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nical properties of non-equimolar
high-entropy carbides using machine learning†

Xi Zhao, *ab Shu-guang Cheng,a Sen Yu, b Jiming Zheng, a Rui-Zhi Zhangc

and Meng Guoc

High-entropy carbides (HECs) have garnered significant attention due to their unique mechanical

properties. However, the design of novel HECs has been limited by extensive trial-and-error strategies,

along with insufficient knowledge and computational capabilities. In this work, the intrinsic correlations

between elements in the high-dimensional compositional space of HECs are investigated using high-

throughput density functional theory calculations and two machine learning models, which enable us to

predict the Young's modulus, hardness and wear resistance with only a chemical formula provided. Our

models demonstrate a low root mean square error (11.5 GPa) and mean absolute error (9.0 GPa) in

predicting the elastic modulus of HECs with arbitrary non-equimolar compositions. We further

established a database of 566 370 HECs and identified 15 novel HECs with the best mechanical

properties. Our models can rapidly explore the mechanical properties of HECs with descriptor–property

correlation analysis, and hence provide an efficient method for accelerating the design of non-equimolar

high-entropy materials with desired performance.
1 Introduction

High-entropy carbides (HECs), emerging as a new class of
ceramic materials, have attracted increasing attention in recent
years owing to their extraordinary mechanical properties,1

corrosion resistance,2 radiation resistance3 and wear resis-
tance,4 which make them good candidates for challenging
environment applications such as nuclear reactors, jet engines,
cutting tools and aerospace.5–9 The genesis of HECs can be
traced back to high-entropy alloys (HEAs),10,11 following the
concept of ‘congurational entropy stabilized single phase’,
composed of four or more transition metals and carbon atoms.
The transition metals occupy the cationic sites in the crystal
maintaining a compositional range between 5% and 35 at%,
while the carbon atoms occupy the anionic sites. Compared
with transition metal carbides, the mechanical properties of
HECs can be signicantly enhanced due to severe lattice
distortion and the ‘high entropy effect’,12 in some cases, can
even surpass their rule of mixture (ROM) value by up to 50%.13,14

The vast compositional space of HECs provides a wide range of
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possibilities for performance control, and it also introduces
great challenges in their design and fabrication due to the time-
consuming and expensive nature of traditional “trial and error”
experiments and computational methods. Advanced techniques
should be employed to accelerate the exploration of the
compositional space of high-entropy ceramics, especially to
elucidate the intrinsic correlations among the elements, with
the aim of optimizing their performance.

Recently, Machine Learning (ML) has achieved signicant
success in predicting complex high-entropy materials.14–18 By
training models on existing data with specied properties and
compositions, novel materials can be efficiently predicted prior
to their physical synthesis. Zhang et al.14 used articial neural
network(ANN) and support vector machine (SVM) models to
identify single-phase HECs and evaluated the single-phase
probabilities of 90 HECs that have not yet been experimen-
tally reported, with a prediction accuracy as high as 98.2%.
Meng et al.19 used high-throughput synthesis and calculations
combined withMLmethods to identify 22 phase-forming ability
descriptors for novel HECs, achieving a verication accuracy of
at least 25.3% higher than previously reported, which provides
theoretical guidance for discovering HECs. Tang et al.20

proposed a ML strategy based on bond parameters (bond order,
bond ionicity, and bond length) to explore new HECs with
excellent mechanical properties, and the mean absolute error
(MAE) and R2 of their model were 32.2 GPa and 0.84. Zhou
et al.21 developed three MLmodels (RF, SVR and ANN) to predict
the Young's modulus and hardness of various HECs, with MAE
of only 15.3 GPa and 1.1 GPa, showing high prediction accuracy.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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AlthoughML algorithms show promising predictive potential in
exploring the compositional space of HECs, most research still
concentrates on the prediction of single-phase formation
capabilities, with few studies on mechanical property predic-
tion. Moreover, training ML models for prediction of mechan-
ical properties usually requires many complicated structure-
based descriptors, which are inaccessible for unknown new
HECs, and it is also important to enhance the generalization
ability of ML models to adapt for the prediction of non-
equimolar HEC systems.

The goal of this study is to leverage the power of MLmethods
to explore the compositional space of HECs, understand the
relationships and patterns within the elements, and predict the
mechanical properties of unexplored HECs with extraordinary
mechanical properties to enable composition optimization
screening. Designing systems capable of comprehending and
mapping the vast chemical space of HECs is an ongoing chal-
lenge.22 The key to performance lies in the interaction between
elements. In traditional materials, correlations among elements
can be illustrated through phase diagrams, where each point in
the phase space represents a unique combination of elemental
composition and specic properties. For the domain of high-
dimensional space corresponding to multi-component HECs,
traditional methods struggle to capture all points within the
entire space, while in ML, the complex relationships inherent in
high-dimensional data present challenges to the generalization
ability of models, as the distribution characteristics of training
data may differ from unknown data. A key innovation of our
approach is the ability to predict the mechanical properties of
arbitrary non-equimolar HECs from binary carbides, ternary
carbides and quaternary equimolar HECs in the absence of
complex structural information and density functional theory
(DFT) calculation results, with only a chemical formula
provided, demonstrating the great potential of machine
learning in complex materials design.

