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Chemical reaction prediction, encompassing forward synthesis and retrosynthesis, stands as a fundamental

challenge in organic synthesis. A widely adopted computational approach frames synthesis prediction as

a sequence-to-sequence translation task, using the commonly used SMILES representation for

molecules. The current evaluation of machine learning methods for retrosynthesis assumes perfect

training data, overlooking imperfections in reaction equations in popular datasets, such as missing

reactants, products, other physical and practical constraints such as temperature and cost, primarily due

to a focus on the target molecule. This limitation leads to an incomplete representation of viable

synthetic routes, especially when multiple sets of reactants can yield a given desired product. In

response to these shortcomings, this study examines the prevailing evaluation methods and introduces

comprehensive metrics designed to address imperfections in the dataset. Our novel metrics not only

assess absolute accuracy by comparing predicted outputs with ground truth but also introduce

a nuanced evaluation approach. We provide scores for partial correctness and compute adjusted

accuracy through graph matching, acknowledging the inherent complexities of retrosynthetic pathways.

Additionally, we explore the impact of small molecular augmentations while preserving chemical

properties and employ similarity matching to enhance the assessment of prediction quality. We

introduce SynFormer, a sequence-to-sequence model tailored for SMILES representation. It incorporates

architectural enhancements to the original transformer, effectively tackling the challenges of chemical

reaction prediction. SynFormer achieves a Top-1 accuracy of 53.2% on the USPTO-50k dataset,

matching the performance of widely accepted models like Chemformer, but with greater efficiency by

eliminating the need for pre-training.
1 Introduction

Retrosynthetic analysis,1 a fundamental problem in organic
synthesis, involves predicting the possible reaction precursors
given a desired product. Synthesis involves predicting the
reaction outcome based on a given precursor, primarily
focusing on small to medium sized molecules. In contrast,
retrosynthesis can be conceptualized as the inverse of
synthesis,2 posing a notably more challenging task. In retro-
synthesis, the information provided is generally limited to the
molecule of interest, which can be synthesized through
multiple feasible pathways or replaced by synthetic equivalents.
Conventional retrosynthesis involves the meticulous decon-
struction of target molecules into simpler precursors, relying on
chemists' expertise in organic chemistry principles and
nd Bioinformatics, International Institute

032, India. E-mail: deva@iiit.ac.in

the Royal Society of Chemistry
synthetic methodologies. However, this manual process
demands extensive knowledge and experience. Computational
retrosynthesis addresses these limitations by leveraging exten-
sive reaction databases and algorithms to propose diverse
synthetic routes efficiently.

The problem of retrosynthesis predictions was initially
addressed by reaction-template-based methods such as LHASA3

and SYNTHIA.4 While effective for a limited set of reactions,
these methods heavily rely on atom mapping, impacting model
performance. Moreover, maintaining template databases posed
challenges, leading to their limited adoption. Recent efforts
have shied towards neural network approaches, including
template classication5–8 and template re-ranking based on
molecular similarity.9 Despite their usefulness, template-based
methods suffer from a trade off between generality and speci-
city, and they struggle to generalize to unseen templates.

To overcome these limitations, template-free approaches
have gained prominence and are primarily categorized into
graph edit-based and translation-based methods. Graph edit-
Digital Discovery, 2025, 4, 831–845 | 831
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based methods10–14 model reaction prediction and retrosyn-
thesis as graph transformations, with some incorporating
template information in semi-template-based methods.15–18 On
the other hand, early neural machine translation methods were
based on sequence-to-sequence models such as Recurrent
Neural Networks (RNNs),19–21 followed by transformer
approaches22–27 which are widely adopted due to their simpler
end-to-end training and well-optimized neural architectures
from Natural Language Processing (NLP).

Neural machine translation methods rely on SMILES28

representations of molecules for retrosynthesis; however,
SMILES lack a bijective mapping to molecular structures,
posing a challenge in mapping unique SMILES representations
to the same point in the latent space. To overcome this, exper-
imental evidence suggests that data augmentation with chem-
ically equivalent SMILES29 enhances empirical performance, as
demonstrated by a study30 showing an 8.1% improvement in
uniquely generated molecules through SMILES randomization.
Additionally, pre-training models on large datasets with data
augmentation is a common practice to improve generalizability
and convergence on downstream tasks,31 leading to a notable
increase in Top-1 accuracy from 50.7% to 53.3% in single-step
retrosynthetic predictions, as evidenced by Chemformer.22

However, pre-training masked language models may reach
a point of diminishing returns as the size of the supervised
dataset increases signicantly,32 prompting questions about the
necessity of pre-training. Nevertheless, there has been limited
exploration of adapting or modifying this architecture speci-
cally for efficiently improving retrosynthetic analysis.

Current methods for retrosynthetic analysis rely on the
USPTO-50k33 dataset, the gold standard for benchmarking
model performance. Each reaction within this dataset
comprises a single molecule of interest and can contain
multiple reactant molecules. The USPTO-50k dataset lacks
crucial information necessary for accurately determining
product outcomes, such as solvents, catalysts, reagents, and
reaction conditions. Additionally, the dataset typically presents
only one set of possible reactants for each product of interest,
overlooking the possibility of multiple chemically viable reac-
tant molecules capable of producing the same product, thus
neglecting alternate pathways.

In this study, we analyze misclassied reactions across
various methods, revealing that some predictions are less
incorrect than others as assessed by an organic chemistry
expert. We identify distinct categories of incorrect predictions
related to the set of reactant molecules: (i) complete misiden-
tication, (ii) incorrect stereochemistry,8 (iii) partial incorrect-
ness, and (iv) inaccurate substructure recognition,27 particularly
concerning leaving groups. To address this challenge, we
propose the Retro-Synth Score (R-SS), a metric focused on
recognizing “better mistakes” and ranking methods based on
the degree of correctness of their predictions.

Despite the slight enhancement in performance afforded by
pre-training, the process is computationally expensive and
demands extensive hyper-parameter tuning, as well as the
identication of optimal pre-training strategies, which are
typically determined empirically. In response to these
832 | Digital Discovery, 2025, 4, 831–845
challenges, we introduce SynFormer, a transformer-based
model that matches previous state-of-the-art models under
a more comprehensive evaluation methodology, all while
achieving a ve-fold reduction in training time compared to
Chemformer,22 accomplished by eliminating the need for pre-
training.

