuned for locating transition states. Details of the
HIP-NN architecture are summarized elsewhere®**® All HIP-NN-
TS potentials were trained using the same protocol summarized
in Table 1. HIP-NN and HIP-NN-TS along with training exam-
ples and documentation are publicly available on Github
https://github.com.” A second MLIP architecture we used is the
pre-trained ANI-1x in TorchANI,'* a PyTorch implementation of
the classical ANI-1x potential based on modified Behler-Parri-
nello symmetry functions (Table 1).

Even though in this work we compare results produced by
HIP-NN-TS and ANI-1x potentials, we cannot directly attribute
performance discrepancies to architecture differences due to
the low interpretability of neural networks. We point curious
readers to a comprehensive review*® comparing these architec-
tures and their descriptors.

For TPS simulations based on MLIPs, we employed Open-
PathSampling (OPS)'*>'** software package. Additionally, we
interfaced OPS with the atomic simulation environment (ASE)
package'® to leverage its MD engines.

Results and discussion
Regular MD trajectories

To better understand the advantage of MLIPs over other classical
force fields widely employed for MD and TPS, we first compared
their energies and atomic forces over Langevin MD trajectories

© 2025 The Author(s). Published by the Royal Society of Chemistry

under the NVT condition, where the number of atoms (N) and
volume (V) are kept fixed at temperature T = 300 K.

We performed four MD simulations, each initiated from one of
the four equilibrium configurations of alanine dipeptide
isomers—C5, C7,y, ag and oy, (Fig. 3A). The MD simulations were
driven by the HIP-NN-TS MLIP; each simulation ran for 400 ps
using a 2 fs time step to achieve a reasonable phase space coverage
(Fig. S17). To construct a test set of 10 k configurations, samples
were taken every 80 steps along these trajectories, and their
energies and forces were recalculated using various computa-
tional methods: Amber14,'*> Sage2.0.2,'% ANI-1x,> and wB97x/6-
31G(d)*”*® (DFT), as detailed in Fig. 2 and Table 2. Computational
details are provided in the ESI.{ For azobenzene (AZ), MD simu-
lations were initiated from two known isomers—cis- and trans-
AZ—and covered a longer timescale of 1000 ps for each trajectory.

Both MLIPs achieve remarkable accuracy in energy predic-
tions with RMSEs below 1 kcal mol™" compared to reference
DFT calculations, under the desired threshold of “chemical
accuracy””’ (Table 2 and Fig. 2A). HIP-NN-TS clearly outper-
forms ANI-1x, which was among the most accurate symmetry-
function based architectures of the previous generation. We
hypothesize that the superior accuracy of HIP-NN-TS is a benefit
of the recently incorporated Tensor Sensitivity,* which captures
higher order many-body information (see benchmarks in the
original article®). Both ML models significantly outperform
traditional FFs whose errors are at least 300% higher for energy
estimations and 900% higher for atomic forces (Table 2, Fig. 2B
and S2f). Previous benchmarks are in agreement with the
observed improvements.*” We noticed that FF models show
a much larger disagreement not only with DFT (Fig. 2B) but also
with each other (Table 1 and Fig. 2C right), even though they are
both parameterized from experimental data. This verifies that
the different fitting methods used in different FF models give
rise to significant discrepancies even on simple test cases.*®
These results seemingly suggest that HIP-NN-TS is the most
accurate model for our test cases. However, in the next section
we will discuss that better accuracy in MD sampling may not be
the ultimate indicator for TPS performance.

