
Digital
Discovery

PAPER

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d
on

 1
1/

21
/2

02
5

6:
07

:3
6

PM
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.

View Article Online
View Journal | View Issue
Paddy: an evolut
aDepartment of Chemistry, Purdue Univers

47907, USA. E-mail: gchopra@purdue.edu
bPurdue Institute for Drug Discovery, West L
cPurdue Center for Cancer Research, West L
dPurdue Institute for Inammation, Imm

Lafayette, IN 47907, USA
ePurdue Institute for Integrative Neuroscienc
fRegenstrief Center for Healthcare Engineeri
gDepartment of Computer Science (by courte

47907, USA

† Electronic supplementary informa
https://doi.org/10.1039/d4dd00226a

‡ These authors share equal contribution

Cite this: Digital Discovery, 2025, 4,
1352

Received 10th July 2024
Accepted 21st March 2025

DOI: 10.1039/d4dd00226a

rsc.li/digitaldiscovery

1352 | Digital Discovery, 2025, 4, 135
ionary optimization algorithm for
chemical systems and spaces†

Armen G. Beck, ‡a Sanjay Iyer,‡a Jonathan Finea and Gaurav Chopra *abcdefg

Optimization of chemical systems and processes have been enhanced and enabled by the development of

new algorithms and analytical approaches. While several methods systematically investigate how underlying

variables correlate with a given outcome, there is often a substantial number of experiments needed to

accurately model such relationships. As chemical systems increase in complexity, algorithms are needed

to propose experiments that efficiently optimize the underlying objective, while effectively sampling

parameter space to avoid convergence on local minima. We have developed the Paddy software

package based on the Paddy field algorithm, a biologically inspired evolutionary optimization algorithm

that propagates parameters without direct inference of the underlying objective function. We

benchmarked Paddy against several optimization approaches: the Tree of Parzen Estimator through the

Hyperopt software library, Bayesian optimization with a Gaussian process via Meta's Ax framework, and

two population-based methods from EvoTorch—an evolutionary algorithm with Gaussian mutation, and

a genetic algorithm using both a Gaussian mutation and single-point crossover—all representing diverse

approaches to optimization. Paddy's performance is benchmarked for mathematical and chemical

optimization tasks including global optimization of a two-dimensional bimodal distribution, interpolation

of an irregular sinusoidal function, hyperparameter optimization of an artificial neural network tasked

with classification of solvent for reaction components, targeted molecule generation by optimizing input

vectors for a decoder network, and sampling discrete experimental space for optimal experimental

planning. Paddy demonstrates robust versatility by maintaining strong performance across all

optimization benchmarks, compared to other algorithms with varying performance. Additionally, Paddy

avoids early convergence with its ability to bypass local optima in search of global solutions. We

anticipate that the facile, versatile, robust and open-source nature of Paddy will serve as a toolkit in

chemical problem-solving tasks towards automated experimentation with high priority for exploratory

sampling and innate resistance to early convergence to identify optimal solutions.
Introduction

Optimization is used ubiquitously across the chemical sciences,
from synthetic methodology,1–3 chromatography4–6 conditions,
calculating transition state geometry,7 to selecting materials
and drug formulations.8–11 Typically, several parameters or
ity, 720 Clinic Drive, West Lafayette, IN

afayette, IN 47907, USA

afayette, IN 47907, USA

unology and Infectious Disease, West

e, West Lafayette, IN 47907, USA

ng, West Lafayette, IN 47907, USA

sy), Purdue University, West Lafayette, IN

tion (ESI) available. See DOI:

to this work.

2–1371
variables need to be optimized either by human chemists using
chemical intuition or computational methods to identify suit-
able conditions.12–14 The development of automated optimiza-
tion procedures for repetitive human tasks in chemical
sciences, such as shimming,15 chromatograph peak assign-
ment16 and developing bioanalytical workows,17 have saved
time and resources. Several chemical optimization methods
have been used iteratively in a task-specic manner to optimize
an objective to model or select experimental conditions for
chemical and biological processes.18–28 However, iterations with
stochastic optimization algorithms have been shown to provide
an alternative to deterministic algorithms for nding optimal
solutions.29–32 A well-known example is the use of stochastic
gradient descent algorithms that outperform gradient
descent.33 Several articial intelligence and machine learning
(AI/ML) architectures have been used in the chemical sciences
where stochastic optimization algorithms are needed for train–
validate–test cycles.34,35 These AI/ML algorithms are used in
several areas of the chemical sciences, such as retrosynthesis,36
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d4dd00226a&domain=pdf&date_stamp=2025-05-09
http://orcid.org/0009-0006-2193-0807
http://orcid.org/0000-0003-0942-7898
https://doi.org/10.1039/d4dd00226a
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00226a
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD004005

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d
on

 1
1/

21
/2

02
5

6:
07

:3
6

PM
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
reaction condition prediction,37–40 catalyst design,41,42 drug
design,43–46 spectral interpretation,47–49 retention time predic-
tion,50 and for molecular simulations.51–53 Specic generative
neural network architectures have also been used for inverse
design54,55 and property-specic generation of molecules.43,56–58

For optimization tasks related to laboratory automation, that
use closed-loop procedures, several methods have been devel-
oped59 including active learning using neural networks.60,61 In
addition, the use of Bayesian methods,62,63 genetic algorithms64

and other iterative optimization methods65 have resulted in
useful chemical outcomes without the use of prior learning.

Evolutionary algorithms are a class of optimizationmethods,
inspired by biological evolution, that use a starting set of
possible solutions (seeds) to the problem that are then evalu-
ated using a ‘tness (objective) function’ to iteratively ‘evolve’
a population of solution vectors towards optimal solutions.
Using directed sampling to maximize a tness function,
evolutionary optimization algorithms propagate parameters to
nd the set of optimal solutions for a given problem. Several
types of evolutionary algorithms include, genetic algorithms,
evolution strategies, differential evolution, and estimation of
distribution algorithms.66 The propagation between iterations
use (meta)heuristic approaches with a set of rules that include
simulated annealing,67 genetic algorithms,68 Tabu search,69 hill
climbing methods,70 and particle swarm66,71 to name a few.

For evolutionary algorithms, it is primarily the development
of selection and mutation operators,72–74 and genetic/crossover
operators for genetic algorithms,75 that dene their behavior
and delineate them from each other. Additionally, to promote
diversity or exploit successful solution space, methods called
niching can leverage the density of solution vectors.76 In
contrast to population-based evolutionary algorithms, Bayesian
methods lend to directed optimization, guided by sequential
updates of a probabilistic model and inferring the return on
sampling, oen via an acquisition function.77 Furthermore,
Bayesian optimization methods have also been reported in the
chemical literature for the optimization of neural networks,39

generative sampling,78,79 and as a general-purpose optimizer for
chemistry.62,80,81 Generally, Bayesian optimization is favored
when minimal evaluations are desired, as the computational
costs may be considerable for larger and complex search spaces.

Herein, we have implemented a new class of evolutionary
algorithm, the Paddy eld algorithm (PFA)82 as a Python library,
named Paddy. Paddy includes heuristic methods that operate
on a reproductive principle dependent on solution tness and
the distribution of population density among a set of selected
solutions. While evolutionary algorithms tend to differ based on
how candidate solution vectors are selected and mutated or
dispersed, it is the density-based reinforcement of solutions
that distinguishes PFA. By considering the density of selected
solution vectors, or plants, Paddy will have more offspring
produced where higher densities of selected solution vectors
are, in a step aptly named pollination. Unlike niching-based
genetic algorithms, Paddy allows a single parent vector to
produce a number of children, via Gaussian mutations, based
on both its relative tness and the pollination factor drawn
from solution density. Additionally, a modied selection
© 2025 The Author(s). Published by the Royal Society of Chemistry
operator has been introduced with Paddy such that users can
choose to only select and propagate from the current iteration
and not the entire population, which can be benecial for
chemical optimization.

In this work we show the advantages of using Paddy, when
compared to Bayesian-driven optimization83 implemented in
the Hyperopt library84 and BoTorch85 using the Ax platform, and
evolutionary and genetic algorithms using EvoTorch, with
random solutions as controls. We compared test cases for
accuracy, speed, sampling parameters and sampling perfor-
mance across various optimization problems. Specically, the
problems include identication of the global maxima of a two-
dimensional bimodal distribution, interpolation of an irregular
sinusoidal function, hyperparameters optimization of a neural
network trained on chemical reaction data, and comparison of
performance for targeted molecule generation using a junction-
tree variational autoencoder. Additionally, we demonstrate that
Paddy can be used to optimally select experimental conditions.
Overall, Paddy oen outperforms or performs on par with
Bayesian informed optimization and resulted in robust identi-
cation of solutions, with markedly lower runtime. Further-
more, Paddy was designed with user experience in mind,
including features to save and recover Paddy trials. We provide
complete documentation and code via GitHub (https://
github.com/chopralab/paddy) to encourage others to use and
extend Paddy for their chemical optimization tasks. We hope
that chemists will nd Paddy well suited for optimization
across cheminformatic settings and mid to high-throughput
experimentation.

Methods
Formulation of the Paddy eld algorithm (PFA)

The PFA was inspired by the reproductive behavior of plants
that is based on the relationship of soil quality, pollination, and
plant propagation to maximize plant tness. The PFA proceeds
without knowing this underlying relationship to iteratively
optimize a tness (objective) function using a ve-phase process
(a–e, Fig. 1). First, for any objective (tness) function, y = f(x),
with dependent parameters (x) of n-dimensions, PFA treats
individual parameters x = {x1, x2, ., xn} as seeds to dene
a numerical propagation space. Next, these seeds are converted
to plants by evaluating the objective (tness) function, y = f(x),
at the respective seed values. The resulting evaluation provides
plant tness score values, thereby assessing soil quality.
Parameters (xH ˛ x) that result in plants of high tness (yH ˛ y)
are further evaluated and selected for seeding and propagation
(y* ˛ yH). The number of neighboring plants and their tness
scores determine the number of seeds in each round (s)
produced by a plant selected for propagation (y* ˛ yH), thereby
directing plant density mediated pollination. The parameter
values (x*˛ x) for selected plants are thenmodied by sampling
from a Gaussian distribution. We provide the details of the ve-
phase process (a–e) as follows:

(a) Sowing: the Paddy algorithm is initiated with a random
set of user dened parameters (x), as starting seeds for evalua-
tion. The exhaustiveness of this rst step largely denes
Digital Discovery, 2025, 4, 1352–1371 | 1353

https://github.com/chopralab/paddy
https://github.com/chopralab/paddy
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00226a

Fig. 1 Overview of the Paddy field algorithm. Paddy is initiated by the sowing step (a) where objective function parameters, arbitrary in
dimensionality, are randomly sown as the initial population of seeds. After evaluation of the seeds, the selection step (b) applies a selection
operator to select a, user defined, number of top performing plants to further propagate. The seeding step (c) then calculates how many seeds
a selected plant should respectively generate as to account for fitness across parameter space, such as fertility of soil determines the number of
flowers a plant can grow. The pollination step (d) then reinforces the density of selected plants by eliminating seeds proportionally for those with
fewer than the maximum number of neighboring plants within Euclidian space of the objective function variables. The sowing step (e) then
assigns new parameter values to pollinated seeds by randomly dispersing across a Gaussian distribution, with the mean being the parameter
values of the parent plant. The algorithm terminates (f) after converging or running for the number of iterations set.

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d
on

 1
1/

21
/2

02
5

6:
07

:3
6

PM
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
downstream processes involved in propagation of solution
vectors. While very large sets of x will give Paddy a strong
starting point, there is a cost tradeoff that should be considered.
Conversely, lowering the number of seeds in x may hinder the
exploratory behavior of Paddy. However, as the ve-phase
process repeats, the topology of the objective function and
parameters will dictate the behavior of Paddy.