Our main contributions can be summarised as follows:
(1) We propose the Retro-Synth Score (R-SS), a more nuanced

and realistic evaluation method that measures the accuracy of
models and evaluates the quality of errors.

(2) We propose SynFormer, a sequence-to-sequence model
for SMILES with architectural modications to the original
transformer, enabling better generalization and improved
performance on single-step retrosynthetic predictions without
pre-training.
2 Methods
2.1 Dataset

We evaluate single-step retrosynthesis performance using the
Retro-Synth Score (R-SS) on the USPTO-50k dataset, a compila-
tion of 50 037 reactions sourced from US patents spanning 1976
to 2016 and originally curated by Lowe.34 While this dataset is
fundamental for retrosynthetic analysis, it lacks crucial infor-
mation such as physical conditions (e.g., temperature) and
chemical inputs (e.g., solvents, reagents, and by-products). This
absence compromises atom conservation principles and the
completeness of reaction data, hindering thorough algorithmic
evaluation and potentially mislabeling valid alternatives as
incorrect pathways. Additionally, it lacks practical information
such as cost, availability, ease of preparation, and regulatory
considerations, which are vital factors in selecting molecules.

In this work, we represent molecules as SMILES. The
inherent ordering introduced by the SMILES molecular repre-
sentation poses a challenge, resulting in a many-to-one
mapping issue. This characteristic impedes the training of
models aiming to precisely match predicted SMILES with
reactant SMILES in retrosynthetic analysis, thereby affecting the
models' generalization capability. While pre-training and data
augmentation techniques offer a potential solution, they
increase training time. Recognizing and addressing these
dataset limitations are crucial for accurate algorithmic evalua-
tion and effective molecular representation in chemical
synthesis studies.
2.2 Retro-Synth Score (R-SS)

Algorithms for retrosynthesis typically assume perfect training
data and primarily rely on accuracy to evaluate model correct-
ness.35 However, efforts to address the limitations of accuracy
include metrics like MaxFrag accuracy,27 which focuses on the
largest fragment match to overcome prediction limitations, and
metrics that ignore stereochemistry8,36 for a more relaxed eval-
uation. Additionally, metrics such as Top-N accuracy, round trip
accuracy, coverage, and diversity aim to capture the effective-
ness and quality of predictions.36 Despite their usefulness, these
metrics individually do not provide a comprehensive
© 2025 The Author(s). Published by the Royal Society of Chemistry
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assessment of model performance. For instance, Top-N accu-
racy has been criticized for prioritizing frequently observed
answers over chemically meaningful predictions, while
increasing suggestions (through beam search or similar
methods) may lead to a decrease in valid suggestions and
signicantly increase the inference time. Similarly, while round-
trip accuracy37 is informative, it requires an additional pre-
trained forward-synthesis prediction model, introducing
complexity and computational overhead.

In response, we combine accuracy, stereo-agnostic accuracy,
partial correctness, and Tanimoto similarity38 to create a new
set of metrics, the computation of which is shown in Fig. 1.
These metrics are calculated based on two distinct settings:
halogen-sensitive and halogen-agnostic. We dene each metric
below. Detailed information regarding each metric can be
found at Section A.

2.2.1 Accuracy (A). Accuracy is a binary metric that is
assigned a value of 1 if the set of ground truth molecules and
the predicted set of molecules are equivalent; otherwise, it is
assigned a value of 0. While accuracy is adept at identifying
perfect matches, it lacks exibility by disregarding subtle
differences that still represent the same molecules. Moreover, it
overlooks the similarity between molecules and fails to
Fig. 1 Model architecture for SynFormer and computation of R-SS. To
architecture of SynFormer. Bottom right: calculation of the Retro-Synth

© 2025 The Author(s). Published by the Royal Society of Chemistry
accommodate valid alternate chemical pathways. Therefore,
while signicant, accuracy alone does not offer a comprehen-
sive evaluation of a model's performance.

2.2.2 Stereo-agnostic accuracy (AA). Stereo-agnostic accu-
racy serves as a binary metric, assigned a value of 1 if the ground
truth and predicted graphs perfectly match, and 0 otherwise.
The molecules are represented as graphs, with each molecule as
an edge-disjoint sub-graph. The computation of the metric
involves an exact graph-matching algorithm utilizing
substructure matching with RDKit.39 This method relaxes eval-
uation by ignoring three-dimensional arrangements of atoms
for the structurally similar molecules, which represent the
stereochemistry of the molecules.

2.2.3 Partial accuracy (PA). Partial accuracy is dened as
the proportion of correctly predicted outcomes within the set of
ground truth molecules. This metric relaxes evaluation by
accounting for possible alternate chemical pathways by
providing insights into the coverage of correctly predicted
molecules within the set of target molecules.

2.2.4 Tanimito similarity (TS). The Tanimoto coefficient
determines the similarity between two sets of molecules,
denoted as T(A, B). It computes the ratio of the intersection of
sets A and B to the union of the same sets, utilizing a 2048-
p: the overall flowchart. Bottom left: encoder–decoder transformer
Score (R-SS).

Digital Discovery, 2025, 4, 831–845 | 833
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dimension Morgan Fingerprint40 representation with RDKit.
This metric extends the concept of MaxFrag accuracy to evaluate
multiple molecules simultaneously. Higher Tanimoto similarity
suggests a greater likelihood of the predicted pathway being
a valid alternate route. This observation aligns with other
metrics, where a Tanimoto similarity of 1 is noted for molecules
differing solely in stereochemistry or those with exact matches,
and a value close to 1 when they generally differ by leaving
groups (e.g., halogens). By quantifying the overlap between sets
of molecules, the Tanimoto coefficient aids in identifying valid
chemical pathways, especially those with variations in leaving
groups.

2.2.5 Validity factor (VF). Oen, generative algorithms
produce invalid SMILES strings that do not map to a chemically
feasible structure. The validity factor represents the ratio of
chemically feasible molecules within the predicted set. Its
purpose is to penalize any chemically infeasible structures.

2.2.6 Halogen agnostic (HA). Originally, the metrics are
halogen-sensitive, distinguishing between different halogens.
However, under the halogen-agnostic condition, all halogens
are treated as equivalent. Replacing a halogen within the reac-
tants with any other halogen can generally yield the same
product under certain conditions:

� Similar reactivity: the halogens being replacedmust exhibit
similar reactivity. Fluorine, chlorine, bromine, and iodine are
oen interchangeable in reactions involving halogen
substitution.