MLIP PES of alanine dipeptide

The AD system has multiple metastable states, with C7.q
recognized as the global minimum.®***'%® C5, az and C7, are

Digital Discovery, 2025, 4, 1158-1175 | 1161
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Fig. 2 Evaluation of relative conformer energy based on 10 k points taken from thermal MD trajectories for alanine dipeptide at 300 K. Density
correlation plots for energy predictions by various models (DFT, MLIPs and FFs) against each other. (A) MLIPs vs. reference DFT. (B) FFs vs. DFT. (C)
MLIPs and FFs against each other. HIP-NN-TS demonstrates better correlation for energy predictions than ANI-1x in line with the lower RMSE
(Table 1). However, this is not a guarantee of better recovery of relevant basins by TPS as discussed in the next section. FFs exhibit significant
spread with RMSEs closer to 3 kcal mol™? placing them below “chemical accuracy” for test systems. Noticeably, HIP-NN-TS vs. ANI-1x plot shows
much better correlation than Sage2 vs. Amberl4 FFs. It underpins that despite discrepancies in MLIPs architectures, neural network-based
approaches come to a better agreement with each other and reference theory than empirical FFs, which should be meticulously tuned for the

task at hand.

other important low-lying conformations®>#*1°%1% (Fig. 3A). The
backbone dihedral angles ¢ and y act as differentiating order
parameters for these conformers (Fig. 3A). Alanine dipeptide
PES (Fig. 3B and C) was sampled using a brute force approach

162 | Digital Discovery, 2025, 4, 158-1175

where structures with fixed incremental combination of ¢ and ¢
(—180° to 180°, step size of 5°) were relaxed using the FIRE
optimizer alongside the HIP-NN-TS and ANI-1x MLIPs as energy
calculators.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Prediction accuracy of total energies (kcal mol™?) and forces (kcal mol™* A=%) for 10 k snapshots selected from regular NVT MD at 300 K
for the AD and AZ test systems. Correlation plots for AD energy predictions are plotted in Fig. 2 and forces in Fig. S2. Compared to DFT references,
HIP-NN-TS provides best accuracy for both AD and AZ molecules. Section V on AZ elaborates that low error in ML-MD may not always guarantee

accuracy in applications

Alanine dipeptide (AD)

Azobenzene (AZ)

Energy Forces Energy Forces

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
HIP-NN-TS/DFT 0.601 0.721 0.802 1.143 0.773 0.966 1.336 2.034
ANI-1x/DFT 0.628 0.794 1.914 2.736 1.439 1.727 2.945 5.071
Amber14/DFT 2.858 3.666 7.925 11.574 3.544 4.419 11.833 22.211
Sage/DFT 3.024 3.862 13.461 18.464 2.665 3.386 13.725 19.538
ANI-1x/HIP-NN-TS 0.834 1.027 1.907 2.769 1.001 1.268 2.761 4.679
Sage/Amber14 1.811 2.288 10.674 15.274 2.476 3.072 11.648 16.745

Both models exhibit noteworthy agreement in predicting the
PES, particularly in delineating the locations of the four meta-
stable state basins (C5, C7.x, ar and C7.q, see Fig. 3A) and the
associated energy barriers. ANI-1x simulations reveal a division
of the C7,, state to yield another known state, oy, (Fig. 3A),
located at the higher side of the basin. Both the highest energy
barrier on the PES (the red regions) and the barrier separating
the ag and C7,, states obtained by ANI-1x appear to be higher by
around 1.5 kcal mol ™, when compared to HIP-NN-TS.
Comparatively, ANI-1x's PES (Fig. 3C) closely aligns with those
constructed by empirical FFs such as Charm22 in vacuum,'*®
OPLS/AGBNP with implicit solvation,** as well as Hartree-Fock
and MP2 simulations.** ANI-1x demonstrates an upward shift
(Fig. 3B) in the valley between C5 and C7.q states, while main-
taining close conformity with the basins and energy barrier
locations of C7,, and «;. Notably, the energy minima of the C7,,
and o, states exhibit greater stability in the ANI-1x model. The
HIP-NN-TS model's PES aligns well with the latest p— diagram
produced by the DeepPot-SE model,”” a deep learning potential
trained specifically for AD.

While both HIP-NN-TS and ANI-1x models yield comparable
PESs (Fig. 3B and C), it is crucial to highlight that ANI-1x
identifies an additional major basin, «;, whereas HIP-NN-TS
integrates it with the larger basin of the C7,, conformer. Note
that oy, is a well-known minima at MP2 (ref. 84) and coupled-
cluster levels."** It is also a true minimum at wb97x DFT level
(the reference functional used in ANI-1x dataset) in conjunction
with various Pople basis sets."* While the ANI-1x MLIP
discovered oy, as a distinct PES region, we did not confirm
whether it is a true local minimum.