(b) Selection: the tness function, y = f(x), is evaluated for
the selected set of seed parameters (x), converting seeds to
plants. A user-dened threshold parameter (H) that denes the
selection operator which selects the number of plants based on
the sorted list of evaluations (yH) for respective seeds (xH). These
function evaluations can also be taken from previous iterations,
for further propagation (eqn (1)).

f(x) = y = {ymin, ., ymax},

H[y] = H[f(x)] = f(xH) = yH = {yt, ., ymax} c xH ˛ x, yH ˛ y

(1)

where yH is the sorted list of function evaluations (selected
plants) from all current and previous evaluations y satisfying
the thresholdH for the set of seeds or parameters xH that belong
to all parameters x. Within subsequent sections of this manu-
script, yt denotes the integer value for the threshold parameter
that denes the number of plants for selection.
1354 | Digital Discovery, 2025, 4, 1352–1371
(c) Seeding: the selected plants, y* ˛ yH, are used to calculate
the number of potential seeds (s) for propagation as a fraction of
user-dened maximum number of seeds (smax) given their min–
max normalized tness values (eqn (2)).

s = smax([y* − yt]/[ymax − yt]) c y* ˛ yH (2)

s is the number of seeds for selected plants (function evalua-
tion) y* that belongs to the sorted (yt minimum to ymax

maximum) list of plants satisfying the threshold yH. Note that
the Paddy soware uses the variable Qmax in the code for what is
denoted as smax in this manuscript.

(d) Pollination: this step is related to clustering based on
density of all selected plants y* ˛ yH (function evaluation) such
that the number of seeds to be dispersed by plants (new
parameters x to be evaluated) is dependent on the number of
neighbors to y*. The number of neighbors, n, is used to calculate
the pollination term U (eqn (3)) that ranges from 0.368 (inverse
of Euler's number, e−1) to 1 (e0). The total number of pollinated
seeds, S, to be subsequently propagated is the product of
pollination term U and the number of seeds for selected plants s
(eqn (4)).

U ¼ e
n

nmax
�1

h i
(3)

S = U × s (4)
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00226a

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d
on

 1
1/

21
/2

02
5

6:
07

:3
6

PM
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
where the number of neighbors n (eqn (5)) is dened as the
number of selected plants or function evaluations y*= f(xk)˛ yH
at xk ˛ xH within the radius (r) of the plant or function evalua-
tion f(xj) being considered at xjH xks xjc xi, xk˛ xH. When the
absolute distance between plants (function evaluations) is less
than the user dened hyperparameter r, they are all considered
as neighbors (eqn (5)). To this end, the number of neighbors
affects pollination term U in eqn (4) where term U = 1 for
maximum number of neighbors nmax and reduced to 0.368
(inverse of Euler's number, e−1) for no neighbors, n = 0.

n= jnj, n= {xk˛ xHjkxj− xkk− r < 0, y*= f(xk)˛ yH, xks xj}(5)

(e) Dispersion: for each plant (function evaluation) with
pollinated seeds, the parameter values for new seeds are
initialized by sampling a Gaussian distribution where the
parameter values of the parent plant dene the mean of the
Gaussian distribution for each parameter. The standard devia-
tion (s) is a hyperparameter that affects the dispersion of seeds
(conditions) around each selected plant.

The steps a–e are then repeated until the desired number of
iterations or specic termination conditions are met.

Implementation and extension of the Paddy eld algorithm

We have implemented the PFA algorithm and extended it with
new features for chemical optimization problems. We have
modied PFA82 such that the threshold parameter (H) may be
adjusted based on the user dened random seeds during
initiation. This allows for maximum exibility in selecting seeds
and threshold to allow for cases when the number of random
seeds are lower than the threshold during initiation of PFA.
Specically, during initiation if the number of seeds is lower
than threshold number to select the seeds for the next round,
the value of H is equal to the rounded whole number of 75% of
the number of random seeds dened by the user. In addition,
the neighborhood function is modied in the pollination phase
to mitigate early termination of the algorithm. For Paddy, we
use Euclidean distance to determine the spatial distance
between plants. The neighborhood function is dependent on
the radius parameter that can result in early termination of the
algorithm, in that the plants produce zero new seeds due to the
user dened radius resulting in zero neighbors. To prevent
unwanted terminations, we have formulated the neighborhood
function with an adaptive radius to mitigate early termination.
If the initial evaluation calculates zero neighbors, the 0.75th
quantile for the distance between plants is used as the radius
parameter. If the 0.75th quantile radius results in zero neigh-
bors being assigned, the quantile value is iteratively decreased
by 0.05 until a nonzero number of neighbors is assigned to
a plant. If the 0.05th quantile fails to generate neighbors, each
plant is evaluated as having one neighbor, effectively dropping
the pollination term for the given iteration.

The termination condition is dened for equal values of yt
and ymax. Additionally, in Paddy, the standard deviation
parameter used for the dispersion phase is dened as 0.2. To
provide exibility to the user, modications to the algorithm
have been introduced in Paddy that facilitate alternative
© 2025 The Author(s). Published by the Royal Society of Chemistry
dispersion behavior, in addition to an alternative formulation
of the selection phase which is described in the subsequent
section.

We have introduced several alternative methodologies to
provide users greater exibility to control different features of
the algorithm that include:

� Population mode: the selection phase is as described for
the native PFA, where plants generated during any previous
iteration are considered. As mentioned previously, population
mode differs from the native PFA by having a exible threshold
parameter during, and only during, random initiation. The
originally dened threshold parameter is recovered aer the
rst iteration and remains static, as the full population of plants
will remain available for propagation. If the selected threshold
parameter is too large compared to the number of random
seeds dened during initiation, population mode may not
complete. This can result because the threshold parameter will
not auto-scale for low numbers of plants post random
initiation.

� Generational mode: the selection phase is modied such
that only plants generated by the previous iteration are
considered, rather than applying the threshold operator across
all plants evaluated. A exible threshold parameter is imple-
mented as previously described, as some iterations may yield
a number of seeds lower than the operator. The originally
dened threshold operator is recovered and otherwise used
each iteration.

� Scaled Gaussians: the standard deviation for the Gaussian
applied during dispersion is calculated with an inherited scaling
term (d) (eqn (6)). The scaling term is initiated as zero and
inherited in a variativemanner where new values are generated by
selecting from a Gaussian distribution, where the mean is the
current scaling term and the standard deviation being 0.2.

s = (0.210)d (6)

� Parameter type: the parameter type determines the
handling of values generated by Paddy where parameter types
are either a continuous value or an integer value that is rounded
aer being generated.

� Parameter limits: the explicit bounding of a parameter
value is supported by Paddy. Limits can be either one-sided or
two-sided. If parameter values are generated outside set limits,
they are clamped to the limit value.

� Parameter normalization: parameters with two-sided limits
can be normalized during the dispersion phase via min–max
normalization with limit values.

Min/max optimization of a two-dimensional bimodal
distribution

Determining the optimal min/max solutions is a fundamental
problem in chemical sciences when the relationship between
observable and dependent parameters are unknown. We eval-
uated the Paddy evolutionary algorithm, EvoTorch's evolu-
tionary algorithm (EA) and genetic algorithm (GA),86 as well as
two Bayesian optimization methods including BoTorch85 via
Meta's Ax framework and Hyperopt84 to nd the maxima for
Digital Discovery, 2025, 4, 1352–1371 | 1355

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00226a

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d
on

 1
1/

21
/2

02
5

6:
07

:3
6

PM
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
a bimodal function using two parameters (x, y). Each algorithm
was run 100 times with random initial seeds to test for
robustness of the results. A solution was considered to have
found the global maximum if it obtained a score greater than
0.81.

Hyperopt was run using the Tree-structured Parzen Esti-
mator for 500 evaluations, and changed (x, y) parameters using
‘hp.uniform’ to propagate values between 0 and 1. Additionally,
Meta's Ax framework was congured with a generation strategy
that began with a Sobol sequence (SOBOL) for initial random
exploration, conducting 200 trials with a maximum parallelism
of 10, followed by Gaussian Process-based Expected Improve-
ment (GPEI) for Bayesian optimization for the remaining 300
trials with a maximum parallelism of 20.

Paddy was run in generational mode with scaled Gaussian
type setting and each (x, y) parameter limits of 0 and 1 that was
randomly propagated with 0.01 resolution within the limits.
‘PFARunner’ parameters were set where: the number of random
seeds as 50, the threshold number (yt) as 50, and the maximum
number of seeds (Qmax) as 100, radius (r) as 0.02, and iterations
being 5.

The optimization was performed using EvoTorch with two
different approaches: an evolutionary algorithm and a genetic
algorithm. The searcher function was congured using the
‘GeneticAlgorithm’ class, which contained the ‘GaussianMuta-
tion’ operator for mutation and the ‘OnePointCrossover’ oper-
ator for crossover in the genetic algorithm setup. Both
congurations used a population size of 200 and ran for 5
generations, with each experiment repeated 100 times. The
Evolutionary Algorithm implementation used ‘GaussianMuta-
tion’ with a standard deviation of 0.2. The ‘GeneticAlgorithm’

instance additionally employed ‘OnePointCrossover’ with
a tournament size of 4 for parent selection.
Gramacy & Lee interpolation

Interpolation of parameters is an important problem in chem-
ical sciences to robustly guide design of experiments condi-
tions. We used this “toy example” as a representation to
evaluate Paddy, Hyperopt, EvoTorch EA, EvoTorch GA, Ax, and
the random search algorithm in the same manner as done for
min/max optimization regarding environment, the number of
executions, and random seeds. Interpolation of the Gramacy &
Lee function was done using a 32nd degree trigonometric poly-
nomial with 65 coefficients values ranging between −1 and 1.
Interpolative performance was evaluated by calculating the
mean squared error between the Gramacy & Lee function and
generated trigonometric polynomials, between −0.5 and 2.5
with a resolution of 0.001. The random sampling algorithm was
used to generate the 65 coefficients using the NumPy ‘ran-
dom.uniform’ function, with 5000 evaluations per execution.

Hyperopt was run using the Tree-structured Parzen Esti-
mator for 1500 evaluations, and optimized the 65 coefficients
using the ‘hp.uniform’ to propagate values between −1 and 1.
Ax was run for 500 trials using Bayesian optimization with
a Gaussian process model due to run time constraints.
1356 | Digital Discovery, 2025, 4, 1352–1371
Paddy was run in Generational mode with the Gaussian type
set to default and with limits of −1 and 1, and randomly propa-
gated in range of the limits with a resolution of 0.05. ‘PFARunner’
parameters were set where: the number of random seeds as 25, yt
as 25, Qmax as 25, r as 0.02, and iterations being 10.

The EvoTorch EA implementation utilized the ‘Genet-
icAlgorithm’ class with a population size of 250 and the
‘GaussianMutation’ operator set to a standard deviation of 0.2.
The EvoTorch GA conguration also used the ‘GeneticAlgor-
ithm’ class but included two operators: the ‘OnePointCross-
Over’ operator with tournament selection size of 2 and the
‘GaussianMutation’ operator with standard deviation of 0.2,
maintaining the same population size.
Multilayer perceptron (MLP) hyperparameter optimization

Hyperparameter optimization is an important time-consuming
problem to identify the best parameters for training neural
networks. Training data was obtained from the Daniel Lowe87

repository (https://gshare.com/articles/dataset/Chemical_
reactions_from_US_patents_1976-Sep2016_/5104873) and
preprocessed. Briey, the initial subset of reaction SMILES was
generated by initially removing atom mapping, selecting
reaction strings containing solely solvents as agents, and by
associating ionic compounds with pseudo covalent bonds.
Additionally, reactions with more than four reagents, post
condensing of ionic pairs, or more than one product were
removed. The resulting subset contains 4994 reactions with 30
types of solvents, and were converted into bitvectors aer
separating the reaction components from their respective
solvent. The conversion to bitvectors was done using RDKit's
‘GetMorganFingerprintAsBitVec’ method88 to produce 2048
length Morgan Fingerprints89 using an atom radius of 2. The
bitvectors and solvent labels were then converted into arrays,
using one-hot encoding for solvent.