� Reaction conditions: consistency in reaction conditions,
such as temperature, pressure, solvent, and catalysts, is essen-
tial. Changes in these parameters can inuence reaction path-
ways and product formation. However, datasets like USPTO-50k
typically lack this information.

� Substrate compatibility: the substitution should be
compatible with the substrate and other functional groups
present in the molecule. Some substrates may exhibit selectivity
toward specic halogens due to steric or electronic effects. The
detailed case-study will show that the examples in the dataset
allow for relaxing this constraint.

� By-product consideration: differences in by-products
resulting from substitution should not affect the desired
product or its downstream synthetic steps. In retrosynthetic
analysis, the focus is typically on the main reaction pathway,
making by-products irrelevant.
Table 1 Frequently used abbreviations

Category Abbreviation

Condition PT
HA

Computed metrics A
AA
PA
TS
VF

Derived metrics WA
R-SS

834 | Digital Discovery, 2025, 4, 831–845
2.2.7 Computing the retro-synth score (R-SS). The R-SS is
computed by taking a weighted average of the aforementioned
metrics under halogen-sensitive and the halogen-agnostic
settings. In the halogen-sensitive setting, molecules are
considered different if they differ solely in halogen groups at the
same position. Conversely, in the halogen-agnostic setting, all
halogens are treated as equivalent, regardless of their specic
type. For each setting, we determine the score by calculating the
weighted average of the above four metrics. The nal score is
obtained by averaging the scores from both halogen-sensitive
and halogen-agnostic conditions across all predictions. Addi-
tionally, we introduce a validity factor that penalizes chemically
infeasible structures. Finally, we compute the Retro-Synth Score
for a given prediction as follows, where the abbreviations
correspond to those listed in Table 1:

W ¼ SoftmaxðwA wAA wPA wTS Þ (1)

WA ¼ ðA AA PA TS Þ$WT (2)

WAHA ¼ ðAHA AAHA PAHA TSHA Þ �WT (3)

R-SS ¼ WAþWAHA

2
� VF (4)

The importance of each metric is chosen empirically, where
wA= 1, wAA= 2, wPA= 4, and wTS= 1. Tanimoto similarity holds
the same weight as accuracy, stereo-agnostic accuracy is twice as
important as accuracy, and partial accuracy carries twice the
weight of stereo-agnostic accuracy. This weighting reects how
each metric relaxes the evaluation criteria and encompasses
different aspects of the chemical context, as explained in their
descriptions. Metrics with higher importance indicate a greater
likelihood of correctness under a valid chemically alternate
route, as demonstrated by a case study. Additionally, we show
that varying the weights does not change the trend of the re-
ported results. We demonstrate the application of our metric
through an example reaction presented in Table 2.

R-SS prioritizes Top-1 accuracy over Top-N due to beam
search limitations, where larger beam sizes oen produce
invalid SMILES and degrade output quality across beams. The
Top-1 result is typically the most reliable, and validating
multiple outputs is impractical for chemists. R-SS also achieves
efficiency by avoiding the need for evaluation across multiple
Expansion Evaluator

Pre-trained
Halogen agnostic
Top-1 accuracy Perfect match
Stereo-agnostic accuracy Structural match
Partial accuracy Fraction of perfect match
Tanimoto similarity Structural similarity
Validity factor Chemical correctness
Weighted average
Retro-synth score

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 R-SS computed on an example prediction. Pdataset represents the product in the dataset, Rdataset represents the set of reactants in the
dataset and Rpredicted represents the predicted set of reactants

Pdataset Rdataset Rpredicted HA A AA PA TS WA R-SS

7 0.00 0.00 0.50 0.77 0.44 0.69
3 0.00 1.00 1.00 0.77 0.95
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beams for the same molecule and minimizing reliance on
transformer pre-training.
2.3 SynFormer

A transformer model41 is a type of deep learning architecture
and is primarily used for sequence-to-sequence tasks, such as
machine translation and text generation. It consists of multiple
layers of attention mechanisms and feed-forward neural
networks. In transformer models, each input token is processed
independently, allowing for parallel computation and capturing
long-range dependencies effectively. Encoder-only models
exclusively employ the encoder component of the transformer,
extracting relevant features from the input sequence.
Conversely, decoder-only models focus on generating the
output sequence based on the encoded input. Encoder–decoder
models combine both encoder and decoder components,
commonly employed in tasks like machine translation and text
summarization, where the model rst processes the input
sequence and then generates the output sequence accordingly.
In this study, we adopt the encoder–decoder architecture, as
illustrated in Fig. 1, where the decoder produces the reactant
SMILES conditioned on the features extracted by the encoder
from the product SMILES.

Large language models (LLMs) such as BERT,42 BART,43

GPT,44,45 and LLaMA46 have revolutionized self-supervised
learning in the eld of NLP. Several advancements have been
made to improve the performance of these algorithms by
making modications to the original transformer architecture.
Positional encoding techniques such as No Position Encoding
(NoPE),47 Absolute Position Encoding (APE),41 Rotary Position
Encoding (RoPE),48 T5 relative bias,49 and ALiBi50 have been
developed to encode positional information effectively. Addi-
tionally, studies have been conducted51–55 to compare activation
functions such as ReLU,56 ReLU2,51 and various GLU variants
like GELU, ReGLU, and Swish to determine the best option for
the task.

In this work, we design SynFormer based on the original
transformer encoder–decoder architecture, replace positional
embeddings with rotary embeddings, and use RELU2 as the
activation function. Detailed information regarding the archi-
tecture can be found in Section B.

2.3.1 Rotary embedding (RoPE). This relative positional
embedding comes with no extra learned parameters that injects
© 2025 The Author(s). Published by the Royal Society of Chemistry
positional information through rotations. RoPE48 leverages
rotational symmetries to improve model performance by
encoding sequential information in a way that respects peri-
odicity, enhancing the model's ability to capture long-range
dependencies and improve prediction accuracy. Rotary
embeddings modify the query-key-value computation mathe-
matically by incorporating rotational transformations. This
discourages models from learning absolute positions and helps
the model generalise better when used with ordered sequences
such as SMILES.