Intriguingly, HIP-NN-TS demonstrates quantitative superi-
ority for regular MD trajectories (Fig. 2 and Table 2), prompting
a fundamental question regarding the preference between
a model describing more basins with less precision versus
a model providing more accurate descriptions overall but
differentiating less conformers. This is particularly interesting
given that the same dataset was used to train both models.
Although our analysis is based on a single case, we posit that
a less accurate MLIP, as determined by the RMSE benchmark,
may still be practical or even preferable for TPS conformational

© 2025 The Author(s). Published by the Royal Society of Chemistry

switching, subject to careful case-specific testing. Additionally,
we acknowledge the inconsistency in ML approaches, advo-
cating for the comparison of ensembles of trained MLIPs for
a more comprehensive understanding.

Transition path sampling of AD: going from C5 to C7.4
conformer

Multiple known minima®** for AD signify a multitude of possible
transitions between conformers. Previous simulations indicate
that the time scale for the transition from C7. to oy in solution is
approximately 0.25-1.0 nanosecond.®*® For reference, ag — C7.
interconversion is rarer and spans about a 10-nanosecond time-
frame,” while a transition between C7,, and C7., conformers
might require microsecond simulations.”> Consequently,
capturing these transitions sufficiently necessitates either very
long trajectories or some form of importance sampling. Given the
extensive duration of these transitions and the proof-of-concept
nature of this study, we focused on sampling transition paths
from the C5 to the C7.q states, whose interconversion typically
occurs within 3-5 picoseconds."*'**

To ensure adequate TPS sampling, we defined relatively large
regions for these two basins, as depicted by the red rectangles in
Fig. 3D and E. Given the consistent basin locations produced by
the HIP-NN-TS and ANI-1x models, we adopted the same
boundaries for the collective variables in the TPS simulations
for both models. The C5 stable state region was defined with
boundaries —180° = ¢ = —150° and 150° = y =< 180°, while the
C7.q stable state region was defined with boundaries —120° < ¢
= —60° and 30° =< y =< 80°.5*

TPS was initiated from the C5 state to the C7. state by relaxing
the initial trajectory at 500 K to 300 K using the ASE' engine with
HIP-NN-TS and ANI-1x potentials. By conducting this step at
a relatively high temperature, the trajectories were unhindered by
barriers associated with variables other than ¢ and y, allowing for
a quick generation of the trajectory at 500 K connecting the two
stable states. During subsequent random walks through the
trajectory space, momenta gradually adjusted to reach the
ensemble with kinetic energies corresponding to 300 K. The
resulting trajectory connecting the two regions was then consid-
ered as the initial trajectory for transition path sampling.
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Fig. 3 (A). Major conformations of AD discovered by MLIPs. Structures reproduced from comprehensive theoretical analysis.®* (B) and (C) PES's of AD
reconstructed by HIP-NN-TS and ANI-1x potentials, respectively. Note that HIP-NN-TS does not differentiate between C7,, and «_states while ANI-
1x treats them as separate basins in line with other works.®* Noticeably, HIP-NN-TS is more accurate for regular MD trajectories but does not discover
the oy basin on AD PES. It exemplifies that RMSE may not be indicative enough to prefer one potential over another. (D) and (E) Path density obtained
by ML-TPS for the C5 to C74 transition based on 10 k trajectories. Despite both HIP-NN-TS and ANI-1x being trained to the same data, they produce
strikingly different TPS ensembles. It emphasizes strong TPS dependency on the underlying MLIP. Black lines denote the initial MD trajectories at 300
K; green dots mark the top 100 most frequently sampled configurations. Red boxes draw boundaries of the C7,, and ag states.

In this work, a stochastic one-way shooting®>'>103115

approach was adopted as implemented

in

Open-

PathSampling,®>'*>'** wherein shooting points for generating
trial paths were randomly selected from the previously accepted

164 | Digital Discovery, 2025, 4, 1158-1175

path in a Monte Carlo move.>”** A new velocity was assigned
randomly for each atom at that point, along with randomly
perturbed momenta. The dynamics were integrated forward
and backward in time, and the new pathway was accepted if it
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ended up in C5 and C7.4 on both ends; otherwise, it was
rejected.