In this work, we employed two algorithms, deep learning and
random forest (RF), to predict the mechanical properties such
as Young's modulus (E), bulk modulus (B), and hardness (H) of
HECs containing nine types of transition metal elements (Ta,
Zr, Hf, V, Nb, Ti, Mo, W, and Cr). With the trained ML models,
we have established a database containing the mechanical
properties of 566 370 HECs, including E, H, etc., and identied
15 compositions with superior mechanical properties. Our
results demonstrate the feasibility of advanced ML techniques
in learning potential correlations and patterns among elements
in high-dimensional space, providing a convenient approach
for discovering novel equimolar and non-equimolar HECs with
desirable mechanical properties.

2 Methods
2.1 Composition selection

In order to establish a more comprehensive and generalizable
ML model and elucidate the intrinsic correlation patterns of
elements in HECs, we constructed a dataset of 495 carbides
containing nine transition metal elements (“Ta”, “Zr”, “Hf”,
“V”, “Nb”, “Ti”, “Mo”, “W”, and “Cr”) for ML model training,
© 2025 The Author(s). Published by the Royal Society of Chemistry
which includes 9 monocarbides, 108 binary carbides, 252
ternary carbides and 126 equimolar quaternary HECs. Simul-
taneously, 123 non-equimolar HECs were established to eval-
uate the generalization ability and prediction accuracy of the
ML model when extended to predict HECs with arbitrary
compositions. High-throughput density functional theory (HT-
DFT) calculations were employed to obtain the corresponding
mechanical properties.

2.2 HT-DFT calculation

The Vienna Ab initio Simulation Package (VASP) code23 was used
for all geometry optimization and elastic property calculations.
The projector augmented wave (PAW) method was employed to
describe the ion–electron interactions and the Perdew–Burke–
Ernzerhof (PBE) form of the generalized gradient approxima-
tion (GGA) was adopted to deal with the exchange and correla-
tion functional. To ensure the accuracy of elastic property
calculations, the energy cutoff was set to 650 eV with a 9 × 9 × 9
Monkhorst–Pack k-point grid used for convergence aer careful
testing. The tetrahedron method with Blöchl corrections
(ismear = −5) was employed to get accurate total energy and
stress. The energy convergence criterion was set to 10−7 eV per
atom, and the maximum force per atom should be less than
10−3 eV Å−1.

All these structures used for HT-DFT calculations main-
tained a single-phase rock salt structure with transition metal
atoms randomly occupying cationic sites and carbon atoms
occupying anionic sites, which were generated using the Python
Materials Genomics (Pymatgen) package24(a schematic diagram
of the crystal structure is shown in ESI S1†). The use of small
unit cells can considerably improve the computational perfor-
mance. Additionally, we also compared our results with pub-
lished experimental data25,26 to verify the accuracy of DFT
calculations. Koval et al.27 and Liu et al.28 also conrm the
reliability of elastic property predictions using small unit cells.

2.3 Mechanical properties

For cubic lattice, there are three independent elastic constants
C11, C12 and C44, which were obtained by applying a set of
independent directional normal and shear strains to the
structures, and then calculating the corresponding energy
changes to t the elastic constant matrix. The mechanical
stability of these structures was evaluated using the Born
stability criteria: C11 > 0, C44 > 0, C11 − C12 > 0, C11 + 2C12 > 0.29

The polycrystalline Young's modulus (E), bulk modulus (B), and
shear modulus (G) were estimated from the elastic constant by
the Voigt–Reuss–Hill method described as:

E = 9BG/(3B + G)

B = (Bv + BR)/2

G = (Gv + GR)/2

Bv = BR = (C11 + 2C12)/3

Gv = (C11 − C12 + 3C44)/5
Digital Discovery, 2025, 4, 264–274 | 265
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GR = 5C44(C11 − C12)/4C44 + (C11 − C12)

where Bv and Gv are the bulk modulus and shear modulus
calculated by the Voigt approximation method, and BR and GR

are the bulk modulus and shear modulus calculated by the
Reuss approximation method.

In the context of focusing solely on elastic responses, without
considering plastic deformation and defects, the Vickers hard-
ness was approximated from the elastic modulus as follows:30

HV = 2(k2G)0.585 − 3; k = G/B.