Machine learning was done using the PyTorch package for
generating and training the neural networks, and the scikit-
learn library for data splitting and performance assess-
ment.90,91 A multilayer perceptron neural network architecture
was built using Pytorch with two hidden layers. Each hidden
layer included a linear layer followed by ReLU activation and
a dropout layer. The input layer consisted of 2048 neurons,
followed by the rst and second hidden layers containing
between 300 to 3000 and 32 to 2000 neurons, respectively. The
output layer had 30 neurons. ‘CrossEntropyLoss’ was used as
the loss function, which combines the somax activation with
the negative log-likelihood loss. The model was optimized using
Adam, with a learning rate parameter (eps) set to 1 × 10−7.

The data preparation and loading process utilized PyTorch's
‘DataLoader’ to run the dataset in batches of 1000 during
training and validation. For each fold in the stratied k-fold
cross-validation, the training and validation sets were rst
wrapped in ‘TensorDataset’ objects, pairing the input features X
with their corresponding labels Y. These datasets were then
passed to ‘DataLoader’ instances with a batch size of 1000. The
training data loader used shuffling to randomize the order of
samples in each epoch.
© 2025 The Author(s). Published by the Royal Society of Chemistry

https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00226a

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d
on

 1
1/

21
/2

02
5

6:
07

:3
6

PM
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
Stratied k-fold validation was used of three-fold splitting of
training and validation data. Models were trained for ve
epochs, using batch sizes of 1000, with validation scores being
calculated as micro F1 scores. The F1 scores of the three
resulting models post three-fold cross validation were averaged
to provide a single value for the algorithms to optimize.

The hyperparameters of the two dropout terms, ranging
from 0–1, and the lengths of the hidden layers, 300–3000 and
32–2000 neurons for the rst and second layers respectively,
were each optimized over 100 trials using Paddy, Hyperopt, Ax,
EvoTorch EA, EvoTorch GA, and a random search algorithm.
The random search algorithm generated random dropout terms
and layer lengths using the NumPy ‘random.uniform’ and
‘random.randint’ functions, to propagate values for the dropout
and layer length terms within their appropriate ranges, for 200
evaluations.

Hyperopt was run with the Tree-structured Parzen Estimator
for 150 evaluations, and used the ‘hp.uniform’ and ‘hp.quni-
form’ functions for dropout and layer length value generation.
Ax was congured to perform Bayesian optimization of the
MLP's hyperparameters using the optimize function to maxi-
mize the F1 score over 150 trials.

Paddy was run in Generational mode with the Gaussian type
set to default and using normalization when generating
parameter values. Random propagation was done with dropout
values between 0–0.5 with 0.05 in resolution and layer lengths of
300–3000 and 32–500 with resolutions of 0.05 for the rst and
second hidden layers, and propagated within the parameter
limits for subsequent iterations. ‘PFARunner’ parameters were
set where: the random seed number as 25, yt as 5, Qmax as 10, r
as 0.2, and iterations being 7.

EvoTorch was congured with an initial hyperparameter
search space bounded by lower limits of [500, 0.0, 32, 0.0] and
upper limits of [1000, 0.5, 500, 0.5]. This search space was
subsequently expanded to lower bounds of [300, 0.0, 30, 0.0]
and upper bounds of [3000, 1, 2000, 1]. For EvoTorch's EA,
‘GeneticAlgorithm’ was initialized with a population size of 20
and employed the ‘GaussianMutation’ operator with a standard
deviation of 0.2 to explore the hyperparameter space. Addi-
tionally, EvoTorch's GA utilized the same ‘GeneticAlgorithm’

class and population size but also incorporated a ‘OnePoint-
CrossOver’ operator with a tournament selection size of 3
alongside the ‘GaussianMutation’ operator.
Junction tree variational autoencoder (JT-VAE) latent space
sampling

The JT-VAE pretrained models are available on GitHub (https://
github.com/wengong-jin/icml18-jtnn) that includes the Conda
environment and all Python 2 dependencies. Since JT-VAE
requires Python 2 environment, both Ax and EvoTorch were
not benchmarked. Using xed random seeds to ensure repro-
ducibility, latent vectors were decoded to generate SMILES
strings prior to evaluation. Fitness calculated using solely
Tversky Similarity, was done using the RDKit library, by con-
verting SMILES to RDKit mol structures and subsequently to
Morgan Fingerprints. The Morgan Fingerprints were generated
© 2025 The Author(s). Published by the Royal Society of Chemistry
with a bit radius of two, and length of 223 to minimize bit
collision incidents, via the ‘GetMorganFingerprintAsBitVect’
method. The Morgan Fingerprints of the generated SMILES and
Pazopanib molecule were then compared via Tversky Similarity
with coefficients a = 0.5 and b = 0.01. The a and b coefficients
were used to scale the relative complements of the Pazopanib
ngerprint in the generated ngerprint and vise versa respec-
tively. For the random sampling algorithm, it generated the tree
and graph latent vectors as two arrays, with a length 28 and with
values between −1 and 1, for 3500 evaluations. Hyperopt was
run similarly, generating the 56 values between −1 and 1 using
the ‘hp.uniform’ function, and set to evaluate 3500 times using
the Tree-structured Parzen Estimator. Paddy was run in both
Generational and Population mode, with the Gaussian type set
to scaled and with limits of−1 and 1, and randomly propagated
in range of the limits with 0.05 in resolution. ‘PFARunner’
parameters were set with the random seed number as 250, yt as
15, Qmax as 25, r as 5, and iterations being 30.

The trials were run using the multi-feature custom metric by
using the same parameters for Tversky Similarity. A custom
metric was developed using methods in the RDKit library by
modifying terms of the target chemical property function
described in the JT-VAE manuscript.92 Briey, the target chem-
ical property function, dened by Jaakkola et al., is the differ-
ence between the octanol–water partition coefficient (log P) of
a molecule, with the Synthetic Accessibility (SA) score and
number of cycles with an atom count greater than six (dened
as cycle variable) (eqn (7)). For our custom metric, we incorpo-
rated SA and cycle in addition to Tversky Similarity (TV),
ngerprint density (FD), number of rotatable bonds to dene
Rotatable Bond Score (RBS), the number of cycles to dene
Cycle Count Score (CCS), and number of on bits to dene Bit On
Score (BOS) (eqn (8)).

Tversky Similarity was calculated using the same parameters
as described previously. Fingerprint density was calculated
using the RDKit ‘FpDensityMorgan3’ function, which generates
Morgan Fingerprints as undened integer sparse bit vectors
with a bit radius of three and returns the quotient of on bits by
the number of non-hydrogen atoms in the molecule. Finger-
print density was used to promote structurally diverse mole-
cules. Rotatable bonds were enumerated for molecules via
RDKit, and used in a conditional manner to calculate a Rotat-
able Bond Score (RBS, see eqn (9)), and penalize long chain and
at molecules. The cycle calculation was expanded as to provide
a conditional Cycle Count Score (CCS, see eqn (10)) to promote
the generation of molecules between two and ve rings. The
RDKit method ‘GetMorganFingerprintAsBitVect’, which gener-
ates explicit bit vectors was employed with previously described
parameters, with the number of on bits (mb) used to penalize
molecules with less than 45 on positions as the Bit On Score
(BOS, see eqn (11)).

f(m) = logP − SA − cycle (7)

f *ðmÞ ¼ TV$FD2$BOS$0:1RBS$CCS$

�
1

SA
þ cycle

�
(8)
Digital Discovery, 2025, 4, 1352–1371 | 1357

https://github.com/wengong-jin/icml18-jtnn
https://github.com/wengong-jin/icml18-jtnn
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00226a

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d
on

 1
1/

21
/2

02
5

6:
07

:3
6

PM
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
RBSðmÞ ¼

8>><
>>:

2�mr; if mr# 2

mr� 5; if mr$ 7

0; if 2\mr\7

(9)

CCSðmÞ ¼

8>><
>>:

jmc� 2j; if mc# 2

jmc� 5j; if mc. 5
0; if 2\mc\6

(10)

BOSðmÞ ¼
(
0:6ðmb� 45Þ; if mb� 45\0

1; if mb$ 45
(11)

mr, rotatable bonds in a molecule m. mc, number of cycles in
a moleculem. mb, number of on bits in an explicit bit vector for
a molecule m.

Visualization of latent space

Libraries used for analysis and visualization, were UMAP and
Matplotlib respectively.93 The 56 values in the latent vectors
generated by Paddy were used as input features. The 56 length
vectors were then reduced viaUMAP to three components, while
setting the number of neighbors to 15 and minimum distance
between projected points to 0.5. All other parameters were set to
default values.

Simulated optimization of experimental conditions

Using experimental data from ligand-based pharmacokinetic
screening published in partnership with the pharmaceutical
company Merck Sharp & Dohme (MSD),17 we utilized Paddy for
the simulated optimization of assay conditions. This was done
where Paddy would optimize four experimental conditions:
biotinylated anti-idiotypic (anti-ID) antibody, Sulfo-Taged anti-
ID, the assay format, and concentration of antigen. With
these conditions being categorical in nature, they were
managed using the ‘NumericAssistant’ from the Paddy utils
library. This enables Paddy to sample from a continuous
parameter space while returning the index of nearest discrete
conditions. Additionally, the ‘NumericAssistant’ allows for
unique experiments, in that the same condition cannot be
selected more than once. Aer each round of experiments, the
metric values of experiments selected by Paddy are added to
a pool for updating the objective function between iterations. As
the number of iterations increases for Paddy, experiment index
values are used to recalculate and normalize the metric values
for the selected experiments. Normalized scores are updated
within the ‘PaddyRunner’ class prior to executing the PFA,
ensuring no information leakage from unseen experimental
values. A grid search across multiple yt and Qmax values was
performed to evaluate their impact on performance.

Paddy parameter grid searches

Grid searches were performed to evaluate the Qmax and yt
parameters from the Paddy algorithm on the Gramacy–Lee and
MLP benchmarks. Gramacy–Lee grid search used Qmax values
20, 25, 30, 40, 50, 75, 100, 200, 500, 1000 and yt values 10, 15, 20,
1358 | Digital Discovery, 2025, 4, 1352–1371
25, 30. The MLP grid search used Qmax values 10, 15, 20, 25, 30,
35, 40 and yt values 3, 4, 5, 6, 7. Each combination was evaluated
with ve repeats for both benchmarks. All other parameters
matched those used by the Paddy algorithm in the Gramacy–Lee
and MLP benchmarks methods section.

Hardware

All Gramacy Lee and MLP benchmarks were conducted on
Purdue University's high-performance computing cluster (HPC)
Gilbreth, specically run on “Node K”. Each Node K features 52
CPU cores with 512 GB system memory, 2 Nvidia A100 GPUs
with 80 GB of GPU memory per card. The node is inter-
connected via 100 Gbps Inniband, running on CentOS 7 with
Slurm batch scheduling.

The JT-VAE experiments were conducted on FP001, a Chopra
Lab server, which is equipped with an Intel Xeon E5-2690v4
processor running at 2.60 GHz with 56 cores and two Nvidia
GTX 1080 GPUs.

Results and discussion
Paddy identies correct global maxima of a two-dimensional
bimodal distribution

We employed a two-dimensional bimodal distribution function
with two parameters (x, y) to assess the performance of Paddy to
identify the global maximum, out of two maxima (Fig. 2a). The
slope of the global maximum is steeper than that of the local
maximum, presenting a challenge for global optimization as
there is a greater probability that initial sampling will occur
near the local maximum with rare events at the global maxima.
Paddy, Hyperopt, Ax, EvoTorch EA, EvoTorch GA, and random
were evaluated 100 times, with different starting conditions.
The global maxima was found in 74 trials with Paddy, 43 with
EvoTorch EA, 41 with EvoTorch GA, 13 with Hyperopt, 8 with Ax
and 27 with random (Fig. 2b–g). These results suggest that
evolutionary and genetic algorithms may be a more effective
approach than Bayesian-based algorithms for identifying rare
experimental events.

Interpolation of the Gramacy & Lee function using Paddy

To showcase the use of optimization problems to efficiently
sample several parameters, we used interpolation of the Gra-
macy & Lee function94 using a 65th degree trigonometric poly-
nomial, as an example to showcase a possible future application
in parameter selection for design of experiments. The perfor-
mance was evaluated as the mean squared error (MSE) between
the y values generated by the 65 tted polynomial coefficients
and the Gramacy & Lee objective function, where x ˛ [−0.5, 2.5]
and with a resolution of 0.001.