A total of 10 k pathways were collected as a transition path
ensemble, in which every trajectory was saved after 14 trial
moves. In total, 1438 uncorrelated paths were obtained, with
a reasonable acceptance rate for newly generated trajectories
(68%), similar to OPS benchmark example results'*>'** using
classical FFs. Path density plots for the flexible path length
ensemble in the (¢, ¥) plane depict the visitation frequency of
the phase space for both the HIP-NN-TS model (Fig. 3D) and the
ANI-1x model (Fig. 3E). The initial trajectory is represented by
black lines. Despite the similar PES descriptions (Fig. 3B and C)
with only minor differences, as discussed in previous sections,
the transition path ensembles reveal notable distinctions.

With the HIP-NN-TS model, two channels emerge (see
dashed lines in Fig. 3D) as favorable pathways for interconver-
sion trajectories. Conversely, the ANI-1x model reveals a single
channel, extending across a broad region between the C5 and
C7.q states, as depicted in Fig. 3E. The trajectories generated by
the HIP-NN-TS model depart similarly from the C5 state;
however, they rapidly turn to the left and enters C7.q at ¢ ~
—120° and y ~ —70° (see 1 in Fig. 3D). Complementary channel
appears to be along ~ —120° longitude and in range —30° <y <
—60° (see label 2 in Fig. 3D).

Most frequently visited configurations from TPS trajectories
produced by HIP-NN-TS (green dots in Fig. 3D), demonstrate
clustering in the vicinity of C7.4 state, even with the presence of
the two-branched channel. In contrast, most frequently visited
configurations by the ANI-1x model are dispersed along the
single channel (Fig. 3E). With the HIP-NN-TS model, the most
frequently visited configurations are found within the dihedral
angles ranges ¢ = (—105°, —130°) and y = (80°, 115°), with
a minor clustering around angles ¢ = (—115°, —120°) and y =
(90°, 120°), which are in proximity to the C7.q state.

For the ANI-1x model, the most visited states occur with
dihedral angle pairs ¢ = (—130°, —70°) and y = (115°, 145°). This
observation aligns with the PES plot discussed earlier, indicating
similar locations of the C5 and C7., states for both models.
However, these states are separated by a more uniform barrier for
the ANI-1x model. For the HIP-NN-TS model, however, the lower
energy barrier is more confined, prompting the molecular tran-
sition to follow the narrower path and veering toward the left side
of the C7. state, as illustrated in the density plot (Fig. 3D).

These observations lead to an interesting conclusion - two
MLIPs trained to the same data reveal very distinct TPS pathways.
Their PESs (Fig. 3B and C) differ only slightly, but the dynamic
simulations revealed sufficiently different channels (Fig. 3D and
E). This suggests that TPS might be very sensitive to the choice of
MLIPs even when the same training data is used. Furthermore, it
corroborates our previous assertion that similarity in accuracy in
static benchmarks based purely on RMSE is not indicative of the
similarity in TPS simulations or in the transition trajectories.

Probing active learning for TPS

Even though RMSE is not a robust metric for comparing two
MLIPs in the context of TPS, it can still be used to systematically
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quantify the quality of a single model. Generally, more accurate
MLIPs should reproduce the underlying QM PES with greater
accuracy; although qualitatively it does not always reflect the
discovery of relevant minima and conformers (see Section 2 and
a recent tutorial®’). Importantly, RMSE evaluated over equilib-
rium data is insufficient to estimate a model's performance for
non-equilibrium transition pertaining to TPS.