2.4 Machine learning model

The Random Forest (RF) model and CrabNet (Compositionally
Restricted Attention-Based Network)22,31 were both used to
predict the mechanical properties of HECs. CrabNet is an
innovative attention-based deep neural network model speci-
cally designed for property prediction and material discovery in
materials science. The multi-head self-attention mechanism is
employed to model the complex interactions between elements,
enabling it to dynamically adjust the weights of each element
and automatically focus on the most relevant components of
the input for making predictions, which can better capture the
impact of compositions on their properties and effectively
improve prediction accuracy. For the CrabNet model, the
“elasticity0” transfer setting was used for modulus predictions,
where the lower layers of the network were frozen to retain
learned chemical relationships, and the nal layers were
retrained on the training set to optimize mechanical property
predictions.

To avoid sampling bias caused by randomness and ensure
consistency in the sample distribution between the training and
test sets, a random sampling method was employed to split the
data for both the RF and CrabNet models, with 80% of the data
allocated to the training set and the remaining 20% to the test
set. The RFmodel was optimized with the following parameters:
n_estimators = 300, random_state = 1, min_samples_split = 5,
min_samples_leaf = 1, and the number of features considered
for each split was set to the square root of the total number of
features. A 10-fold cross validation was employed. The mean
Fig. 1 (a) Comparison of ROM results and HT-DFT calculations of Youn
carbides, 252 quaternary carbides and 126 equimolar quaternary high
summation of the Young's modulus of 9 monocarbides (TaC, ZrC, HfC,
elements in 495 carbides on Young's modulus calculated by HT-DFT (o
Fig. 2).

266 | Digital Discovery, 2025, 4, 264–274
absolute error (MAE), mean squared error (MSE), and R2 scores
were used to evaluate the performance of the RF model and
CrabNet model.

2.5 Featurization schemes

CrabNet employs an end-to-end learning approach that directly
takes the chemical compositions as input by using the atomic
numbers and fractions of their constituent elements, without
relying on feature descriptors. Mat2vec element embeddings
serve as the default source of chemical information for each
element and fractional amounts were used to obtain fractional
embeddings, which leads to the generation of separate element
embedding matrices and fractional embedding matrices.31,32

The RF model requires predened feature descriptors, so we
adopted composition-based feature vectors (CBFVs) to avoid the
use of complex structural descriptors. CBFVs are descriptive
statistics (mean, range, sum and variance) of the composition
elements, which have been successfully applied in materials
research.33–35 For the RF model, we revised the previous
complicated input features, adopting a series of CBFVs35–38—
Jarvis, Magpie, Mat2vec, Onehot, Oliynyk, and random—

elemental descriptors as substitutes to eliminate the impact of
structural information, achieving the prediction of mechanical
properties only from the perspective of composition.

3 Results and discussion
3.1 Statistical analysis

Fig. 1a shows the correlation between the predicted Young's
modulus values for 450 carbides using the ROM method and
DFT calculations, and comparisons for bulk modulus and shear
modulus are provided in ESI S4.† Although employing the ROM
method for the initial estimation of various physical properties
such as lattice constants, elastic modulus, and strength of
multicomponent carbides is a common practice prior to
experimentation, it is evident from Fig. 1a that the correlation
between Young's modulus obtained via ROM and HT-DFT
calculations is non-linear. The Young's modulus predicted by
ROM tends to be lower than that obtained from HT-DFT,
g's modulus for 495 carbides (contains 9 monocarbides, 108 ternary
entropy carbides). The results of ROM are based on the atomic ratio
VC, NbC, TiC, MoC, WC, and CrC); (b) Influence of 9 transition metal
nly the elemental species are counted, detailed statistics are shown in

© 2025 The Author(s). Published by the Royal Society of Chemistry
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indicating that the ROMmethodmay not be sufficiently reliable
for predicting the mechanical properties of unknown HECs.
Although DFT calculations may offer more credible results, the
time-consuming and resource-intensive process makes ML
a more efficient and accurate alternative for predicting HEC
mechanical properties.

The inuence of nine different transition metal elements
(Ta, Zr, Hf, V, Nb, Ti, Mo, W, and Cr) on the Young's modulus of
495 carbides is shown in Fig. 1b. Each violin plot encompasses
data for binary, ternary, and quaternary carbides; the median
values of calculated Young's modulus reveal that Young's
Fig. 2 Correlation between 9 transitionmetal elements and calculated el
blue violin part represents the bulk modulus, and the green part represe
results of 495 carbides.