To assess the robustness of the algorithms, we evaluated the
performance of Paddy, Hyperopt, Ax, EvoTorch EA, EvoTorch
GA, and random sampling optimizations for 100 different runs.
The population-based algorithms evaluated the function over
10 generations, while the Bayesian methods Hyperopt and Ax
explored the search space over 1500 trials and 500 trials,
respectively. Random sampling was conducted with 1500 trials
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00226a

Fig. 2 Global optimization of unknown function example as (a) 2D bimodal distribution f(x, y) with a local maxima at (0.5, 0.5) and a global
maxima at (0.6, 0.1). Comparison of global maxima identification success rates across optimization algorithms over 100 runs without knowledge
of the underlying mathematical function: (b) Paddy (74%), (c) Hyperopt (13%), (d) EvoTorch EA (43%), (e) EvoTorch GA (41%), (f) Ax (8%), and (g)
random search (27%).

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d
on

 1
1/

21
/2

02
5

6:
07

:3
6

PM
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
for a baseline assessment. Fig. 3 illustrates the best MSE value
achieved in each generation by the population-based algo-
rithms. Although Paddy started with a higher initial MSE
compared to EvoTorch GA and EvoTorch EA, it rapidly improved
to match EvoTorch GA's performance by generation four and
surpassed EvoTorch by generation ve. Although EvoTorch GA
© 2025 The Author(s). Published by the Royal Society of Chemistry
remained competitive, it never exceeded Paddy's performance
in subsequent generations.

Paddy achieved lower MSEs compared to Hyperopt, Evo-
Torch EA, EvoTorch GA, and the random sampling algorithm.
However, Ax produced the best t interpolations, with an
average MSE of 0.085. These results were validated visually by
plotting interpolated functions (Fig. 3a and S1–6†). While Ax
Digital Discovery, 2025, 4, 1352–1371 | 1359

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00226a

Fig. 3 Interpolation of (a) Gramacy & Lee function overlaid with the best results from each algorithm. (b) Box plot showing the distribution of
mean squared error (MSE) scores for the Bayesian optimization algorithms Ax and Hyperopt across 500 and 1500 trials respectively. Trials are
grouped in bins of 50 on the x-axis. (c) Box plot of MSE values across population-based algorithms over 10 generations, with 100 repeats on the
Gramacy & Lee benchmark. Compared are Paddy, EvoTorch using an evolutionary algorithm (EA), and EvoTorch using a genetic algorithm (GA),
displayed in orange, purple, and pink respectively. (d) Scatter plot of best MSE scores (y-axis) vs. run time (x-axis) for 100 repeats across six
algorithms.

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d
on

 1
1/

21
/2

02
5

6:
07

:3
6

PM
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
achieved greater performance on this benchmark, it required an
average of 4595.75 s per repeat. In contrast, Paddy required
10.33 s per repeat, an approximately 444 times faster runtime.
Other population-based algorithms, EvoTorch GA and EvoTorch
EA, also exhibited rapid runtimes with average runtimes of
25.25 and 25.55 s, respectively. Meanwhile, Hyperopt main-
tained an average runtime of 185.06 s reecting the slower
performance observed among Bayesian optimization methods
for the Gramacy Lee benchmark. Lastly, relationship between
the yt and Qmax parameters and Paddy performance was inves-
tigated, with higher values found to trend with decreased MSE,
with an yt and Qmax of 25 and 500 resulting in an MSE of 0.60
(Fig. S7†).

These results highlight Paddy's light-weight computation
and performance, making it a suitable choice when low-cost
experimentation can be exploited (Table 1).
Table 1 Performance of on Gramacy & Lee Benchmarka

Algorithm Minimum MSE Mean MSE Mean repeat time (s)

Ax 0.019 0.086 � 0.043 4595.75 � 400.69
Paddy 1.962 3.441 � 0.651 10.33 � 0.48
EvoTorch (EA) 5.240 7.311 � 0.812 25.55 � 0.13
EvoTorch (GA) 2.934 3.939 � 0.443 25.25 � 0.50
Hyperopt 2.421 3.908 � 0.602 185.06 � 1.96
Random 7.688 9.661 � 1.010 0.80 � 1.48

a ± root mean squared error.

1360 | Digital Discovery, 2025, 4, 1352–1371
Paddy supports hyperparameter optimization of a multilayer
perceptron

The AI/ML architectures, such as articial neural networks have
been used extensively in cheminformatics, bioinformatics, and
computational chemistry/biology in recent years.34,35,46,95

However, training large AI/ML models present a major chal-
lenge for lowering computational costs for training/validation
to efficiently select hyperparameters96 while maintaining
performance of the models. To showcase an example of Paddy
for efficient use of hyperparameter optimization, we used
a multiplayer perceptron (MLP) with two hidden layers (Fig. 4a).
This MLP was designed as a multiclass classier trained to
classify reactions by selecting suitable solvent, such that the
reaction inputs were represented as Morgan Fingerprints were
trained with the output for one of 32 solvent labels. The average
F1 score resulting from 3-fold cross validation was used as the
objective function to sample hyperparameters. Specically, we
assessed the performance of Paddy, Hyperopt, Ax, EvoTorch EA,
EvoTorch GA, and random search to select the number of
neurons and the dropout rate for the two hidden layers. The
number of neurons is an integer in the range of 300–3000
neurons for the rst layer and 32–2000 neurons for the second
layer. Dropout is a real number between 0 and 1. The ability for
Paddy to conne the values used during random initiation was
employed to apply these constrains, with dropout values from
0–0.5 and lengths of 500–1000 and 32–500 neurons for the rst
and second hidden layers respectively. To showcase robustness
of the method, 100 trials of each method were done, and we
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00226a

Fig. 4 Hyperparameter optimization. (a) Optimization of hyperparameters for a neural network trained to predict solvent for the Morgan
Fingerprint of reaction components. The architecture of the neural network contained two hidden layers, with the length and dropout of each
layer being the objective function variables to optimize. (b) Box plot showing the distribution of F1 scores for the Bayesian optimization algo-
rithms Ax and Hyperopt across 150 trials. Trials are grouped in bins of 10 on the x-axis. (c) Box plot of F1 scores values across population-based
algorithms over 8 generations, with 100 repeats for the optimization of a multilayer perceptron. Compared are Paddy, EvoTorch using an
evolutionary algorithm (EA), and EvoTorch using a genetic algorithm (GA), displayed in orange, purple, and pink respectively. (d) Scatter plot of
best F1 scores (y-axis) vs. run time (x-axis) for 100 repeats across six algorithms.

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d
on

 1
1/

21
/2

02
5

6:
07

:3
6

PM
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
found both Paddy, Ax, Hyperopt outperformed the random
sampling algorithm, while EvoTorch EA and GA did not
(Table 2).

In this benchmark (Fig. 4b–d), both Bayesian-basedmethods
demonstrated strong performance, with Ax achieving the
highest average F1 score of 0.588 and Hyperopt with 0.574,
conrming the effectiveness of Bayesian approaches for MLP
hyperparameter optimization. Notably, Paddy achieved an
average F1 score of 0.580, which was 0.008 less than Ax, whereas
other evolutionary approaches, EvoTorch's evolutionary and
genetic algorithms, both attained markedly lower scores.

In the population-based algorithms, while the initial gener-
ation exhibited comparable performance scores across all three
algorithms, Paddy demonstrated a signicant performance
Table 2 Performance on multilayer perceptron hyperparameter optimiz

Algorithm Maximum F1 score Minimum F

Ax 0.592 0.584
Paddy 0.589 0.565
EvoTorch EA 0.436 0.390
EvoTorch GA 0.436 0.401
Hyperopt 0.585 0.541
Random 0.574 0.518

a ± root mean squared error.

© 2025 The Author(s). Published by the Royal Society of Chemistry
increase by generation 2 (Fig. 4c), quickly surpassing the Evo-
Torch algorithms. In subsequent generations, the performance
disparity between Paddy and the other population based algo-
rithms became increasingly pronounced with Paddy achieving
a mean F1 score of 0.580 (±0.004), outperforming EvoTorch EA
and EvoTorch GA by 40.4% and 37.1% respectively (0.413 ±

0.011 and 0.423 ± 0.008). Again, when concerning runtime,
Paddy outperformed Ax, with a 22% lower runtime on average.
When testing the performance of Paddy in relation to yt and
Qmax, the choice of parameterization again favored greater
values, and was able to yield F1 scores of 0.590 under multiple
conditions (Fig. S8†).

Overall, these results highlight Paddy's versatility. While it
shares evolutionary principles with EvoTorch's algorithms, it
ation benchmarka

1 score Mean F1 score Mean repeat time (s)

0.588 � 0.002 296.89 � 75.30
0.580 � 0.004 232.22 � 22.47
0.413 � 0.011 236.12 � 4.21
0.423 � 0.008 195.01 � 3.85
0.574 � 0.006 124.08 � 4.48
0.555 � 0.011 140.36 � 6.64

Digital Discovery, 2025, 4, 1352–1371 | 1361

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00226a

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d
on

 1
1/

21
/2

02
5

6:
07

:3
6

PM
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
performs comparably to Bayesian optimization methods for
hyperparameter tunning. Additionally, while Paddy produced
F1 scores marginally lower than Ax, runtime was signicantly
lower, again supporting its suitability for low-cost
experimentation.
Sampling latent space with Paddy for targeted molecule
generation

Another popular application of AI/ML models in chemical
sciences is the use of generative neural networks,97 where the
model learns the mapping between input and output from
random inputs. These models are then used to generate desired
outputs satisfying specic conditions such as experimental
conditions98 or molecular structures43,54,58 based on the
mapping of random input to the desired output from the
training set. For the task of molecule generation, a popular
neural network architecture employed are encoders and
decoders.57,58,99,100 An example of encoder/decoder architecture
is an autoencoder, a neural network that is trained to reduce
dimensionality of an input and subsequently generate an
output, that is ideally, identical to the initial input.101 The
portion of the network tasked with dimension reduction is the
encoder network, and the network that reconstructs the input
being the decoder network. Transient values feed forward
between the encoder and decoder, are oen referred to as either
latent representations or latent variables. Once trained,
autoencoders can then be used in a generative manner by
providing a latent representation as input to the decoder
network. Furthermore, targeted generation can be conducted
via sequential optimization of a latent vector, with examples of
this in drug discovery.43,57

While latent representations have been used for non-
generative tasks, the variational autoencoder (VAE) has
emerged as an architecture particularly well suited for genera-
tive tasks. This is due to the latent variables of VAEs being
regularized, as VAEs are trained to optimize the parameters for
encoding normal distributions and subsequently decode from
latent vectors propagated from these distributions. Regulariza-
tion of the latent space is further reinforced such that the
learned distributions are trained to t a standard normal
distribution, with a mean of 0 and standard deviation of 1, in
conjunction to input reconstruction delity. The regularization
of latent distributions results in continuous latent spaces with
minimized sparsity. Due to these features, VAEs are well suited
for generative tasks, where latent space sampling oen gener-
ates outputs similar in nature to those of neighboring latent
features.102

To showcase the ability of Paddy to optimally sample latent
space vectors, with the goal of target molecule generation, we
employed the junction tree VAE (JT-VAE) architecture.91 The JT-
VAE functions as a VAE while encoding and decoding molecular
graphs with a high degree of reconstructive accuracy. For this
case of targeted molecule generation, we utilized Tversky
Similarity103 and our own multi-feature objective function to
provide tness metrics for Paddy and Hyperopt (Fig. 5a). For the
following trials, we used Pazopanib as the target molecule of
1362 | Digital Discovery, 2025, 4, 1352–1371
interest, and a JT-VAE model trained with the ZINC dataset
directly taken from the JT-VAE repo.