2.3.2 ReLU2 activation function. The ReLU2 function51 is
introduced to the feed-forward network (FFN) within the
transformer architecture as a replacement for ReLU. This
modication has shown to enhance the efficiency of model
generation by improving training convergence by amplifying
positive values and reducing the vanishing gradient problem,
potentially enhancing the network's expressive power by
strengthening non-linearity. This modication aims to address
the limitations of ReLU and enhance the overall performance of
the neural network with only a marginal increase in compute
overhead.

2.3.3 Limitation. We eliminate pre-training to enable
training with lower computational resources. Consequently,
a trade-off in performance is observed when trained on datasets
ten times larger than USPTO-50k. Training on such large data-
sets, like USPTO-MIT used in Chemformer22 or USPTO-FULL
and USPTO-STEREO used in Graph2SMILES,57 presents signif-
icant challenges with limited computational resources. There-
fore, this paper focuses on addressing smaller datasets like
USPTO-50k, which has become the gold standard for bench-
marking retrosynthesis algorithms. While we acknowledge that
pre-training is essential for larger datasets, we show that it is
unnecessary for smaller datasets like USPTO-50k. Although we
recognize the importance of synthesis planning in evaluating
model performance, we do not include it in this work to
maintain our primary focus.
2.4 Model training

We train the model for 1000 epochs with an effective batch size
of 96, using the AdamW optimizer. The learning rate is set to
0.001, with betas of 0.9 and 0.999, and a weight decay of 0.1.58

We employ a one-cycle learning rate scheduler with a dividing
factor of 10 000. Data augmentation is applied at each epoch by
Digital Discovery, 2025, 4, 831–845 | 835
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Table 3 Retrosynthesis results on USPTO-50k sorted using the Retro-
Synth Score

Algorithm HA A AA PA TS WA R-SS

Graph2SMILES57 7 0.483 0.510 0.565 0.765 0.564 0.572
3 0.509 0.537 0.581 0.765 0.580

Chemformer22 7 0.507 0.527 0.577 0.776 0.577 0.585
3 0.533 0.553 0.592 0.776 0.593

Chemformer PT22 7 0.533 0.545 0.599 0.786 0.598 0.605
3 0.560 0.571 0.613 0.786 0.613

SynFormer (ours) 7 0.532 0.548 0.598 0.784 0.598 0.606
3 0.558 0.575 0.613 0.784 0.613
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shuffling the atom order within molecules, achieved by
randomizing SMILES representations with a 50% probability.
Additional details on data augmentations are mentioned in
Appendix C. The dataset is split into training, testing, and
validation sets with an 8 : 1 : 1 ratio. All methods in this work are
trained, tested, and evaluated using the same data split. For
SynFormer, output SMILES for R-SS computation are generated
using Top-k sampling with k set to 1 and a temperature of 1.0.
For Top-3, Top-5, and Top-10 results, we use beam search with
3, 5, and 10 beams respectively to generate the reactant SMILES.
Beam search is used for generating SMILES in Chemformer,
Chemformer PT, and Graph2SMILES. SynFormer training is
conducted on 4 NVIDIA GeForce RTX 2080 Ti GPUs, taking
approximately 13.5 hours.

2.5 Implementation details

SynFormer is implemented using the PyTorch Lightning59 and
X-transformers60 frameworks, following an encoder–decoder-
based transformer model similar to Chemformer. The model
architecture includes 6 transformer layers, each equipped with
8 heads in the multi-attention block, and no bias in the feed-
forward network. A bottleneck dimension of 512 and a feed-
forward dimension of 2048 is specied, with a dropout rate of
0.1 applied to the layers, attention, and feed-forward compo-
nents of both the encoder and decoder. The token embedding
layers of the encoder and decoder are tied, and residual atten-
tion is omitted. Operating on a vocabulary size of 576, themodel
can accommodate a maximum context length of 512. Tokeni-
zation and augmentation of SMILES are adapted from Chem-
former, leveraging the PySMILESUtils framework.61

2.6 Experiments

2.6.1 Comparative analysis. We conduct comparisons with
two prominent methods: Graph2SMILES,57 a widely used graph-
based approach, and Chemformer, the previous state-of-the-art
language model. Additionally, we assess the effect of pre-
training on Chemformer's performance. Reactants are gener-
ated from the products in the test set provided, ensuring
avoidance of data leaks, using the model checkpoints made
available by the respective authors.

Graph2SMILES. A graph-based approach consists of a graph
encoder, a transformer encoder and SMILES decoder as shown
in Fig. 2. They eliminate input-side augmentation by leveraging
the permutation invariant graph representation which is then
fed to a global attention transformer based encoder with graph-
aware positional embeddings to generalise across multiple
molecules and nally decoded autoregressively by a transformer
decoder. The scale of their architecture is comparable to that of
Fig. 2 Graph2SMILES architecture.

836 | Digital Discovery, 2025, 4, 831–845
SynFormer, using 6 layers and 8 attention heads with a bottle-
neck dimension of 256 and feed forward dimension of 2048
in both encoders and the decoder.

Chemformer. A sequence-to-sequence based translation
approach on SMILES using the BART language model. We
utilise both pre-trained and randomly initialised models which
are then netuned on USPTO-50k. We pick the small model as
the parameters are comparable to SynFormer, using 6 layers
and 8 attention heads with a bottle-neck dimension of 512 and
a feed forward dimension of 2048 in the encoder and the
decoder.
3 Results and discussions
3.1 Graph vs. language models: evaluating approaches on
USPTO-50k

The rise of transformer approaches in retrosynthesis reects
advancements in natural language processing. Unlike graph-
based methods, these approaches operate on SMILES, which
is not bijectively mapped to the molecular structure and lacks
permutation invariance, a key advantage of graphs. Despite
these limitations, accuracy remains the most widely used eval-
uation metric. It measures the correctness of a prediction using
stringent string matching of the canonical representation of the
set of molecules, making it highly sensitive to even the smallest
molecular augmentations, structural changes, and stereo-
chemical alterations.

The comparison between Chemformer PT and Graph2-
SMILES, as shown in Table 3, offers insights beyond simple
accuracy metrics. Chemformer PT outperforms Graph2SMILES
across all metrics, with a 5.45% higher Retro-Synth Score.
However, Graph2SMILES demonstrates better Top-3, Top-5, and
Top-10 accuracy from Table 4, indicating its strength in pre-
dicting alternate chemical routes.