© 2025 The Author(s). Published by the Royal Society of Chemistry
modulus is signicantly impacted by elemental compositions.
It is worth noting that carbides containing Ta and W exhibit the
highest Young's modulus, indicating superior stiffness and
resistance to deformation under applied stress. The following
are carbides that incorporate Nb, Ti and V, which exhibit
comparatively higher modulus but slightly lower than those of
carbides with Ta and W. Carbides containing Hf and Mo
demonstrate moderate values of Young's modulus, suggesting
a decrease in stiffness compared to those mentioned previously,
consistent with the results of Xia et al.39 The relatively lowest
elastic moduli are observed in carbides that include Zr and Cr,
astic properties. The red violin part represents the Young's modulus, the
nts the shear modulus. All statistical data are based on DFT calculation

Digital Discovery, 2025, 4, 264–274 | 267
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implying that their addition may reduce the hardness of HECs
and increase the plastic deformation ability. This trend
emphasizes the clear dependence of mechanical properties on
specic elemental types within the carbide composition.

To gain a deeper understanding of the relationship between
elements and mechanical properties, we further investigated
the effect of different amounts of elements on the elastic
modulus. Fig. 2 illustrates the effects on Young's modulus, bulk
modulus and shear modulus when the content of 9 transition
metal elements increases from 0 to 75 at%, respectively. The red
part in the violin diagram represents the Young's modulus, the
blue part represents the bulk modulus, and the green part
represents the shear modulus. As the concentration of certain
elements increases, elements such as Ta, Nb, Ti, and V are
observed to enhance the Young's modulus in carbides.
Conversely, elements such as Hf, Mo, Zr, and Cr seem to
decrease their Young's modulus. Consistent with the previous
analysis, higher concentrations of Ta lead to the largest increase
in Young's modulus due to its ability to signicantly increase
the bulk and shear modulus of carbides, followed by Nb.
Although increasing Nb effectively improves the shear modulus
of carbides, the bulk modulus shows almost no signicant
increase. Ti and V provide a modest increase in the Young's
modulus of carbides. Unlike V, as the concentration of Ti
increases, the bulk modulus of carbides gradually decreases,
with the reduction outweighing the increase in shear modulus,
the Young's modulus still shows an increasing trend, which is
consistent with the ndings of Lu et al. 40 suggesting that the
enhancement of Young's modulus of carbides may be primarily
inuenced by shear modulus, followed by bulk modulus. With
increased concentrations of elements such as Hf, Mo, Zr, and
Cr, the Young's modulus of carbides tends to decrease. The
increase in Zr concentration signicantly reduces the Young's
modulus, bulk modulus, and shear modulus of carbides. An
increase in Mo and Cr concentrations gradually increases the
bulk modulus while decreasing the shear modulus and Young's
modulus. Hf exhibits no signicant impact on the shear
modulus of carbides; however as its concentration increases,
a signicant reduction in bulk modulus is observed, leading to
Fig. 3 The performance of predicting the bulk modulus, using 6 CBFV
within RF models, evaluated on training data (495 carbides, including
equimolar quaternary HECs) (a) the predicted R2; (b) the predicted RMSE

268 | Digital Discovery, 2025, 4, 264–274
a slight decrease in Young's modulus. The inuence of W on the
mechanical properties deviates from the previous trends, as the
bulk modulus signicantly increases with W content. However,
the shear modulus and Young's modulus initially increase and
then decrease with increasing W content, showing optimal
mechanical properties at around 50%.
3.2 Model performance