We used Tversky (Index) Similarity to compare the associated
Morgan Fingerprints88 of generated molecules against Pazopa-
nib, and benchmarked both Paddy and Hyperopt against
a random sampling algorithm. Tversky Similarity is the gener-
alized form of Tanimoto Similarity, which are both similarity
measurers used to compare sets. Tversky Similarity and Tani-
moto Similarity differ where a and b coefficients are set to equal
1 for Tanimoto Similarity and are arbitrary for Tversky Simi-
larity (eqn (12)). For this instance, the sets are the Morgan
Fingerprints, with the bit values for hashed subgraphs being the
elements. Set X was the sampled ngerprint while Y was the
ngerprint of Pazopanib. The coefficients a and b were set to 0.5
and 0.01 respectively. The low value b was assigned to reduce
the penalty for Pazopanib subgraphs not being present in the
generated ngerprint.

S(X, Y) = jXXYj/(jXXYj + ajX\Yj + bjY\Xj) (12)

The molecule generated by the random sampling algorithm
with the greatest tness was then used as a baseline for
comparing the diversity of high similarity molecules generated
in turn by Paddy and Hyperopt. This approach for comparing
algorithm performance was also employed with the use of our
multi-feature objective. To provide further emphasis on drug
likeness for generated molecules our custom metric considered
in addition to Tversky Similarity: rotatable bonds, the number
of cycles, size of cycles, synthetic accessibility, the number of on
bits in Morgan Fingerprints, and the number of non-hydrogen
atoms (see Methods).

Results from generative sampling of latent space using the
two metrics described prior indicated that Paddy is well suited
for such a task. Paddy generated molecules with greater
maximal tness, less runtime, and a larger population of
molecules outperforming the random search solution than
Hyperopt. We found Hyperopt quickly optimizes latent space
sampling, though plateauing in performance, whereas Paddy
avoids early convergence (Fig. 5b and c). The top scoring
molecules generated by both algorithms managed to capture
the m-toluenesulfonyl moiety of Pazopanib, however the Tver-
sky Similarity metric rewarded generation of molecules with
little chemical diversity as to minimize dissimilarity (Fig. 5d),
which was mitigated by our custom metric (Fig. 5e). Analysis of
the SMILES strings generated by Hyperopt indicates that the
algorithm repeatedly samples latent space in the same location
aer nding a local solution. The convergent behavior of
Hyperopt is illustrated by having generated the same solution
249 times using Tversky Similarity (Table 3) and 586 times with
our custom metric (Table 4). The SMILES strings of solutions
generated by Paddy and Hyperopt can be found in the ESI
(Tables S1–6†).

Comparing the performance of Paddy, when run in genera-
tional mode versus population mode, we found the two modes
generate differing results while both outperforming Hyperopt.
When using Tversky Similarity, the two Paddy modes generated
a similar number of unique solutions, though generational
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00226a

Fig. 5 Overview of Paddy JT-VAE pipeline (a), where latent space vectors are optimized, such that when decoded to chemical junction trees,
generating molecules to maximize an objective function that incorporates a target molecule (Pazopanib). Tversky Similarity (b) and a multi-
featured objective function (c) trials are plotted as the running solution over runtime for Paddy and Hyperopt, where the highest scoring random
search solution is plotted as a dashed line for comparison. The top three molecules generated by Paddy (orange) and Hyperopt (blue) for the
Tversky Similarity (d) and multifeatured objective function (e) trials are displayed with their respective scores, with Pazopanib in red and the
random search solution bellow (gray).

Table 3 Performance using Tversky Similarity as objective function

Algorithm Paddy (population) Paddy (generational) Hyperopt Random

Best solution 0.778 0.776 0.702 0.699
Runtime (seconds) 1365 1441 2232 1171
Total evaluations 4107 3571 3500 3500
Unique solutions 20 25 14 —

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2025, 4, 1352–1371 | 1363

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d
on

 1
1/

21
/2

02
5

6:
07

:3
6

PM
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00226a

Table 4 Performance when using custom multifeature objective function

Algorithm Paddy (population) Paddy (generational) Hyperopt Random

Best solution 2.724 2.265 2.355 1.967
Runtime (seconds) 1317 1849 2120 1170
Total evaluations 3643 5035 3500 3500
Unique solutions 18 33 7 —

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d
on

 1
1/

21
/2

02
5

6:
07

:3
6

PM
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
mode resulted in solutions of lower similarity with slightly more
evaluations and runtime (Table 3). Using our custom metric,
generational mode again produced a top solution with a lower
score compared to populationmode and with a greater runtime.
However, generational mode yielded nearly twice the number of
unique solutions (Table 4).

For the optimizations using Tversky Similarity the behavior
of the two Paddy modes were more so analogous (Fig. 6a). While
the average performance per iteration for both modes was
nearly identical, the two diverged in terms of top seed perfor-
mance. Though generational mode produced solutions sooner
than population mode, population mode overtook the perfor-
mance of generational mode halfway through the run. A greater
discrepancy in general behavior was observed between the two
modes when using the multi-feature custom metric (Fig. 6b).
Solutions produced by generational mode displayed a greater
average tness per iteration, and the generational mode run
was only to be bested by population mode much closer to the
Fig. 6 Comparison of Paddy JT-VAE using population versus generatio
featured objective function (b) depict the performance as the top score e
(dashed colored) iteration. Scatter plots for the trials using Tversky Sim
instance of generating a molecule of a greater score than the maximal p
for respective metrics are presented as dashed grey lines. The top thre
objective function (e) are displayed with their respective score and deno

1364 | Digital Discovery, 2025, 4, 1352–1371
end of the run. As the custom-metric accounts for multiple
molecular features, this difference in performance may be
a result of population mode being better suited for rapid opti-
mization of relatively smooth response surfaces. Generational
mode, however, is inherently more explorative, as it does not
sow using the full population of seeds generated during a run.
This would lend to the notion of generational mode being better
suited for avoiding repeated sampling of local solutions.

Comparing the generation of solutions by population and
generational mode, previous insight regarding task specic
behavior can be further reinforced. Using Tversky Similarity, the
two Paddy modes display analogous behavior, as described in
prior, with both optimizing similarity between throughout the
run (Fig. 6c). Both modes display the same general trends in
optimization, generating solutions with increasing tness while
followed by discovery of lower scoring solutions. It is interesting
however, to note that there were only two identical solution
molecules generated by both algorithms. This low frequency of
nal modes. Line plots when using Tversky Similarity (a) and the multi-
valuated (solid colored) per iteration, and the average performance per
ilarity (c) and the multi-featured objective function (d) depict the first
erformance from random search. Random search performance values
e molecules generated in generational mode using the multi-feature
ted with asterisk on the scatter plot.

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00226a

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d
on

 1
1/

21
/2

02
5

6:
07

:3
6

PM
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
overlap using Tversky Similarity is contrasted by results from
using the multi-feature objective function, where various solu-
tions are both identical and, in some cases, generated by both
modes during the same Paddy iteration (Fig. 6d). The overlap in
generated solutions would indicate that both Paddy modes
sampled latent space in close spatial proximity in part, though
with generational mode having sampled both over a larger area
and generated a greater number of solutions. A uniform
manifold approximation and projection (UMAP)93 plot (Fig. 7)
supports this, with population mode and generational mode
diverging in latent space and generational mode covering
a wider area (ESI GIF†).

Overall, these ndings support that generational mode is
more explorative whereas population mode is more exploitative
for sampling. Additionally, multi-feature objective optimization
tasks highlight further disparity between number of unique
solutions generated by Paddy and Hyperopt optimization
methods. We believe this is based on the how these algorithms
operate, in that the expected improvement used by Hyperopt is
better suited for relatively smooth optimization functions that
can be easily modeled via Gaussian mixtures. Conversely, the
stochastic nature of Paddy is well suited for the rough topology
introduced by our multi-feature objective function, as it makes
no assumption regarding the underlying function being opti-
mized. This is important for chemical and biological optimi-
zation tasks as deviation from an underlying pattern is more
useful to explore for discovery.
Fig. 7 Visualization of the latent space sampled by Paddy in both
generational and population mode when using the multi-feature
objective function via UMAP. Shared seeds, due to both modes being
initiated with the same random variables, are depicted in purple, where
generational and population modes are magenta and blue respec-
tively. The greater area sampled by generational mode and its overlap
with population mode indicates a greater propensity for explorative
behavior during optimization, where population mode appears more
exploitive by comparison. This can be visualized best as a rotating gif
image provided on GitHub, https://github.com/chopralab/
ThePaddyManuscript/tree/master/JTVAE/Plotting/umap.gif.

© 2025 The Author(s). Published by the Royal Society of Chemistry
Simulated experimental planning

While not built directly for self-driving laboratories, the opti-
mization capabilities of Paddy can be extended to real world
experimentation. To date, we have utilized Paddy for human-in-
the-loop optimization of pulsed valve actuations for introducing
reagent into a mass spectrometer for gas-phase ion–molecule
reactions (https://github.com/chopralab/
cbm_ml_automation).104 We have also utilized Paddy for assay
optimization based on data collected from real
experimentation conducted by members of MSD's Department
of Pharmacokinetics, Pharmacodynamics and Drug
Metabolism.17 Here, we have performed simulated
optimization of pharmacokinetic (PK) assays using Paddy to
select experimental conditions (Fig. 8) and showcase its
performance by modifying user dened parameters, yt and
Qmax. Briey, for the PK study, electrochemiluminescence
assay conditions were screened such that 360 combinations
of, 6 Sulfo-Taged anti-idiotypic antibodies (anti-IDs), 5 bio-
tinylated anti-IDs, 6 assay formats, and 2 soluble antigen
concentrations were tested (Fig. 8a). These assay conditions
were each evaluated at three different magnitudes of drug
concentration, and evaluated for background, upper limit
tested sensitivity (100× drug), lower limit tested sensitivity (1×
drug), signal to noise (1× drug), and soluble antigen interfer-
ence (1×, 10×, & 100× drug), totaling to 10 analytical metrics
(Fig. 8b). The metric values for a collection of experiments can
be thought of in terms of objectives (i.e. lower backgrounds and
higher sensitivity). By normalizing metric values (with 1 as best
and 0 as worst) for a collection of experiments, a hypothetical
ideal set of values can be dened as a vector with all elements
being 1, with Euclidean distance from the ideal set becoming
a singular quantity for minimization (Fig. 8C).

We performed simulations to optimize the conditions for PK
assay, where Paddy selects experimental conditions. The
distance values are calculated based on the ‘observed’ experi-
ments at time of evaluation (Fig. 8D). Several yt and Qmax

parameter values in Paddy were used to further assess the
relationship with the mean number of experiments that is
required to identify the best set of conditions (Fig. 8E). We
found that a general trend of lower yt and Qmax values were
associated with less numbers of experiments to reach the best
set of assay conditions. Specically, Paddy reached the best set
of conditions with a mean of 60.38 experiments with yt = 5 and
Qmax = 10. Interestingly, across 100 repeated trials, we found
that fewer experiments can be used to identify optimal results
showcasing robustness of Paddy to achieve optimal results, as
outlined with benchmarking “toy” examples (Fig. 8F). Overall,
these results indicate that Paddy can be used with low values for
yt and Qmax to rapidly optimize experimental objectives.
Summary

We introduce an evolutionary algorithm, Paddy, as a python
library containing various methods based on the PFA, for facile,
versatile, and robust optimization of numeric parameters for
several applications. By considering the spatial distance of
Digital Discovery, 2025, 4, 1352–1371 | 1365

https://github.com/chopralab/cbm_ml_automation
https://github.com/chopralab/cbm_ml_automation
https://github.com/chopralab/Paddy_Manuscript_Repo/blob/main/Plotting/JTVAE_Sampling/umap.gif
https://github.com/chopralab/Paddy_Manuscript_Repo/blob/main/Plotting/JTVAE_Sampling/umap.gif
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00226a

Fig. 8 Optimization of pharmacokinetic assay conditions using Paddy. Electrochemiluminescence assays with various combinations of anti-IDs,
formats, and concentrations are screened in a high-throughput manner (a). 12 different analytical metrics are used to assess the performance of
assay conditions, where the objective is to holistically minimize or maximize certain quantities (b). To quantify performance, the results from
screening are used to construct an objective space, where values are normalized and the distance from the ideal combination of values is used to
form a distance metric (c). Paddy simulations are conducted where the objective space is regenerated based concurrently with experimental
conditions selected by Paddy (d). Simulations with varying yt and Qmax values are used to assess Paddy parameters and their relationship to
simulation performance, with the mean number of experiments needed to identify the best set of assay conditions displayed as a heatmap (e).
Histogram of 100 repeated simulations, displaying the number of experiments Paddy needs to reach the ideal experimental condition when yt
and Qmax are equal to 5 & 10 respectively (f).