As most MLIPs are trained to equilibrium structures, here we
propose a simple probe to systematically improve the prediction
accuracy for non-equilibrium, TPS-relevant structures imitating
the active learning?**-''¢11® (AL) approach. We manually
augment the dataset with structures directly taken from the TPS
trajectories. The new HIP-NN-TS-AL model was then tested on
the trajectory frames which do not appear in the train set.
Though not a true AL automated loop, this simple pipeline
provides insight into whether collecting structures from tran-
sition trajectories will be beneficial for further ML-TPS
improvement. As a proof of principle, we carried out a single
iteration of AL by manually injecting 12 k structures randomly
sampled from the most visited regions (green clusters in
Fig. 3D) with a 10 800 : 1200 train : test split, and retraining HIP-
NN-TS on the combined dataset (original ANI-1x + 10 800 “TPS
structures”, Fig. 4A) to yield HIP-NN-TS-AL.

HIP-NN-TS-AL demonstrates ~35% accuracy improvement
when tested on the subset of 1200 TPS-derived structures
(Fig. 4A and B). To quantify statistical errors, we trained three
HIP-NN-TS-AL models with different random seeds for weight
initialization following the same protocol as for the original
HIP-NN-TS. Improvements of ~38% energy RMSE and ~24%
force MAE are observed in all three models (Fig. 4C). This is
a remarkable improvement given that only 10 800 new config-
urations (0.2% increase in total data) were inserted into the
original 5 M data points of ANI-1x. We conclude that AL (or even
simple manual data augmentation) holds great promise in
improving MLIP performance for non-equilibrium structures
occurring during TPS conformational search. It is possible that
further automated and systematic model refinement covering
previously unexplored non-equilibrium regions can make ML-
TPS a viable competitor to widely used electronic structure
calculations and FFs for TPS.

Azobenzene: a cautionary tale

In this subsection we emphasize a common wisdom from the
ML community: real-life ML model accuracy should be evalu-
ated in the specific application domain.*”*° In our particular
case, MLIPs for TPS exploration should correctly assess major
pathways and identify the lowest-energy one, which is a kineti-
cally dominant transition channel for the system disjoint from
the training set. Analysis of thermal MD simulations (Table 2)
demonstrates that HIP-NN-TS predictions for AZ should be
accurate within ~0.5 kcal mol ', suggesting that reliable
information about the system can be derived from MLIP
simulations. The AZ molecule is a geometrically simple
arrangement with two benzene rings bridged by two N atoms
(Fig. 1C). Both conjugated rings should exhibit aromaticity to
some extent, preventing their distortion during MD. Therefore,
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(A) Conceptually, active learning (AL) targets structures (violet dots) from undersampled regions. By augmenting training data with new

relevant structures and retraining the MLIP, we can improve inference accuracy. In particular, we explore AL for improving the prediction of
energy and forces of structures encountered during the C7.q—ag transition. (B) [Left] accuracy of HIP-NN-TS on the 1200 TPS test structures.
[Right] accuracy of HIP-NN-TS after one iteration of AL (HIP-NN-TS-AL) on the same test set. 0.2% data augmentation leads to ~30% accuracy
improvement, our method holds promises for AL-refinement of MLIPs for TPS. (C) Accuracy of HIP-NN-TS and HIP-NN-TS-AL for 1200 test
structures averaged across 3 different random number seeds to account for non-deterministic factors. AL-models show unanimous
improvement for energy and gradient inference compared to original HIP-NN-TS models trained to ANI-1x data only.
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Fig. 5 Isomerization of azobenzene. (A) Two pathways of thermal isomerization. Inversion involves the concerted bending of two bridging N
atoms without significant changes in w dihedral angle. The rotation mechanism is based on the second ring rotation relative to the first one with
gradual changes in w angle. Rotation requires breaking m-component of double N=N bond and leads to the configuration with unpaired
electrons on two N atoms. Red arrows indicate the dominant movement of N atoms in imaginary mode. (B) [Left] energy profile of the inversion
mechanism of trans—cis AZ isomerization based on closed-shell DFT (cs-DFT) calculations. The transition state () of inversion is 42.3 kcal mol™
higher than trans-AZ. HIP-NN-TS yields the best agreement compared to cs-DFT while ANI-1x provides a reasonable approximation. [Right] the
rotational mechanism is based on unrestricted broken-symmetry open-shell-DFT (os-DFT) calculations. At this DFT level, this path
(33.6 kcal mol™Y) is energetically preferred over inversion. The HIP-NN-TS predicts unrealistically low-barrier while ANI-1x falsely treats rotational
transition state as local minimum. cs-DFT calculations over the same trajectory produces an unrealistically elevated barrier. (C) Hierarchy of
theoretical levels for exploring AZ isomerization: cs-DFT (common for MLIP training) cannot describe a preferable rotational path through bond
breaking while os-DFT and CASSCF can capture rotation. AZ isomerization involves ground state crossing with excited states, described by non-
adiabatic molecular dynamics (NAMD). This highlights the importance of being aware of possible electronic structure changes in test cases.
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AZ is an excellent test case for TPS simulations having only one
easily-activated degree of freedom associated with the move-
ment around the N=N bridge. Ultimately, it leads to isomeri-
zation from cis- to trans-states or vice versa. However, the
complexity lies in the finer details.