To identify the best model for predicting the mechanical
properties of non-equimolar HECs (containing elements such
as Ta, Zr, Hf, V, Nb, Ti, Mo, W, and Cr) based on their chemical
formula, without requiring structural descriptors, we compared
the prediction accuracy and generalization ability of both the RF
and CrabNet models. The RF model and CrabNet model were
trained on a dataset of 495 carbides, which includes 9 mono-
carbides, 108 binary carbides, 252 ternary carbides, and 126
equimolar quaternary HECs, and then veried on 123 non-
equimolar HECs to assess their extrapolation ability in non-
equimolar HECs. Six types of elemental descriptors—Jarvis,
Magpie, Mat2vec, Onehot, Oliynyk, and random—were
compared with the aim of avoiding complex structure-based
feature descriptors and building an RF model with the high-
est prediction accuracy. All these elemental descriptors are
generated solely from the chemical formula and can be used to
describe the properties of elements. Each elemental descriptor
has its unique way of encoding and representing the charac-
teristics of elements (a detailed explanation for each elemental
descriptor is provided in ESI S2†). As can be seen from Fig. 3,
the test R2 values of the RF models, utilizing six types of
elemental descriptors, increase as the number of samples
increases, indicating an improvement in prediction accuracy.
The Jarvis descriptor demonstrates higher prediction accuracy
in the early stages of training, suggesting that it may perform
better in predictions with small sample sizes. This is attributed
to the fact that the Jarvis descriptor offers a richer set of
features, such as electronic structure, crystal structure,
mechanical properties, and thermodynamic properties, which
contribute to its superior performance in predictingmechanical
descriptors—Jarvis, Magpie, Mat2vec, Onehot, Oliynyk, and random—
9 monocarbides, 108 binary carbides, 252 ternary carbides, and 126
; (c) the predicted MAE.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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properties. The RMSE and MAE of the bulk modulus prediction
models decrease as the sample size increases. The RF models
utilizing the one-hot andMagpie descriptors exhibit the highest
RMSE and MAE, indicating the largest deviation from actual
values in the prediction of bulk modulus. The models using
random and Oliynyk descriptors show a slight reduction in
RMSE and MAE, with their prediction accuracies being roughly
equivalent. Conversely, models with the mat2vec and Jarvis
descriptors result in a relatively lower MAE, and with the Jarvis
descriptor's RF model achieving the lowest RMSE and the
highest prediction accuracy. Therefore, we choose the Jarvis
descriptor for training the RF model and predicting the bulk
modulus of 123 non-equimolar HECs.
Fig. 4 (a) Comparison of DFT calculated bulk modulus and predicted bu
model using Jarvis descriptors; (b) comparison of DFT calculated bulk m
the well-trained RF model with Jarvis descriptors; (c) comparison of DFT
training (blue) and test (green) datasets with the RF model using Jarvis
predicted Young's modulus for 123 non-equimolar HECs using the well-t
model consists of 495 carbides, including 9 monocarbides, 108 binary ca
line y = x is plotted to show the deviation from perfect predictions.

© 2025 The Author(s). Published by the Royal Society of Chemistry
Fig. 4a illustrates the correlation between the RF model
predictions (using the Jarvis descriptor) for the bulk modulus of
495 carbides in both the training and test datasets and the bulk
modulus values calculated using DFT. The RF model achieved
a coefficient of determination (R2) value exceeding 0.99 on
training data and 0.96 on test data, with the root mean square
error (RMSE) and mean absolute error (MAE) of 1.9 GPa and
1.3 GPa on training data, indicating that the predicted bulk
modulus from the RF model closely matches the results from
DFT calculations. Aer conrming the prediction accuracy, the
trained RF model using Jarvis descriptors was employed to
predict the bulk modulus for 123 non-equimolar HECs, and the
results are shown in Fig. 4b. The prediction accuracy for the
lk modulus for both training (blue) and test (green) datasets with the RF
odulus and predicted bulk modulus for 123 non-equimolar HECs using
calculated Young's modulus and predicted Young's modulus for both
descriptors; (d) comparison of DFT calculated Young's modulus and
rained RFmodel with Jarvis descriptors. The dataset used to train the RF
rbides, 252 ternary carbides, and 126 equimolar quaternary HECs. The

Digital Discovery, 2025, 4, 264–274 | 269
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bulk modulus of 123 non-equimolar HECs signicantly
decreased compared to its performance on 495 carbides, with
an R2 of 0.78. Additionally, the RMSE and MAE of the model are
16.4 GPa and 14.0 GPa, respectively. As can be seen from Fig. 4b,
the predicted values of the RF model are in good agreement
with the DFT calculated results in the lowmodulus range (below
280 GPa). As the bulk modulus of carbides increases (280–
360Gpa), the predicted values of the RF model are signicantly
higher than those of DFT calculations. Fig. 4c shows the
performance of the RF model using Jarvis descriptors to predict
the Young's modulus compared with DFT calculation results for
495 carbides. The model achieved an R2 of 0.92 on the training
set, with an RMSE of 8.6 GPa and anMAE of 6.2 GPa. On the test
set, the R2 dropped to 0.75, with RMSE and MAE increasing to
18.7 GPa and 13.8 GPa, indicating better accuracy on the
training data but a decline on the test set. Then the trained RF
model was used to predict the Young's modulus of 123 non-
equimolar HECs and compared the results with DFT calcula-
tions, as shown in Fig. 4d. The predicted prediction accuracy of
the RF model on the 123 non-equimolar HECs was signicantly
reduced, with an R2 below 0.6, and an RMSE and MAE of
27.8 GPa and 21.6 GPa, respectively. The prediction error was
considerably higher than that on the training data, particularly
in the low modulus range (<430 GPa) and high modulus range
(>530 GPa), where data points became more scattered, and the
error was signicantly amplied when predicting the 123 non-
equimolar HECs. This may be attributed to overtting during
the RFmodel training, as the training dataset primarily consists
of low-dimensional carbides, while the trained RF model was
applied to predict the Young's modulus of 123 non-equimolar
HECs, the variations in composition ratios among these non-
equimolar HECs introduced more complex non-linear rela-
tionships, limiting the RF model's accuracy and generalization
ability. Consequently, the RF model was unable to capture the
initial correlations between elements as effectively as antici-
pated, leading to lower prediction accuracy for non-equimolar
HECs. The prediction results for the shear modulus are
provided in ESI S6.†