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d
on

 1
1/

21
/2

02
5

6:
07

:3
6

PM
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
parameters and their evaluated performance, Paddy can effi-
ciently optimize a variety of systems without inferring the
underlying function. We have benchmarked Paddy against the
Tree-structured Parzen Estimator implemented in Hyperopt,
Bayesian optimization using a Gaussian process with the Ax
platform, and both evolutionary and genetic algorithms with
EvoTorch, and we have found Paddy to optimize with low run-
time while also avoiding early convergence on a local minimum/
maximum.

Meta's Ax and the Chopra Lab's Paddy algorithm both
excelled in the benchmark tests, making them strong choices
for optimization tasks in chemical sciences. Ax is particularly
1366 | Digital Discovery, 2025, 4, 1352–1371
effective for interpolation problems, while Paddy's low runtime
and robustness lends it to being well suited when the search
space is entirely unknown. In the context of cheminformatics,
we have shown Paddy to perform well with the tasks of hyper-
parameter optimization and targeted molecule generation.
Additionally, we have investigated the differences in behavior
between the native PFA Population mode and our variant,
Generational mode, and have shown our variant to be better
suited for explorative optimization while still retaining general
performance. Lastly, we have demonstrated the ability of Paddy
to optimize experimental conditions and parameter depen-
dence on search behavior. While Paddy may require more
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00226a

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d
on

 1
1/

21
/2

02
5

6:
07

:3
6

PM
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
sampling than Bayesian optimization methods, its markedly
lower runtime makes it particularly well suited for computa-
tional experiments and low cost high-throughput experiments.
We believe that these qualities make Paddy well suited for the
optimization of chemical systems of high dimensionality and
suitable for tasks such as inverse design of drug candidates and
autonomous closed-loop experimentation for high to mid
throughput experiments. Paddy is open source, and we
encourage others to use and improve upon the soware to meet
their experimental needs.
Data availability

All data and computer code related to the manuscript is avail-
able at https://github.com/chopralab/ThePaddyManuscript
(DOI: https://doi.org/10.5281/zenodo.15105999) to encourage
others to replicate our work. Complete documentation of the
computer code is also available on GitHub at https://
github.com/chopralab/paddy (DOI: https://doi.org/10.5281/
zenodo.15040660) for others to use and extend Paddy for their
chemical optimization tasks.
Conflicts of interest

Gaurav Chopra is the Director of Merck-Purdue Center funded
by Merck Sharp & Dohme LLC., a subsidiary of Merck & Co.,
Inc., Rahway, NJ, U.S.A. and the co-founder of Meditati Inc.,
BrainGnosis Inc. and LIPOS BIO Inc. All other authors declare
no competing nancial interests.
Acknowledgements

This work was supported, in part, by the NSF I/UCRC Center for
Bioanalytical Metrology (Award 1916991), Purdue Integrative
Data Science Institute award, the National Institutes of Health
(NIH) award, RF1MH128866 by National Institute of Mental
Health, and NIH National Center for Advancing Translational
Sciences award U18TR004146, Contract No. 75N95023F00017,
ASPIRE Challenge and Reduction-to-Practice awards and Ana-
lytiXIN (Analytics Indiana) Fellowship in Life Sciences to G. C.
The Purdue University Center for Cancer Research funded by
NIH grant P30 CA023168 is also acknowledged. The content is
solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health.
G. C. is the James Tarpo Jr and Margaret Tarpo Associate
Professor of Chemistry.
References

1 D. Berkowitz, M. Bose and S. Choi, In Situ Screening To
Optimize Variables in Organic Reactions, US Pat.,
6974665, 2005.

2 J. Fan, C. Yi, X. Lan and B. Yang, Optimization of Synthetic
Strategy of 40400(500)-Di- Tert -Butyldibenzo-18-Crown-6 Using
Response Surface Methodology, Org. Process Res. Dev., 2013,
17(3), 368–374, DOI: 10.1021/op3003163.
© 2025 The Author(s). Published by the Royal Society of Chemistry
3 V. Sans, L. Porwol, V. Dragone and L. Cronin, A Self
Optimizing Synthetic Organic Reactor System Using Real-
Time in-Line NMR Spectroscopy, Chem. Sci., 2015, 6(2),
1258–1264, DOI: 10.1039/C4SC03075C.

4 C. J. Welch and E. L. Regalado, Estimating Optimal Time for
Fast Chromatographic Separations, J. Sep. Sci., 2014, 37(18),
2552–2558, DOI: 10.1002/jssc.201400508.

5 J. L. Glajch, J. J. Kirkland, K. M. Squire and J. M. Minor,
Optimization of Solvent Strength and Selectivity for
Reversed-Phase Liquid Chromatography Using an
Interactive Mixture-Design Statistical Technique, J.
Chromatogr. A, 1980, 199, 57–79, DOI: 10.1016/S0021-
9673(01)91361-5.

6 A. M. Siouffi and R. Phan-Tan-Luu, Optimization Methods
in Chromatography and Capillary Electrophoresis, J.
Chromatogr. A, 2000, 892(1–2), 75–106, DOI: 10.1016/
s0021-9673(00)00247-8.

7 Y. Minenkov, Å. Singstad, G. Occhipinti and V. R. Jensen,
The Accuracy of DFT-Optimized Geometries of Functional
Transition Metal Compounds: A Validation Study of
Catalysts for Olen Metathesis and Other Reactions in the
Homogeneous Phase, Dalton Trans., 2012, 41(18), 5526,
DOI: 10.1039/c2dt12232d.

8 R. Chen, M. G. Christiansen and P. Anikeeva, Maximizing
Hysteretic Losses in Magnetic Ferrite Nanoparticles via
Model-Driven Synthesis and Materials Optimization, ACS
Nano, 2013, 7(10), 8990–9000, DOI: 10.1021/nn4035266.

9 A. Ziaee, D. Chovan, M. Lusi, J. J. Perry, M. J. Zaworotko and
S. A. M. Tofail, Theoretical Optimization of Pore Size and
Chemistry in SIFSIX-3-M Hybrid Ultramicroporous
Materials, Cryst. Growth Des., 2016, 16(7), 3890–3897, DOI:
10.1021/acs.cgd.6b00453.

10 C.-T. Chen, D. C. Chrzan and G. X. Gu, Nano-Topology
Optimization for Materials Design with Atom-by-Atom
Control, Nat. Commun., 2020, 11(1), 3745, DOI: 10.1038/
s41467-020-17570-1.

11 J. Fine, P. R. Wijewardhane, S. D. B. Mohideen, K. Smith,
J. R. Bothe, Y. Krishnamachari, A. Andrews, Y. Liu and
G. Chopra, Learning Relationships Between Chemical and
Physical Stability for Peptide Drug Development, Pharm.
Res., 2023, 40(3), 701–710, DOI: 10.1007/s11095-023-03475-
3.

12 E. A. C. Bushnell, T. D. Burns and R. J. Boyd, The One-
Electron Oxidation of a Dithiolate Molecule: The
Importance of Chemical Intuition, J. Chem. Phys., 2014,
140(18), 18A519, DOI: 10.1063/1.4867537.

13 G. M. Keser}u, T. Soós and C. O. Kappe, Anthropogenic
Reaction Parameters – the Missing Link between
Chemical Intuition and the Available Chemical Space,
Chem. Soc. Rev., 2014, 43(15), 5387–5399, DOI: 10.1039/
C3CS60423C.

14 J. G. Lombardino and J. A. Lowe, The Role of the Medicinal
Chemist in Drug Discovery-Then and Now, Nat. Rev. Drug
Discovery, 2004, 3(10), 853–862, DOI: 10.1038/nrd1523.

15 K. Yao, M. Liu, Z. Zheng, T. Shih, J. Xie, H. Sun and Z. Chen,
Automatic Shimming Method Using Compensation of
Magnetic Susceptibilities and Adaptive Simplex for Low-
Digital Discovery, 2025, 4, 1352–1371 | 1367

https://github.com/chopralab/ThePaddyManuscript
https://doi.org/10.5281/zenodo.15105999
https://github.com/chopralab/paddy
https://github.com/chopralab/paddy
https://doi.org/10.5281/zenodo.15040660
https://doi.org/10.5281/zenodo.15040660
https://doi.org/10.1021/op3003163
https://doi.org/10.1039/C4SC03075C
https://doi.org/10.1002/jssc.201400508
https://doi.org/10.1016/S0021-9673(01)91361-5
https://doi.org/10.1016/S0021-9673(01)91361-5
https://doi.org/10.1016/s0021-9673(00)00247-8
https://doi.org/10.1016/s0021-9673(00)00247-8
https://doi.org/10.1039/c2dt12232d
https://doi.org/10.1021/nn4035266
https://doi.org/10.1021/acs.cgd.6b00453
https://doi.org/10.1038/s41467-020-17570-1
https://doi.org/10.1038/s41467-020-17570-1
https://doi.org/10.1007/s11095-023-03475-3
https://doi.org/10.1007/s11095-023-03475-3
https://doi.org/10.1063/1.4867537
https://doi.org/10.1039/C3CS60423C
https://doi.org/10.1039/C3CS60423C
https://doi.org/10.1038/nrd1523
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00226a

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d
on

 1
1/

21
/2

02
5

6:
07

:3
6

PM
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
Field NMR, IEEE Trans. Instrum. Meas., 2021, 70, 1–12, DOI:
10.1109/TIM.2021.3074951.

16 J. Zhang, E. Gonzalez, T. Hestilow, W. Haskins and
Y. Huang, Review of Peak Detection Algorithms in Liquid-
Chromatography-Mass Spectrometry, Curr. Genomics,
2009, 10(6), 388–401, DOI: 10.2174/138920209789177638.

17 B. R. Evans, A. G. Beck, L. Yeung, A. Li, D. H. Lee,
K. P. Bateman and G. Chopra, Automated Bioanalytical
Workow for Ligand Binding-Based Pharmacokinetic
Assay Development, Anal. Chem., 2024, 96(1), 488–495,
DOI: 10.1021/acs.analchem.3c04589.

18 Q. Wu and W. Yang, Algebraic Equation and Iterative
Optimization for the Optimized Effective Potential in
Density Functional Theory, J. Theor. Comput. Chem., 2003,
02(04), 627–638, DOI: 10.1142/S0219633603000690.

19 J. Kong, J. P. Eason, X. Chen and L. T. Biegler, Operational
Optimization of Polymerization Reactors with
Computational Fluid Dynamics and Embedded Molecular
Weight Distribution Using the Iterative Surrogate Model
Method, Ind. Eng. Chem. Res., 2020, 59(19), 9165–9179,
DOI: 10.1021/acs.iecr.0c00367.

20 M. Piris and J. M. Ugalde, Iterative Diagonalization for
Orbital Optimization in Natural Orbital Functional
Theory, J. Comput. Chem., 2009, 30(13), 2078–2086, DOI:
10.1002/jcc.21225.

21 G. M. Ostrovsky, N. N. Ziyatdinov, T. V. Lapteva and
A. Silvestrova, Optimization of Chemical Process Design
with Chance Constraints by an Iterative Partitioning
Approach, Ind. Eng. Chem. Res., 2015, 54(13), 3412–3429,
DOI: 10.1021/ie5048016.

22 R. Varela, W. P. Walters, B. B. Goldman and A. N. Jain,
Iterative Renement of a Binding Pocket Model: Active
Computational Steering of Lead Optimization, J. Med.
Chem., 2012, 55(20), 8926–8942, DOI: 10.1021/jm301210j.