The controllable isomerization of azobenzene (AZ) has
enabled a wide array of emerging applications,"*"*° from light-
responsive supramolecular self-assembly to synthetic vision
restoration. In-depth studies™* demonstrated that the interplay
between isomerization mechanisms depend on numerous
factors including solvent, steric hindrance of functional group,
heat and pressure among others. Previous studies have already
established multiple isomerization mechanisms among which
two are widely recognized - inversion and rotation**'**
(Fig. 5A). While the community initially believed that inversion
is the more energetically-favorable route of thermal isomeriza-
tion, further studies found that the rotational mechanism is
prefered.®>*** Capturing these two major pathways is the key to
describing AZ transformations.

We calculated the inversion isomerization pathway using
a closed-shell DFT (cs-DFT) approach (wB97X/6-31G(d) model
chemistry) starting with a hand-crafted and optimized transi-
tion state (see Computational methods in ESIt for details and
Fig. 5B, left). We computed energies for all 179 points on
a smooth isomerization curve and found that HIP-NN-TS was
the most accurate model in line with previous observations.
Even though the energy in the vicinity of TS dips unphysically
for both HIP-NN-TS and ANI-1x (possibly due to the absence of
transition states in training data, causing regression to the
mean), overall, HIP-NN-TS is fairly accurate (Fig. 5B and Table 3)
especially for the initial and final states. ANI-1x is slightly worse
in terms of accuracy. Even though Amber14 and Sage2 are not
suited for reactive pathways, we calculated the energies along
the same trajectories using both methods for completeness
(Table 3). Both FFs suggest unrealistically high barriers above
80 keal mol~* beyond any practicality. These results seemingly
to support the conclusion that HIP-NN-TS, or any other MLIP
trained on the ANI-1x database, could be a viable tool for
exploring isomerization in azobenzene or similar double-
bonded switches.

Table 3 Isomerization barriers and accuracy metrics in kcal mol™ for
inversion and rotation mechanisms in azobenzene. Assessment of the
inversion pathway (left) by HIP-NN-TS and ANI-1x suggests that both
MLIPs are reasonably accurate. However, assessment of the rotational
pathway using the same method reveals their deficiency in describing
double bond rotations. Sage2 and Amberl4 produce inaccurate
energetics for both pathways

Inversion, closed-shell Rotation, open-shell

Barrier MAE RMSE Barrier MAE RMSE
DFT 42.3 — — 33.6 — —
HIP-NN-TS 36.9 0.916 1.660 27.61 2.257 3.510
ANI-1x 40.1 1.898 3.42 28.09 3.942 6.021
Sage2 87.6 2.882 7.510 13.58 13.544 14.682
Amber14 182.6 8.896 24.351 20.68 13.544 14.204
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An alternative and important route of thermal isomerization
proceeds through a bond-breaking mechanism® because the
bridging nitrogen atoms are connected by a double bond that
blocks any low-barrier rotation, in contrast to the freely-rotating
single bonds in AD conformers. Roughly speaking, such rota-
tional isomerization proceeds through a biradical state when
uncoupled electrons occupy spatially different orbitals on
different N atoms. Such biradicals (often referred to as open-
shell singlets'>*'*”) are not properly described by cs-DFT
which inherently assumes double occupancy for each orbital.
Unless expensive, high-fidelity calculations with careful manual
selection of active orbitals are conducted, e.g. the complete
active space self-consistent field method (CASSCF)**'*® (Fig. 5C),
a more affordable approximation would be to manually break
the symmetry of orbitals in unrestricted open-shell DFT (os-
DFT) calculations.®** Despite the ad hoc nature of such
a treatment, this solution typically approximates states with
broken bonds quite reasonably.™3***