The CrabNet model was used to predict the elastic modulus
of 495 carbides and 123 non-equimolar HECs to compare its
prediction accuracy with that of the RF model as depicted in
Fig. 5. As shown in Fig. 5a, the prediction results of the CrabNet
model are quite consistent with the results of DFT calculations.
The predicted R2 of the bulk modulus exceeds 0.98 on both the
training data and test data, with an RMSE and MAE of 2.5 GPa
and 1.8 GPa, respectively, on the training set, which is compa-
rable to the prediction accuracy of the RF model. Fig. 5b
compares the prediction accuracy of the CrabNet model in
predicting 123 non-equimolar HECs and the results from DFT
calculations. The predicted R2, RMSE and MAE for bulk
modulus are 0.83, 11.5 GPa and 9.0 GPa, respectively. It is
evident that the prediction accuracy of the CrabNet model is
signicantly improved compared to that of the RF model,
particularly in overcoming the problem of overestimating
values in the high bulk modulus range encountered by the RF
model, and shows good agreement with the results of DFT
calculations, which avoids the overtting of the ML model and
270 | Digital Discovery, 2025, 4, 264–274
reduces the MAE and RMSE of the non-equimolar HECs in bulk
modulus prediction. Considering the limited experimental data
on non-equimolar high-entropy carbides (HECs), we compared
the bulk modulus of 123 non-equimolar HECs using DFT
calculations. The bulk modulus predicted using the CrabNet
model showed excellent agreement with the DFT calculations
(detailed data are provided in ESI S8†). Fig. 5c shows
a comparison between the CrabNet model's predictions and the
DFT calculated Young's modulus. The model achieves an R2

value of 0.77 on the training data, with an RMSE of 17.6 GPa,
and an MAE of 9.9 GPa. On the test data, the predicted RMSE
and MAE values are 17.37 GPa and 11.72 GPa, respectively.
Despite the CrabNet model showing a lower R2 on the training
data compared to the RF model, the higher R2 on the test data
indicates that the CrabNet model effectively overcomes the
overtting observed in the RF model. As depicted in Fig. 5d, the
prediction performance of the CrabNet model on 123 non-
equimolar HECs shows an R2 of 0.77, with RMSE and MAE
values of 21.0 GPa and 17.4 GPa. The CrabNet model shows
consistent prediction accuracy on the training data between the
495 carbides and the 123 non-equimolar HECs, with no signif-
icant decrease in R2. Additionally, there is no signicant severe
deviation in the high modulus range, and the RMSE and MAE
for non-equimolar HECs are also lower than the RF model's
results, indicating that the CrabNet model has better general-
ization ability than the RF model when extrapolated to quater-
nary non-equimolar HECs. This may be because the CrabNet
model, with a neural network architecture incorporating
transfer learning and self-attention mechanisms, can more
effectively handle the complex non-linear relationships and
data distribution variations in non-equimolar HECs. These
capabilities enable it to learn correlations among elements in
high-dimensional spaces, providing a powerful tool for
exploring the compositional space of HECs. The prediction
results for the shear modulus are provided in ESI S9.†
3.3 Prediction of new multicomponent HECs