23 F. Qian, F. Sun, W. Zhong and N. Luo, Dynamic
Optimization of Chemical Engineering Problems Using
a Control Vector Parameterization Method with an
Iterative Genetic Algorithm, Eng. Optim., 2013, 45(9),
1129–1146, DOI: 10.1080/0305215X.2012.720683.

24 J. Zheng and M. J. Frisch, Efficient Geometry Minimization
and Transition Structure Optimization Using Interpolated
Potential Energy Surfaces and Iteratively Updated
Hessians, J. Chem. Theory Comput., 2017, 13(12), 6424–
6432, DOI: 10.1021/acs.jctc.7b00719.

25 B. Zhang, D. Chen and W. Zhao, Iterative Ant-Colony
Algorithm and Its Application to Dynamic Optimization of
Chemical Process, Comput. Chem. Eng., 2005, 29(10),
2078–2086, DOI: 10.1016/j.compchemeng.2005.05.020.

26 D.-W. Li and R. Brüschweiler, Iterative Optimization of
Molecular Mechanics Force Fields from NMR Data of
Full-Length Proteins, J. Chem. Theory Comput., 2011, 7(6),
1773–1782, DOI: 10.1021/ct200094b.

27 R. J. Pantazes, M. J. Grisewood, T. Li, N. P. Gifford and
C. D. Maranas, The Iterative Protein Redesign and
Optimization (IPRO) Suite of Programs, J. Comput. Chem.,
2015, 36(4), 251–263, DOI: 10.1002/jcc.23796.
1368 | Digital Discovery, 2025, 4, 1352–1371
28 Ö. Farkas and H. B. Schlegel, Methods for Optimizing Large
Molecules. Part III. An Improved Algorithm for Geometry
Optimization Using Direct Inversion in the Iterative
Subspace (GDIIS), Phys. Chem. Chem. Phys., 2002, 4(1), 11–
15, DOI: 10.1039/B108658H.

29 J. Tang, K. Egiazarian, M. Golbabaee and M. Davies, The
Practicality of Stochastic Optimization in Imaging Inverse
Problems, IEEE Trans. Comput. Imaging, 2019, 6, 1471–
1485, DOI: 10.1109/TCI.2020.3032101.

30 E. Farasat and B. Huang, Deterministic vs. Stochastic
Performance Assessment of Iterative Learning Control for
Batch Processes, AIChE J., 2013, 59(2), 457–464, DOI:
10.1002/aic.13840.

31 C. R. Philbrick and P. K. Kitanidis, Limitations of
Deterministic Optimization Applied to Reservoir
Operations, Water Resour. Plann. Manag., 1999, 125(3),
135–142, DOI: 10.1061/(ASCE)0733-9496(1999)125:3(135).

32 M. Pool, J. Carrera, A. Alcolea and E. M. Bocanegra, A
Comparison of Deterministic and Stochastic Approaches
for Regional Scale Inverse Modeling on the Mar Del Plata
Aquifer, J. Hydrol., 2015, 531, 214–229, DOI: 10.1016/
j.jhydrol.2015.09.064.

33 D. P. Kingma and J. Ba, Adam: A Method for Stochastic
Optimization, arXiv, 2014, preprint, arXiv:1412.6980, DOI:
10.48550/arXiv.1412.6980.

34 G. B. Goh, N. O. Hodas and A. Vishnu, Deep Learning for
Computational Chemistry, J. Comput. Chem., 2017, 38(16),
1291–1307, DOI: 10.1002/jcc.24764.

35 A. C. Mater and M. L. Coote, Deep Learning in Chemistry, J.
Chem. Inf. Model., 2019, 59(6), 2545–2559, DOI: 10.1021/
acs.jcim.9b00266.

36 B. Liu, B. Ramsundar, P. Kawthekar, J. Shi, J. Gomes, Q. Luu
Nguyen, S. Ho, J. Sloane, P. Wender and V. Pande,
Retrosynthetic Reaction Prediction Using Neural
Sequence-to-Sequence Models, ACS Cent. Sci., 2017, 3(10),
1103–1113, DOI: 10.1021/acscentsci.7b00303.

37 Z. Zhou, X. Li and R. N. Zare, Optimizing Chemical
Reactions with Deep Reinforcement Learning, ACS Cent.
Sci., 2017, 3(12), 1337–1344, DOI: 10.1021/
acscentsci.7b00492.

38 D. Cortés-Borda, E. Wimmer, B. Gouilleux, E. Barré,
N. Oger, L. Goulamaly, L. Peault, B. Charrier, C. Truchet,
P. Giraudeau, M. Rodriguez-Zubiri, E. Le Grognec and
F.-X. Felpin, An Autonomous Self-Optimizing Flow
Reactor for the Synthesis of Natural Product Carpanone, J.
Org. Chem., 2018, 83(23), 14286–14299, DOI: 10.1021/
acs.joc.8b01821.

39 J. N. Wei, D. Duvenaud and A. Aspuru-Guzik, Neural
Networks for the Prediction of Organic Chemistry
Reactions, ACS Cent. Sci., 2016, 2(10), 725–732, DOI:
10.1021/acscentsci.6b00219.

40 H. Gao, T. J. Struble, C. W. Coley, Y. Wang, W. H. Green and
K. F. Jensen, Using Machine Learning To Predict Suitable
Conditions for Organic Reactions, ACS Cent. Sci., 2018,
4(11), 1465–1476, DOI: 10.1021/acscentsci.8b00357.

41 A. F. Zahrt, J. J. Henle, B. T. Rose, Y. Wang, W. T. Darrow
and S. E. Denmark, Prediction of Higher-Selectivity
© 2025 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.1109/TIM.2021.3074951
https://doi.org/10.2174/138920209789177638
https://doi.org/10.1021/acs.analchem.3c04589
https://doi.org/10.1142/S0219633603000690
https://doi.org/10.1021/acs.iecr.0c00367
https://doi.org/10.1002/jcc.21225
https://doi.org/10.1021/ie5048016
https://doi.org/10.1021/jm301210j
https://doi.org/10.1080/0305215X.2012.720683
https://doi.org/10.1021/acs.jctc.7b00719
https://doi.org/10.1016/j.compchemeng.2005.05.020
https://doi.org/10.1021/ct200094b
https://doi.org/10.1002/jcc.23796
https://doi.org/10.1039/B108658H
https://doi.org/10.1109/TCI.2020.3032101
https://doi.org/10.1002/aic.13840
https://doi.org/10.1061/(ASCE)0733-9496(1999)125:3(135)
https://doi.org/10.1016/j.jhydrol.2015.09.064
https://doi.org/10.1016/j.jhydrol.2015.09.064
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1002/jcc.24764
https://doi.org/10.1021/acs.jcim.9b00266
https://doi.org/10.1021/acs.jcim.9b00266
https://doi.org/10.1021/acscentsci.7b00303
https://doi.org/10.1021/acscentsci.7b00492
https://doi.org/10.1021/acscentsci.7b00492
https://doi.org/10.1021/acs.joc.8b01821
https://doi.org/10.1021/acs.joc.8b01821
https://doi.org/10.1021/acscentsci.6b00219
https://doi.org/10.1021/acscentsci.8b00357
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00226a

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d
on

 1
1/

21
/2

02
5

6:
07

:3
6

PM
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
Catalysts by Computer-Driven Workow and Machine
Learning, Science, 2019, 363(6424), eaau5631, DOI:
10.1126/science.aau5631.

42 Z. Li, S. Wang, W. S. Chin, L. E. Achenie and H. Xin, High-
Throughput Screening of Bimetallic Catalysts Enabled by
Machine Learning, J. Mater. Chem. A, 2017, 5(46), 24131–
24138, DOI: 10.1039/C7TA01812F.

43 E. Putin, A. Asadulaev, Y. Ivanenkov, V. Aladinskiy,
B. Sanchez-Lengeling, A. Aspuru-Guzik and
A. Zhavoronkov, Reinforced Adversarial Neural Computer
for de Novo Molecular Design, J. Chem. Inf. Model., 2018,
58(6), 1194–1204, DOI: 10.1021/acs.jcim.7b00690.

44 Y. Liu, Drug Design by Machine Learning: Ensemble
Learning for QSAR Modeling, in Fourth International
Conference on Machine Learning and Applications
(ICMLA’05), IEEE, 2005, pp. 187–193, DOI: 10.1109/
ICMLA.2005.25.

45 H. Altae-Tran, B. Ramsundar, A. S. Pappu and V. Pande,
Low Data Drug Discovery with One-Shot Learning, ACS
Cent. Sci., 2017, 3(4), 283–293, DOI: 10.1021/
acscentsci.6b00367.

46 Y.-C. Lo, S. E. Rensi, W. Torng and R. B. Altman, Machine
Learning in Chemoinformatics and Drug Discovery, Drug
Discovery Today, 2018, 23(8), 1538–1546, DOI: 10.1016/
j.drudis.2018.05.010.

47 C. Zhou, L. D. Bowler and J. Feng, A Machine Learning
Approach to Explore the Spectra Intensity Pattern of
Peptides Using Tandem Mass Spectrometry Data, BMC
Bioinf., 2008, 9(1), 325, DOI: 10.1186/1471-2105-9-325.

48 J. Liu, J. Zhang, Y. Luo, S. Yang, J. Wang and Q. Fu, Mass
Spectral Substance Detections Using Long Short-Term
Memory Networks, IEEE Access, 2019, 7, 10734–10744,
DOI: 10.1109/ACCESS.2019.2891548.

49 J. A. Fine, A. A. Rajasekar, K. P. Jethava and G. Chopra,
Spectral Deep Learning for Prediction and Prospective
Validation of Functional Groups, Chem. Sci., 2020, 11(18),
4618–4630, DOI: 10.1039/C9SC06240H.

50 R. Bouwmeester, L. Martens and S. Degroeve,
Comprehensive and Empirical Evaluation of Machine
Learning Algorithms for Small Molecule LC Retention
Time Prediction, Anal. Chem., 2019, 91(5), 3694–3703,
DOI: 10.1021/acs.analchem.8b05820.

51 Y.-B. Liu, J.-Y. Yang, G.-M. Xin, L.-H. Liu, G. Csányi and
B.-Y. Cao, Machine Learning Interatomic Potential
Developed for Molecular Simulations on Thermal
Properties of b-Ga2O3, J. Chem. Phys., 2020, 153(14),
144501, DOI: 10.1063/5.0027643.

52 S. Mittal and D. Shukla, Recruiting Machine Learning
Methods for Molecular Simulations of Proteins, Mol.
Simul., 2018, 44(11), 891–904, DOI: 10.1080/
08927022.2018.1448976.

53 J. Westermayr, M. Gastegger, M. F. S. J. Menger, S. Mai,
L. González and P. Marquetand, Machine Learning
Enables Long Time Scale Molecular Photodynamics
Simulations, Chem. Sci., 2019, 10(35), 8100–8107, DOI:
10.1039/C9SC01742A.
© 2025 The Author(s). Published by the Royal Society of Chemistry
54 B. Sanchez-Lengeling and A. Aspuru-Guzik, Inverse
Molecular Design Using Machine Learning: Generative
Models for Matter Engineering, Science, 2018, 361(6400),
360–365, DOI: 10.1126/science.aat2663.

55 K. Kim, S. Kang, J. Yoo, Y. Kwon, Y. Nam, D. Lee, I. Kim,
Y.-S. Choi, Y. Jung, S. Kim, W.-J. Son, J. Son, H. S. Lee,
S. Kim, J. Shin and S. Hwang, Deep-Learning-Based
Inverse Design Model for Intelligent Discovery of Organic
Molecules, npj Comput. Mater., 2018, 4(1), 67, DOI:
10.1038/s41524-018-0128-1.

56 M. Benhenda, ChemGAN Challenge for Drug Discovery:
Can AI Reproduce Natural Chemical Diversity?, arXiv,
2017, preprint, arXiv:1708.08227, DOI: 10.48550/
arXiv.1708.08227.

57 B. Sattarov, I. I. Baskin, D. Horvath, G. Marcou,
E. J. Bjerrum and A. Varnek, De Novo Molecular Design
by Combining Deep Autoencoder Recurrent Neural
Networks with Generative Topographic Mapping, J. Chem.
Inf. Model., 2019, 59(3), 1182–1196, DOI: 10.1021/
acs.jcim.8b00751.