The trend of leading in Top-1 accuracy is expected from
Chemformer PT, given its extensive training on a vast molecular
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Top-N accuracy on USPTO-50k

Algorithm Top-3 accuracy Top-5 accuracy Top-10 accuracy

Chemformer PT — 0.611 0.617
SynFormer 0.596 0.612 0.623
Graph2SMILES 0.636 0.679 0.709
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structure database containing 100 millionmolecules,62 followed
by ne-tuning on 50 000 reactions in USPTO-50k. Language
models excel in all metrics of the R-SS, showcasing better
generalization when predicting multiple molecules. This
advantage likely stems from input side augmentations, which
provide multiple SMILES representations of the same molecule
by shuffling the order of atoms and molecules. Studies show
that these augmentations, achieved by randomizing SMILES,
signicantly improve performance by 8.1% in generating
molecules.30 We found an improvement of almost 10% in Syn-
Former's performance (Table 5) through input-side SMILES
randomization.

While both graph-based and language-based methods
effectively predict alternate chemical routes, they differ in how
accessible these routes are. Language models, like Chemformer
PT, excel in the Retro-Synth Score, showcasing superior pattern
recognition in molecule building for retrosynthesis. Higher
Top-1 accuracy, stereo-agnostic accuracy, partial accuracy, and
Tanimoto similarity (both halogen-sensitive and halogen-
agnostic) reect Chemformer PT's ability to propose valid
alternate pathways. These predictions oen require minimal
intervention from chemists, as the differences between the
predicted and actual reactants from USPTO-50k are usually
minor molecular augmentations. In contrast, Graph2SMILES
leads in Top-N predictions, offering alternate pathways that
oen need to be veried by chemists due to signicant varia-
tions in the predictions. This is because Top-k accuracy utilizes
beam search to generate multiple sets of reactant molecules,
where each set may differ considerably. Additionally, beam
search suffers from declining quality as the number of beams
increases, as reected in the plateauing of Top-N accuracy at
around 73% with a beam size of 20.

Despite these differences, the performance gap between
graph-based methods and language models is smaller than
expected. Graph2SMILES shows robust performance, chal-
lenging assumptions about its inferiority to pre-trained
language models. Moreover, it eliminates the need for pre-
training, raising questions about the necessity of extensive
pre-training for models like Chemformer PT. These ndings
Table 5 Ablation Study on SynFormer

Algorithm

SynFormer
With rotary embeddings and ReLU2, and without input side augmentation
With GELU activation function
With learnt positional embeddings
With residuals and cross-attention residuals
With rotary embeddings and ReLU2

© 2025 The Author(s). Published by the Royal Society of Chemistry
highlight the strengths of graph-based representations while
pointing to the efficiency and generalization capabilities of
language models.

3.2 Improvement over language model with pre-training

While SynFormer and Chemformer PT share similarities in
model size and the use of SMILES with input-side augmenta-
tions, they differ signicantly in training data volume. Chem-
former PT, pre-trained on 2000 timesmore data than USPTO-50k,
has a slight edge in accuracy, outperforming SynFormer by
0.36%. However, this comes at the cost of six times longer
training time and greater computational resources. Despite
having less exposure to chemical structures, SynFormer achieves
a 0.17% higher Retro-Synth Score and leads Chemformer PT in
stereo-agnostic accuracy by 0.70% under halogen-agnostic
conditions, demonstrating its ability to capture underlying data
patterns effectively. SynFormer matches the performance of the
pre-trained Chemformer PT with fewer training data across R-SS
andmetrics like Top-5 and Top-10 accuracy, as shown in Table 4.

3.3 Improvement over language model without pre-training

Table 7 presents a summary of the results from comparing Syn-
Former to Chemformer on the USPTO-50k dataset. SynFormer
demonstrates a notable performance improvement of 3.47% over
Chemformer, achieved under identical training conditions and
with an equal amount of data, all without pre-training. Across all
metrics, SynFormer consistently outperforms Chemformer by
a signicant margin. Additionally, SynFormer exhibits better
performance compared to other methods that rely solely on ne-
tuning, utilizing only data augmentations without the need for
pre-training on extensive reaction databases, thus highlighting
its superior generalizability and efficiency.

This comparison is particularly signicant as it highlights
the barrier to training language models. By omitting the pre-
training step, it becomes feasible to train the network on
USPTO-50k using a much smaller machine with a single GPU
and limited RAM. While we acknowledge that pre-training is
a one-time process, it is expensive to select the right training
strategy and perform hyperparameter tuning.

3.4 Ablation study

Table 5 provides a summary of the Retro-Synth Scores obtained
from different variants of SynFormer. These variants include
using the ReLU2 activation function, employing rotary embed-
dings, and omitting residual connections. Interestingly, the
results show that ReLU2 outperforms other activation functions,
R-SS

0.551
0.593
0.594
0.596
0.606

Digital Discovery, 2025, 4, 831–845 | 837
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while rotary embeddings surpass learned positional embed-
dings. Surprisingly, the variant without residual connections
demonstrates improved performance in this context. All the
above experiments were run with 50% input side augmentation
of SMILES unless specied otherwise. The run without any data
augmentation did not generalise well on the test set.
3.5 R-SS weights

In this paper, we empirically determine the importance of each
metric, setting wA = 1, wAA = 2, wPA = 4, and wTS = 1. We
demonstrate that the overall trend remains consistent even
when the weights are altered in Table 6. Additionally, we
compare our chosen weights to scenarios where all metrics are
weighted equally and where all metrics except Tanimoto are
weighted equally due to differences in the numerical range.
3.6 Qualitative results

We show the merit of a relaxed evaluation metric, taking an
example for each index that we introduce. Fig. 3 demonstrates
examples where accuracy fails to capture valid predictions due
to strict string matching of canonical smiles, resulting in
incorrect classications.

In reaction shown in Fig. 3a, the predicted molecules differ
from the target molecules only in their stereochemistry. The
stereochemistry of the predicted molecules matches the input
molecule and appears reasonable to infer its correctness.
However, due to the stringent string matching of SMILES, this
Fig. 3 SynFormer prediction output evaluated with the Retro-Synth Sco
under the introduced metrics, suggesting a valid alternate reaction pathw
(b) halogen agnostic environment, and (c) partial accuracy.