Compared to the RF model, the CrabNet model demonstrates
superior performance in predicting the mechanical properties
of unknown non-equimolar HECs. A database was then built
with the predictions of the well-trained CrabNet model for 566
370 HECs based on ergodic combinations of 9 transition metal
elements (Ta, Zr, Hf, V, Nb, Ti, Mo, W, and Cr). According to
CrabNet's prediction results, the distributions of the Young's
modulus and hardness values of the non-equimolar HECs are
mapped in Fig. 6, and the points with different colors are used
to distinguish the elastic strain to failure related to H/E. Fieen
types of HECs with top Young's modulus, hardness and H/E are
highlighted. Ta24Hf3Nb2Ti3C32, Ta24Hf3NbTi4C32, Ta24Hf2-
NbTi5C32, Ta24Hf2Nb3Ti3C32 and Ta24Hf4NbTi3C32 exhibit the
unique mechanical properties of ultra-high Young's modulus
(>536 GPa), Ta24Hf5VNb2C32, Ta23Hf5VNb3C32, Ta23Hf4VNb4C32,
Ta19Hf5V4Nb4C32, and Ta24Hf4V2Nb2C32 are found to be the
hardest, with a predicted hardness greater than 29 GPa and
Zr24Hf4VTi3C32, Zr24HfV4Ti3C32, Zr18Hf2V11TiC32, Zr16Hf4V11-
TiC32, and Zr24Hf3VTi4C32 show good wear resistance due to the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (a) Comparison of DFT calculated bulk modulus and predicted bulk modulus for both training (blue) and test (green) datasets with the
CrabNetmodel; (b) comparison of DFT calculated bulk modulus and predicted bulk modulus for 123 non-equimolar HECs using the well-trained
CrabNet model. (c) Comparison of DFT calculated Young's modulus and predicted Young's modulus for both training (blue) and test (green)
datasets with the CrabNet model; (d) comparison of DFT calculated Young's modulus and predicted Young's modulus for 123 non-equimolar
HECs using the well-trained CrabNet model. The training dataset consists of 495 carbides, including 9 monocarbides, 108 binary carbides, 252
ternary carbides, and 126 equimolar quaternary HECs. The line y = x is plotted to show the deviation from perfect predictions.
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high H/E (>0.06). Notably, the HECs containing more Ta
elements exhibit higher Young's modulus and hardness, which
is consistent with the analysis of previous DFT calculation
results, suggesting that the introduction of Ta can effectively
improve the mechanical properties of HECs. Contrary to
expectations, high Young's modulus and high hardness did not
result in high wear resistance, the H/E of HECs with the metal
Zr tended to be higher than those without it, which implies that
Zr can enhance the wear resistance of HECs, although previous
calculations show that it has an insignicant effect on Young's
modulus. The research results of Medveď et al. 41 also conrmed
that Zr-based composites have higher wear resistance. The
addition of a small amount of the Hf element has a positive
effect on increasing the Young's modulus, hardness, and wear
© 2025 The Author(s). Published by the Royal Society of Chemistry
resistance of HECs simultaneously. Similarly, a small amount of
the V element enhances their hardness and wear resistance,
while a small amount of the Ti element improves the Young's
modulus and wear resistance. Our machine learning predic-
tions exhibit a remarkable consistency with DFT results
regarding the inuence of elements on mechanical properties,
which suggests that machine learning models adeptly capture
complex element interactions within high-dimensional
compositional spaces, enabling precise mechanical property
predictions solely based on composition. This work can effec-
tively reduce the research and development costs of HECs in the
early stage of design and is expected to be applied to other high-
entropy ceramic materials Fig. 6.
Digital Discovery, 2025, 4, 264–274 | 271
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Fig. 6 The predicted hardness against Young's modulus with a wear resistance evaluation indicator (H/E) for 466 370 kinds of novel non-
equimolar HECs by employing the well-trained CrabNet model. The blue stars mark the TOP5 HECs with the highest Young's modulus, the red
stars mark the TOP5 HECs with the highest hardness, and the yellow stars mark the TOP5 HECs with the best wear resistance.
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4 Conclusion

In this work, a powerful data-driven ML method for estimating
the mechanical properties of HECs based on data from HT-DFT
calculations is detailed and employed for the prediction of 566
370 new HECs. The ndings from HT-DFT calculations suggest
that the introduction of additional elements such as Ta, Nb, Ti,
and V may enhance the Young's modulus of HECs, and Zr-rich
HECs show good performance in wear resistance, which is re-
ected in the prediction results of the ML model. The RF model
and the CrabNet model are both trained to predict mechanical
properties for non-equimolar HECs using the compositional
features. The bulk modulus prediction accuracies of the Crab-
Net model and the RF model with Jarvis descriptors are
remarkably similar on equimolar HECs. However, for non-
equimolar HECs, the CrabNet model exhibits superior perfor-
mance in predicting bulk modulus, with an R2 of 0.85, and
RMSE andMAE values of 10.7 GPa and 8.8 GPa, respectively. For
272 | Digital Discovery, 2025, 4, 264–274
Young's modulus prediction, the CrabNet model's performance
on non-equimolar HECs is signicantly better than that of the
RF model, with RMSE and MAE values of 21 GPa and 17.4 GPa,
respectively, demonstrating better generalization ability and
capacity to handle complex nonlinear relationships. The
trained CrabNet model was employed to predict the mechanical
properties of 566 370 HECs, including Young's modulus, hard-
ness, and wear resistance. Fieen novel HECs with the best
mechanical properties were identied, including Ta24Hf3Nb2-
Ti3C32 with the highest Young's modulus of 537.4 GPa, Ta24-
Hf5VNb2C32 with the highest hardness of 29.4 GPa, and
Zr24Hf4VTi3C32 with the best performance in wear resistance.