To get an insight into a lower-energy rotational pathway, we
recalculated the trajectory from a newly estimated TS optimized
with 0s-DFT. The os-DFT TS structure is very different from its
cs-DFT counterpart. It has an imaginary mode of rotation
leading to breaking the rt-component of N=N double bond, in
contrast to the inversion mechanism for cs-DFT. Rotation is
accompanied by substantial changes in dihedral angle w, in
agreement with previous studies.®*'**'*> Most importantly, the
0s-DFT pathway has a lower barrier by almost 9 kcal mol ™"
(Fig. 5B, right, Table 3), rendering it far more energetically
favorable. In other words, isomerization is much more likely to
proceed through an open-shell rotational trajectory under
thermal stimuli, at least at the given DFT level.”® Therefore, the
closed-shell inversion trajectory (Fig. 5B, left) for which MLIPs
yield great accuracy, is an incomplete picture giving a false
perception on the reliability of ML prediction that is based on
inaccurate reference QM methodology.

Once more, we recalculated the new open-shell rotational
pathway (Fig. 5B right) with HIP-NN-TS, which yielded a signif-
icantly poorer match, including an unphysical energy dip near
the TS and average errors exceeding 2 kcal mol™" (Table 3).
Though noticeably worse, this discrepancy might be acceptable
for some reactive applications, suggesting that MLIPs might
still be a fair choice. However, we should keep in mind that the
MLIP was trained solely on closed-shell data, which lacks
structures relevant to the rotational pathway. Hence, aside from
the quantitative discrepancy of energy predictions, it is very
unlikely for a MLIP to discover open-shell pathways that involve
fundamentally different transitions both geometrically and
electronically, if the training data lacks physically justifiable
and reliable QM reference results. To prove this, we recalculated
the os-DFT trajectory by single-point cs-DFT. The closed-shell
treatment misrepresents the barrier energetics, with the TS
reaching 58 kcal mol *, which is 24 kcal mol " above the os-
DFT transition state (Fig. 5B right, Table 3). Moreover, cs-DFT
reoptimization, starting from broken-symmetry open-shell
transition state geometry, failed to produce a saddle point with
a single imaginary frequency and, consequently, the most
favorable pathway.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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To reiterate, cs-DFT cannot discover the favorable rotation
mechanism. In the context of dynamic simulations using a MLIP
trained to cs-DFT data, the model would likely bias the simula-
tions away from common isomerization channels. This limitation
could render TPS exploration incomplete or simply incorrect
(Fig. 5C). While beyond the scope of the current study, we believe
it is essential for future work to include broken-symmetry and
open-shell pathways in the dataset and to probe TPS performance
using azobenzene as a model system (Fig. 5C).

An unresolved issue is that even an open-shell singlet is
a poor description for the AZ transition state, which is often
photo-activated and isomerizes by state crossings.’?-9%122124.128
Such usually captured by non-adiabatic
dynamics®>*** and are beyond the scope of this article
(Fig. 5C). Therefore, non-excited dynamics, even with an open-
shell treatment, is already a rough approximation of the more
realistic light-induced molecular switching process (Fig. 5C).
Unless data sets and models account for these challenges,
production-quality ML-TPS will remain unattainable for tran-
sition paths involving bond formation and cleavage.

effects are

Conclusions

In this article we explore the usability and pitfalls of machine
learning interatomic potentials for transition path sampling.
We find that MLIPs can be promising tools for TPS explorations
of PESs as both HIP-NN-TS and ANI-1x were able to reproduce
the AD PES with sufficient details. As expected, both models
outperform classical FFs in regular MD simulations for AD and
AZ. However, our results indicate that significant caution
should be exercised when simulating isomerization processes
that require proper descriptions and energetics of bond
breaking and formation.