838 | Digital Discovery, 2025, 4, 831–845
reaction prediction is deemed incorrect according to accuracy,
with the reason being ambiguous.

Consider reaction from Fig. 3b, where one of the molecules
remains the same while the other differs only in the halogen
present between the target and the predicted molecules. In this
case, we lack information such as the by-product of the reaction
to precisely determine the leaving group. However, the reaction
remains chemically viable when iodine is replaced by bromine
at the same position. Moreover, the reaction will remain
chemically viable when iodine is replaced by any halogen. Once
again, accuracy fails to capture chemically equivalent species.

The transformation shown in Fig. 3c involves the olenation of
a ketone using either the Wittig or Wittig–Horner reagent. While
SynFormer accurately predicts the reactant ketone, it differs in its
choice of reagent. SynFormer predicts the Wittig–Horner reagent,
whereas the literature species the classical Wittig reagent. Both
reagents react with the ketone in the presence of a suitable base
and under appropriate conditions to produce the target olenic
product. This highlights the nuances that our metric identies,
which are overlooked by standard accuracy measures.

3.7 Case study

We present a selection of reactions categorized according to our
evaluation metrics for a comprehensive analysis of outcomes.
The reactions chosen are incorrectly predicted according to
accuracy and correctly predicted according to our metrics and
evaluated by an expert. We lack information regarding yield or
reaction conditions such as solvent, temperature, concentration,
re. These reactions are classified as incorrect by accuracy and correct
ay. The reactions are ordered by metrics (a) stereo-agnostic accuracy,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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and time which are crucial parameters for the success of a reac-
tion and should be considered during the design phase.

We analyze SynFormer's predicted reactants alongside the
reactants in the dataset, given the product from the dataset. In this
section, we showcase the advantages of our introduced metrics
and offer insights into the validity of these alternative routes by
referencing patent literature and reaction mechanisms.63–71 We
analyse the following metrics and conditions: stereo-agnostic
accuracy, partial accuracy, and halogen agnostic. Within each of
these, inputs are categorized based on the type of reaction needed
in retrosynthesis and the complexity of the products.

3.7.1 Stereo-agnostic accuracy. The reactions in Fig. 4 are
labeled as completely incorrect by standard accuracy metrics
but are identied as correct under stereo-agnostic accuracy.
While accuracy scores these reactions at 0, our metric assigns
them a Retro-SynthScore of 0.96.

The reaction in Fig. 4a involved in the above retrosynthesis is
esterication.72 In this transformation, alcohol (specically,
ethanol) condenses with a carboxylic acid (4-hydroxycyclohexane-1-
carboxylic acid) with concomitant loss of a water molecule. In the
reactant, the hydroxy and the carboxylic acid groups are in a stable
equatorial conformation and trans to each other. The esterication
is generally an acid catalyzed reaction. It is unlikely that the
stereochemistry of the acid and hydroxy groups gets disturbed
under the reaction conditions. SynFormer accurately predicted the
reactant carboxylic acid and the reagent alcohol (ethanol) and the
prediction agrees with the reactants in the dataset. Furthermore,
SynFormer anticipates that the stereochemistry remains unaltered,
a nding consistent with the dataset's reactants, which are
agnostic to the stereochemistry of the substituents.
Fig. 4 Reactions labeled as incorrect by accuracy are identified as corre

© 2025 The Author(s). Published by the Royal Society of Chemistry
The retrosynthesis depicted in Fig. 4b involves a two-step
transformation known as reductive amination, wherein the
amine and the aldehyde react.73 Initially, the aldehyde condenses
with a primary amine under mildly acidic conditions, forming an
imine while releasing water. Subsequent reduction of the imine
with hydride reducing agents such as sodium cyanoborohydride
or sodium acetoxyborohydride yields the alkylated amine, as
observed in the product. The product molecule in this case
contains several functional groups, including a secondary amine,
ester, and a carbobenzyloxy (Cbz) protected secondary amine,
along with methyl and phenyl substitutions on the pyrrolidine
ring. SynFormer accurately conducts retrosynthesis at the
secondary amine of the product molecule, correctly identifying
the primary amine and the substituted benzaldehyde. Its
predictions align with the reactants in the dataset, encompassing
all aspects, including the stereochemistry of consecutive substi-
tutions at the four stereogenic carbon atoms of the product.

The transformation depicted in Fig. 4c involves the hydrolysis
of an ester, typically carried out under basic conditions, yielding
the salt of the corresponding carboxylic acid.74 The retrosynthesis
of the acid (product) leads to the ester (reactants), aligning well
with the reactants in the dataset, except for the stereochemical
orientation of two substitutions on the fused cyclohexane ring.
While both the product and the reactant structures in the dataset
exhibit cis stereochemistry, the predicted reactants show trans
stereochemistry. This discrepancy may arise because trans
stereochemistry is thermodynamically more stable and could
form via isomerization under basic conditions, suggesting that
SynFormer accurately predicted the reactant structure.

3.7.2 Partial accuracy. The reactions in Fig. 5 are labeled as
completely incorrect by standard accuracy metrics but are
ct by stereo-agnostic accuracy.

Digital Discovery, 2025, 4, 831–845 | 839
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identied as correct under partial accuracy. While accuracy scores
these reactions at 0, our metric assigns them a Retro-Synth Score
of 0.43.

The product depicted in Fig. 5a is an alkene, commonly
synthesized using variousmethods, with one prominent approach
being the Witting reaction.75 This reaction involves a ketone or an
aldehyde and a phosphorus ylide, typically in a base-mediated
process. Initially, the base abstracts a proton from the methy-
lene group of the ylide, generating a nucleophilic carbon that
reacts with the electrophilic carbon of the carbonyl compound.
This results in the formation of an intermediate, which decom-
poses to yield the alkene and the oxidized form of the phosphorus.
SynFormer accurately identies the Witting method for alkene
synthesis, correctly predicting the specic ketone reactant.
However, it differs slightly in predicting the Wittig–Horner ylide
instead of the Witting ylide. While both ylides are effective, the
Witting ylide requires stronger bases and more stringent reaction
conditions compared to the Wittig–Horner ylide.