Our work aims to predict the mechanical properties of
materials with arbitrary compositions, focusing on the intrinsic
correlations among elements and avoiding complex structure-
based descriptors, using the chemical formula as input.
However, the valence electron concentration (VEC) of high-
entropy materials profoundly inuences their mechanical
© 2025 The Author(s). Published by the Royal Society of Chemistry
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properties. In future research, we hope to incorporate more
features based on chemical formulae to enhance the predictive
accuracy of machine learning models. Additionally, the impact
of compositional variations of elements on predictive accuracy
is signicant, as even a small amount of addition can
substantially affect mechanical properties in doping. Our
research provides a new path and theoretical basis for the
development of high-entropy ceramics (HECs), showing
potential applications to other high-entropy materials.

Data availability

The data that support the ndings of this study are openly
available on GitHub, at https://github.com/ZhaoXi1209/HECs-
Mechanical-Properties-prediction. The Composition-based
Feature Vectors (CBFVs) used in this study were constructed
using methods detailed in the repository BestPractices (https://
github.com/anthony-wang/BestPractices/tree/master/
notebooks). The version of the CrabNet model used in this
study can be found in the CoCoCrab repository (https://
github.com/AndrewFalkowski/CoCoCrab/tree/main). For
additional details or to request specic datasets or codes used
in the study, please contact the corresponding author at
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1 Y. Wang, T. Csanádi, H. Zhang, J. Dusza, M. J. Reece and
R.-Z. Zhang, Enhanced Hardness in High-Entropy Carbides
through Atomic Randomness, Adv. Theory Simul., 2020, 3,
2000111.
© 2025 The Author(s). Published by the Royal Society of Chemistry
2 Z. Wen, Z. Tang, H. Meng, L. Zhuang, H. Yu and Y. Chu,
Ultrafast synthesis of high-entropy carbides up to 3,273 K
for superior oxidation resistance, Cell Rep. Phys. Sci., 2024,
5, 101821.

3 M. A. Tunes, S. Fritze, B. Osinger, P. Willenshofer,
A. M. Alvarado, E. Martinez, A. S. Menon, P. Ström,
G. Greaves and E. Lewin, and others, From high-entropy
alloys to high-entropy ceramics: The radiation-resistant
highly concentrated refractory carbide (CrNbTaTiW) C, Acta
Mater., 2023, 250, 118856.

4 S. Kavak, K. G. Bayrak, M. Bellek, S. Mertdinç, F. Muhaffel,
H. Gökçe, E. Ayas, B. Derin, M. L. Öveçoğlu and
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J. Dusza, Wear resistance of ZrB2 based ceramic
composites, Int. J. Refract. Met. Hard Mater., 2019, 81, 214–
224.
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00243a

	Predicting mechanical properties of non-equimolar high-entropy carbides using machine learningElectronic supplementary information (ESI) available:...
	Predicting mechanical properties of non-equimolar high-entropy carbides using machine learningElectronic supplementary information (ESI) available:...
	Predicting mechanical properties of non-equimolar high-entropy carbides using machine learningElectronic supplementary information (ESI) available:...
	Predicting mechanical properties of non-equimolar high-entropy carbides using machine learningElectronic supplementary information (ESI) available:...
	Predicting mechanical properties of non-equimolar high-entropy carbides using machine learningElectronic supplementary information (ESI) available:...
	Predicting mechanical properties of non-equimolar high-entropy carbides using machine learningElectronic supplementary information (ESI) available:...
	Predicting mechanical properties of non-equimolar high-entropy carbides using machine learningElectronic supplementary information (ESI) available:...
	Predicting mechanical properties of non-equimolar high-entropy carbides using machine learningElectronic supplementary information (ESI) available:...

	Predicting mechanical properties of non-equimolar high-entropy carbides using machine learningElectronic supplementary information (ESI) available:...
	Predicting mechanical properties of non-equimolar high-entropy carbides using machine learningElectronic supplementary information (ESI) available:...
	Predicting mechanical properties of non-equimolar high-entropy carbides using machine learningElectronic supplementary information (ESI) available:...
	Predicting mechanical properties of non-equimolar high-entropy carbides using machine learningElectronic supplementary information (ESI) available:...

	Predicting mechanical properties of non-equimolar high-entropy carbides using machine learningElectronic supplementary information (ESI) available:...
	Predicting mechanical properties of non-equimolar high-entropy carbides using machine learningElectronic supplementary information (ESI) available:...
	Predicting mechanical properties of non-equimolar high-entropy carbides using machine learningElectronic supplementary information (ESI) available:...
	Predicting mechanical properties of non-equimolar high-entropy carbides using machine learningElectronic supplementary information (ESI) available:...
	Predicting mechanical properties of non-equimolar high-entropy carbides using machine learningElectronic supplementary information (ESI) available:...