With that in mind, we summarize the key insights gained
from using MLIPs in TPS simulations:

1. Lower errors do not guarantee correct discovery of basins
in PESs

Although HIP-NN-TS demonstrated superior accuracy in
predicting energy and forces compared to ANI-1x for alanine
dipeptide, the seemingly less accurate ANI-1x revealed an
additional oy, basin adjacent to the C7,« basin during PES
exploration, which is consistent with the literature. This coun-
terintuitive finding underscores the limitation of relying on the
root mean square error (RMSE) calculated for random samples
as the sole indicator of the correctness of dynamic explorations
like TPS.

2. Different MLIP architectures trained on the same data may
produce different trajectories in TPS

Despite training on the same data, HIP-NN-TS and ANI-1x
revealed different transition channels from the C5 to the C7.q
basin. It is particularly interesting given the relatively close
agreement between the two PESs, especially near the C5 and
C7q basins. Therefore, we conclude that MLIPs with similar
RMSE-based accuracy can produce sufficiently different TPS
trajectories.

3. TPS as a means of active learning can substantially
improve MLIP accuracy

© 2025 The Author(s). Published by the Royal Society of Chemistry
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By employing a manual data augmentation procedure, we
emulated a single iteration of an active learning loop. The original
ANI-1x (5 M structures) dataset was augmented by 10 800 struc-
tures selected from TPS trajectories. With a minute data
augmentation of ~0.2%, a substantial improvement of ~30% in
energy and gradient predictions was achieved for configurations
on transition paths, underscoring the tangible benefits of TPS as
a means of active learning and data generation. This opens an
exciting avenue for training new class of MLIPs, such as the very
broad, non-system specific foundational ML models."*****

4. Choice of test cases and domain of applicability of MLIPs
should account for electronic structure features

As illustrated by the azobenzene example, we emphasize that
seemingly simple transformations, like torsion and isomeriza-
tion, may require more sophisticated theoretical approaches
than conventional low-cost closed-shell DFT. Failure to
adequately describe possible bond breaking and formation
effects in electronic structure methods could lead to the
generation of incorrect or artificially high-energy trajectories,
which are easy to overlook without prior knowledge. Therefore,
we caution against relying on incomplete or unphysical trans-
formations for MLIP evaluation. For instance, MLIP perfor-
mance is often evaluated on torsional profiles,*** which is only
valid for conformer-like interconversion around single bonds
unless MLIP was trained on reactive data. Therefore, a priori
intuition of bond type is required. Altogether, it underscores the
importance of carefully inspecting all test cases for ML-TPS and
the associated training data, for the treatment of electronic
degrees of freedom. When considering AD and AZ molecules
through the lens of MLIPs and TPS, general databases such as
ANI-1x might be adequately representative to describe confor-
mational interconversion, but will be deficient for isomeriza-
tion involving chemical bonding rearrangement. The need for
a community effort in generating high-accuracy reference data
for bonding breaking processes at CASSCF™® or truncated
configuration interaction (CI)**” levels is apparent. So far, such
efforts have been limited to small molecules only."**'%”
Reactivity-focused datasets such as Transition-1x** and RGD1,***
along with architectures like EquiReact,** have the potential to
shape the future of ML-TPS, particularly when accurate
descriptions of bond-changing events are required.

Besides datasets, our findings highlight the need for robust
metrics to quantify how well MLIPs recover PES minima and
saddle points. Sophisticated training and testing of MLIPs for
TPS’®7 and dynamics simulations will continue to depend on
human expertise in computational chemistry, underscoring the
importance of physics-informed ML frameworks.®>**

Data availability

MLIPs, datasets, ASE, and OpenPathSampling packages used in
this study are publicly available and free of charge. The ESI,
including comprehensive compilations of links to all utilized
tools, pretrained HIP-NN-TS models, an additional 12 k alanine
dipeptide configurations from section IV, and azobenzene
isomerization pathways, are available at https://github.com/
nikitafedik/ml_tps_si.
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