The product molecule depicted in Fig. 5b is a biaryl compound,
typically synthesized via a palladium-mediated coupling reaction
between an aryl bromide and an arylboronic acid, known as Suzuki
coupling.76 It contains various functional groups such as primary
amine, methoxy, N-alkyl amide, and nitrogen-incorporated
aromatic rings. SynFormer accurately identies the biaryl nature
of themolecule and predicts the presence of aryl bromide as one of
the reactants, consistent with the dataset. However, there is
a disparity in the form of the arylboronic acid; while SynFormer
predicts a free arylboronic acid, the dataset suggests a pinacol
Fig. 5 Reactions labeled as incorrect by accuracy are identified as corre

840 | Digital Discovery, 2025, 4, 831–845
derivative. Both reagents are viable, but the pinacol derivative in
the dataset offers advantages such as increased solubility in
organic solvents like dichloromethane and greater stability.
Despite this difference, SynFormer effectively identies the
essential reactants, showcasing its utility in retrosynthetic analysis.

The product molecule depicted in Fig. 5c is a complex
nitrogen heterocyclic compound featuring several distinct
substructures, including N-acetyl azetidine, fused diazole, fused
benzo[b][1,4]oxazepane, and 1,2,4-triazole rings.77 Upon retro-
synthesis, SynFormer predicts the formation of azetidine and
acetyl chloride as reactants, matching one of the reactants in
the dataset. However, there is a discrepancy in the choice of
reagent, with SynFormer predicting acetyl chloride while the
dataset indicates the presence of acetic anhydride. Acetyl chlo-
ride is preferred due to its availability, reactivity, and cost-
effectiveness, whereas acetic anhydride, present in the data-
set, is restricted in many countries due to its association with
illicit drug synthesis. Despite this disparity, SynFormer accu-
rately identies both the substrate and reagent, showcasing its
effectiveness in retrosynthetic analysis.

3.7.3 Halogen agnostic. The reactions in Fig. 6 are labeled
as completely incorrect by standard accuracy metrics but are
identied as correct under halogen agnostic conditions. While
accuracy assigns a score of 0 to these reactions, our metric
assigns them a Retro-SynthScore of 0.71.

The product molecule from Fig. 6a can be prepared readily
by coupling an appropriate aryl halide and alkyne in the pres-
ence of a palladium(0) catalyst, copper(I) cocatalyst, and an
ct by partial accuracy.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Reactions classified as incorrect by accuracy are shown to be correct under halogen-agnostic conditions.
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amine base.78 The reaction is known as Sonogashira coupling.
The aryl iodides or aryl bromides can be employed as the
coupling partners. Of the two, the aryl iodides participate in the
reaction more efficiently but are more difficult to prepare.
SynFormer predicted alkyne correctly, and the structure
matches that of the reactants in the dataset. On the other hand,
SynFormer predicted an aryl iodide instead of aryl bromide in
the reactants from the dataset, possibly because of its higher
reactivity. This discrepancy highlights SynFormer's focus on
chemical reactivity rather than practical considerations like
availability, ease of preparation, and cost, emphasizing the
importance of considering all factors in retrosynthetic analysis.

The easiest and industrially feasible method for the
synthesis of the product molecule from Fig. 6 is aromatic
nucleophilic substitution of a halide in an electron decient
aromatic halide with 4-methoxyaniline.79 SynFormer predicted
1-chloro-3-uoro-2-nitrobenzene instead of 1,3-dichloro-2-
nitro-benzene as seen in the reactants in the dataset as one of
the reacting partners. It has correctly identied 4-methoxyani-
line as the second reacting partner. Although 1-chloro-3-uoro-
2-nitrobenzene is more difficult to prepare, it is more suitable
for aromatic nucleophilic substitution compared to 1,3-
dichloro-2-nitrobenzene. This discrepancy underscores the
importance of considering both practical feasibility and reac-
tivity in retrosynthetic analysis.

The synthesis of the product molecule from Fig. 6c could
proceed through Williamson ether synthesis where the deproto-
nated alcohol (in this case a phenolic compound) reacts with
a halide (in this case allyl bromide or allyl iodide) to form an
ether.80 Apart from the ether functional group, the product
molecule has a few other functional groups like ester, 2,6-
disubstituted pyridine ring. Among many possibilities, Syn-
Former has correctly identied substituted 4-hydroxypyridine as
one of the reacting partners, and this result agrees with reactants
in the dataset. However, it has identied allyl iodide as the other
© 2025 The Author(s). Published by the Royal Society of Chemistry
reacting partner instead of allyl bromide, despite the latter being
more commonly used and easier to handle. Although allyl iodide
is more reactive, its preparation and handling are challenging.
This discrepancy highlights the need for careful consideration of
practical factors in retrosynthetic analysis.
4 Conclusion

In this paper, we introduced the Retro-Synth Score for ne-
grained evaluation of reaction predictions and presented Syn-
Former, a transformer model designed for template-free
organic reaction synthesis and retrosynthetic predictions.
Through a detailed case-study, we illustrated how our intro-
duced metrics relax evaluation conditions, enabling consider-
ation of alternative valid chemical routes and addressing some
limitations in the dataset. We discovered that many reactions
deemed incorrect by accuracy metrics are, in fact, viable reac-
tion mechanisms, as identied by our metrics, offering a more
nuanced evaluation method for retrosynthetic analysis. Our
analysis reveals that the predicted reactants differ in chemical
reactivity, the time taken for the reaction to occur, availability,
ease of preparation, and cost of the reactant molecules, which
are overlooked in the dataset but crucial for practical applica-
tions. Through a detailed evaluation of various algorithms
using R-SS, we challenge the belief that language models
signicantly outperform graph generative models in retrosyn-
thesis. Our analysis shows only marginal differences in perfor-
mance on the USPTO-50k dataset, questioning the necessity of
pre-training. While prior language models benet from exten-
sive pre-training, SynFormer achieves comparable performance
to Chemformer PT, leading by 0.17%, and shows a 5.61%
advantage over Graph2SMILES in R-SS, all without requiring
pre-training. However, it is worth noting that Graph2SMILES
performs signicantly better in Top-10 accuracy, highlighting
its strength in broader output scenarios. With SynFormer, we
Digital Discovery, 2025, 4, 831–845 | 841
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observe comparable performance and a noticeable improve-
ment efficiency through key changes in the original transformer
architecture, serving as a drop-in replacement for existing
transformer architectures in molecule transformation tasks.
Data availability

The complete implementation code for this work is publicly
available in our GitHub repository: https://github.com/devalab/
SynFormer. To ensure long-term preservation and reproduc-
ibility, all models, code, and datasets have been archived on
zenodo (https://zenodo.org/records/14725617). The dataset used
in this study can be accessed from the MolecularAI/Chemformer
repository: https://github.com/MolecularAI/Chemformer.
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Appendices
A Retro-synth score

The above metrics are computed on the predicted set of mole-
cules against the ground truth set of reactant molecules for each
reaction. We will consider G to be the ground truth set
comprising of g1, g2, ., gn reactant molecules whose corre-
sponding SMILES representation is represented by S1

g, S2
g, .,

Sn
g and P to be the predicted set comprising p1, p2, ., pn

product molecules whose corresponding SMILES representa-
tion is represented by S1

p, S2
p,., Sn

p.
A.1 Accuracy (A). Equivalence between the sets is deter-

mined by concatenating and representing themolecules in each
set as canonical SMILES and then comparing their string
representations.

A ¼ fAðP;GÞ ¼ 1 if PhG

0 all other cases

�
(5)

P h G 5 f(S1
pBS2

pB.Sn
p) h f(S1

gBS2
gB.Sn

g) (6)

where f(x) is the canonical SMILES representation of x andB is
the concatenation operator.

A.2 Stereo-agnostic accuracy (AA)

AA ¼ fAAðP;GÞ ¼ 1 if PhG

0 all other cases

�
(7)

P h G 5 P 4 G and G 4 P (8)

A.3 Partial accuracy (PA).

PA ¼ fPAðP;GÞ ¼
P
i

fAAðpiÞ
lenðGÞ ;cpi˛P (9)

where fAA is the stereo-agnostic accuracy function.
842 | Digital Discovery, 2025, 4, 831–845
A.4 Tanimito similarity (TS)

TS ¼ TðP;GÞ ¼ jPXGj
jPj þ jGj � jPXGj (10)

A.5 Validity factor (VF)

VF ¼ fVFðPÞ ¼
P
i

f ðpiÞ
lenðPÞ ;cpi˛P (11)

f ðpiÞ ¼ 1 if pi is a chemically valid molecule

0 all other cases

�
(12)

A.6 Weighted average (WA). Weights wA, wAA, wPA, and wTS

are normalised before taking the weighted average such that all
weights sum to 1. Let W = (wA, wAA, wPA, wTS)

W ¼ eWP
i

ewi
;cwi˛W (13)

B SynFormer

The modications to the network can be expressed as:

Z
0
enc ¼ LayerNorm

�
softmax

�
f
�
YWq

�
f ðYWkÞT f ðYWnÞ

��
(14)

Zenc ¼ LayerNorm
�
W2

TReLU2
�
W1

TZ
0
enc

��
(15)

Z
0
dec ¼

LayerNorm

 
softmax

  
ZencWq

"
f ðXUkÞ
ZencWk

#T!"
f ðXUnÞ
ZencWn

#!!

(16)

Zdec ¼ LayerNorm
�
U2

TReLU2
�
U1

TZ
0
dec

��
(17)

Here, f applies the rotary embeddings, Y is the encoder token
embeddings, X is the decoder token embeddings in ℝN�d where N
is the number of tokens and d is the feature vector dimension.Wq,
Wk, andWv are the query, key, and value projection parameters for
the encoder, while Uq, Uk, and Uv are the query, key, and value
projection parameters for the decoder in ℝd�d. The feed-forward
network of the encoder is a multi-layer perceptron stacked with
a linear layer with weights W1 in ℝd�4d, non-linearity ReLU2, fol-
lowed by a linear layer withweightsW2 inℝ4d�d and likewise for the
decoder where the linear layer weights are U1 and U2, respectively.

B.1 Rotary embedding (RoPE). Consider the query vector q
at positionm and the key vector k at position n that belong to ℝd

from the attention block. The function f is required to have the
following properties:

hf(q,m),f(k,n)i = g(q,k,m − n) (18)

In RoFormer, they formulate the function f as:

f ðq;mÞ ¼ Rfðq;mÞeiQf ðq;mÞ ¼ qeiðQðqÞþmqÞ

¼
Xd=2
j¼1

qje
imqj~ej

(19)
© 2025 The Author(s). Published by the Royal Society of Chemistry
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0
BBBBB@

M1

M2

⋱
Md=2

1
CCCCCA

0
BBBBB@

q1
q2
«
qd

1
CCCCCA ¼ QmQm ¼ QmWqXm (20)

where Mj ¼
 
cos mqj �sin mqj
sin mqj cos mqj

!
;Qm is the block diagonal

rotation matrix, Wq is the learned query weights, and Xm is the
embedding of the m token. We also have the corresponding
equation for k.

B.2 ReLU2 activation function. ReLU2 is formulated as:

ReLU2ðxÞ ¼ x2 x$ 0

0 x\0
;cx˛ℝ

�
(21)

C Data augmentation

R-SMILES, or Root Aligned SMILES,81 demonstrated that
reducing the entropy between the input (product) and target
(reactants) SMILES improves the performance in sequence-to-
sequence tasks. Here, entropy refers to the dissimilarity
between SMILES, oen measured using the edit distance.

In this work, we use input-side augmentation, which shuffles
the order of the input SMILES, generating different represen-
tations for the same molecule. Unlike R-SMILES, this method
imposes no restrictions on the target SMILES. R-SMILES,
however, nds the optimal target SMILES that minimizes the
edit distance between the input and target SMILES.

D Effect of varying weights on R-SS
Table 6 Effect of weights on R-SS

Algorithm wA wAA wPA wTS R-SS

Chemformer 1 2 4 1 0.585
Graph2SMILES 0.572
Chemformer PT 0.605
SynFormer 0.606
Chemformer 1 1 1 1 0.605
Graph2SMILES 0.592
Chemformer PT 0.624
SynFormer 0.624
Chemformer 1 1 1 0.5 0.587
Graph2SMILES 0.575
Chemformer PT 0.606
SynFormer 0.607
E Improvement over language model without pre-training
Table 7 Percentage improvement of SynFormer with respect to Chemf

Algorithm HA A AA

SynFormer (ours)
vs. chemformer

7 +4.670% +3.832%
3 +4.480% +3.826%

© 2025 The Author(s). Published by the Royal Society of Chemistry
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