58 S. Kang and K. Cho, Conditional Molecular Design with
Deep Generative Models, J. Chem. Inf. Model., 2019, 59(1),
43–52, DOI: 10.1021/acs.jcim.8b00263.

59 A. G. Kusne, H. Yu, C. Wu, H. Zhang, J. Hattrick-Simpers,
B. DeCost, S. Sarker, C. Oses, C. Toher, S. Curtarolo,
A. V. Davydov, R. Agarwal, L. A. Bendersky, M. Li,
A. Mehta and I. Takeuchi, On-the-Fly Closed-Loop
Materials Discovery via Bayesian Active Learning, Nat.
Commun., 2020, 11(1), 5966, DOI: 10.1038/s41467-020-
19597-w.

60 Y. Liu, J. Yang, R. K. Vasudevan, K. P. Kelley, M. Ziatdinov,
S. V. Kalinin and M. Ahmadi, Exploring the Relationship of
Microstructure and Conductivity in Metal Halide
Perovskites via Active Learning-Driven Automated
Scanning Probe Microscopy, J. Phys. Chem. Lett., 2023,
14(13), 3352–3359, DOI: 10.1021/acs.jpclett.3c00223.

61 N. S. Eyke, W. H. Green and K. F. Jensen, Iterative
Experimental Design Based on Active Machine Learning
Reduces the Experimental Burden Associated with
Reaction Screening, React. Chem. Eng., 2020, 5(10), 1963–
1972, DOI: 10.1039/D0RE00232A.

62 B. J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani,
J. I. M. Alvarado, J. M. Janey, R. P. Adams and A. G. Doyle,
Bayesian Reaction Optimization as a Tool for Chemical
Synthesis, Nature, 2021, 590(7844), 89–96, DOI: 10.1038/
s41586-021-03213-y.

63 J. A. G. Torres, S. H. Lau, P. Anchuri, J. M. Stevens,
J. E. Tabora, J. Li, A. Borovika, R. P. Adams and
A. G. Doyle, A Multi-Objective Active Learning Platform
and Web App for Reaction Optimization, J. Am. Chem.
Soc., 2022, 144(43), 19999–20007, DOI: 10.1021/
jacs.2c08592.

64 A. Capecchi, A. Zhang and J.-L. Reymond, Populating
Chemical Space with Peptides Using a Genetic Algorithm,
J. Chem. Inf. Model., 2020, 60(1), 121–132, DOI: 10.1021/
acs.jcim.9b01014.
Digital Discovery, 2025, 4, 1352–1371 | 1369

https://doi.org/10.1126/science.aau5631
https://doi.org/10.1039/C7TA01812F
https://doi.org/10.1021/acs.jcim.7b00690
https://doi.org/10.1109/ICMLA.2005.25
https://doi.org/10.1109/ICMLA.2005.25
https://doi.org/10.1021/acscentsci.6b00367
https://doi.org/10.1021/acscentsci.6b00367
https://doi.org/10.1016/j.drudis.2018.05.010
https://doi.org/10.1016/j.drudis.2018.05.010
https://doi.org/10.1186/1471-2105-9-325
https://doi.org/10.1109/ACCESS.2019.2891548
https://doi.org/10.1039/C9SC06240H
https://doi.org/10.1021/acs.analchem.8b05820
https://doi.org/10.1063/5.0027643
https://doi.org/10.1080/08927022.2018.1448976
https://doi.org/10.1080/08927022.2018.1448976
https://doi.org/10.1039/C9SC01742A
https://doi.org/10.1126/science.aat2663
https://doi.org/10.1038/s41524-018-0128-1
https://doi.org/10.48550/arXiv.1708.08227
https://doi.org/10.48550/arXiv.1708.08227
https://doi.org/10.1021/acs.jcim.8b00751
https://doi.org/10.1021/acs.jcim.8b00751
https://doi.org/10.1021/acs.jcim.8b00263
https://doi.org/10.1038/s41467-020-19597-w
https://doi.org/10.1038/s41467-020-19597-w
https://doi.org/10.1021/acs.jpclett.3c00223
https://doi.org/10.1039/D0RE00232A
https://doi.org/10.1038/s41586-021-03213-y
https://doi.org/10.1038/s41586-021-03213-y
https://doi.org/10.1021/jacs.2c08592
https://doi.org/10.1021/jacs.2c08592
https://doi.org/10.1021/acs.jcim.9b01014
https://doi.org/10.1021/acs.jcim.9b01014
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00226a

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d
on

 1
1/

21
/2

02
5

6:
07

:3
6

PM
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
65 N. Holmes, G. R. Akien, A. J. Blacker, R. L. Woodward,
R. E. Meadows and R. A. Bourne, Self-Optimisation of the
Final Stage in the Synthesis of EGFR Kinase Inhibitor
AZD9291 Using an Automated Flow Reactor, React. Chem.
Eng., 2016, 1(4), 366–371, DOI: 10.1039/C6RE00059B.

66 J. Zhang and M. Dolg, ABCluster: The Articial Bee Colony
Algorithm for Cluster Global Optimization, Phys. Chem.
Chem. Phys., 2015, 17(37), 24173–24181, DOI: 10.1039/
C5CP04060D.

67 D. Bertsimas and J. Tsitsiklis, Simulated Annealing, Stat.
Sci., 1993, 8(1), 10–15, DOI: 10.1214/ss/1177011077.

68 S. Katoch, S. S. Chauhan and V. Kumar, A Review on Genetic
Algorithm: Past, Present, and Future, Multimed. Tool. Appl.,
2021, 80(5), 8091–8126, DOI: 10.1007/s11042-020-10139-6.

69 M. Gendreau and J.-Y. Potvin, Tabu Search, in Search
Methodologies, Springer US, Boston, MA, pp. , pp. 165–
186, DOI: 10.1007/0-387-28356-0_6.

70 C. Storey, Applications of a Hill Climbing Method of
Optimization, Chem. Eng. Sci., 1962, 17(1), 45–52, DOI:
10.1016/0009-2509(62)80005-0.

71 J. Kennedy and R. Eberhart, Particle Swarm Optimization,
in Proceedings of ICNN’95 - International Conference on
Neural Networks, IEEE, 1995, vol. 4, pp. 1942–1948, DOI:
10.1109/ICNN.1995.488968.

72 T. Back, Selective Pressure in Evolutionary Algorithms: A
Characterization of Selection Mechanisms, in Proceedings
of the First IEEE Conference on Evolutionary Computation,
IEEE World Congress on Computational Intelligence, IEEE,
1994, pp , pp 57–62, DOI: 10.1109/ICEC.1994.350042.

73 A. E. Eiben and J. E. Smith, Introduction to Evolutionary
Computing, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2015, DOI: 10.1007/978-3-662-44874-8.

74 T. Blickle and L. A. Thiele, Comparison of Selection
Schemes Used in Evolutionary Algorithms, Evol. Comput.,
1996, 4(4), 361–394, DOI: 10.1162/evco.1996.4.4.361.

75 P. Kora and P. Yadlapalli, Crossover Operators in Genetic
Algorithms: A Review, Int. J. Comput. Appl., 2017, 162(10),
34–36, DOI: 10.5120/ijca2017913370.

76 N. N. Glibovets and N. M. Gulayeva, A Review of Niching
Genetic Algorithms for Multimodal Function
Optimization, Cybern. Syst. Anal., 2013, 49(6), 815–820,
DOI: 10.1007/s10559-013-9570-8.

77 J. Mockus, Bayesian Approach to Global Optimization;
Mathematics and Its Applications, Springer Netherlands,
Dordrecht, 1989, vol. 37, DOI: 10.1007/978-94-009-0909-0.

78 T. Ueno, T. D. Rhone, Z. Hou, T. Mizoguchi and K. Tsuda,
COMBO: An Efficient Bayesian Optimization Library for
Materials Science, Mater. Discov., 2016, 4, 18–21, DOI:
10.1016/j.md.2016.04.001.

79 R.-R. Griffiths and J. M. Hernández-Lobato, Constrained
Bayesian Optimization for Automatic Chemical Design
Using Variational Autoencoders, Chem. Sci., 2020, 11(2),
577–586, DOI: 10.1039/C9SC04026A.

80 F. Häse, L. M. Roch, C. Kreisbeck and A. Aspuru-Guzik,
Phoenics: A Bayesian Optimizer for Chemistry, ACS Cent.
Sci., 2018, 4(9), 1134–1145, DOI: 10.1021/
acscentsci.8b00307.
1370 | Digital Discovery, 2025, 4, 1352–1371
81 F. Häse, M. Aldeghi, R. J. Hickman, L. M. Roch and
A. Aspuru-Guzik, G <scp>ryffin</Scp> : An Algorithm for
Bayesian Optimization of Categorical Variables Informed
by Expert Knowledge, Appl. Phys. Rev., 2021, 8(3), 031406,
DOI: 10.1063/5.0048164.

82 U. Premaratne, J. Samarabandu and T. Sidhu, A New
Biologically Inspired Optimization Algorithm, in 2009
International Conference on Industrial and Information
Systems (ICIIS), IEEE, 2009, pp. 279–284, DOI: 10.1109/
ICIINFS.2009.5429852.

83 J. Bergstra, R. Bardenet, Y. Bengio and B. Kégl, Algorithms
for Hyper-Parameter Optimization, Adv. Neural Inf. Process.
Syst., 2011, 24, 2546–2554.

84 J. Bergstra, B. Komer, C. Eliasmith, D. Yamins and
D. D. Cox, Hyperopt: A Python Library for Model Selection
and Hyperparameter Optimization, Comput. Sci. Discovery,
2015, 8(1), 014008, DOI: 10.1088/1749-4699/8/1/014008.

85 M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham,
A. G. Wilson and E. Bakshy, BoTorch: A Framework for
Efficient Monte-Carlo Bayesian Optimization, 2019.

86 N. E. Toklu, T. Atkinson, V. Micka, P. Liskowski and
R. K. Srivastava, EvoTorch: Scalable Evolutionary
Computation in Python, 2023.

87 D. Lowe, Extraction of Chemical Structures and Reactions
from the Literature, University of Cambridge, 2012, DOI:
10.17863/CAM.16293.

88 G. A. Landrum, RDKit: Open-Source Cheminformatics,
https://www.rdkit.org, accessed 2023-03-09.

89 H. L. Morgan, The Generation of a Unique Machine
Description for Chemical Structures-A Technique
Developed at Chemical Abstracts Service, J. Chem. Doc.,
1965, 5(2), 107–113, DOI: 10.1021/c160017a018.

90 A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai and
S. Chintala, PyTorch: An Imperative Style, High-Performance
Deep Learning Library, 2019.

91 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, A. Müller, J. Nothman,
G. Louppe, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot and É. Duchesnay, Scikit-Learn: Machine
Learning in Python, J. Mach. Learn. Res., 2012, 12(85),
2825–2830.

92 W. Jin, R. Barzilay and T. Jaakkola, Junction Tree Variational
Autoencoder for Molecular Graph Generation, 2018.

93 L. McInnes, J. Healy and J. Melville, UMAP: Uniform
Manifold Approximation and Projection for Dimension
Reduction, arXiv, 2018, preprint, arXiv:1802.03426, DOI:
10.48550/arXiv.1802.03426.

94 R. B. Gramacy and H. K. H. Lee, Cases for the Nugget in
Modeling Computer Experiments, Stat. Comput., 2012,
22(3), 713–722, DOI: 10.1007/s11222-010-9224-x.

95 A. Tkatchenko, Machine Learning for Chemical Discovery,
Nat. Commun., 2020, 11(1), 4125, DOI: 10.1038/s41467-
020-17844-8.
© 2025 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.1039/C6RE00059B
https://doi.org/10.1039/C5CP04060D
https://doi.org/10.1039/C5CP04060D
https://doi.org/10.1214/ss/1177011077
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1007/0-387-28356-0_6
https://doi.org/10.1016/0009-2509(62)80005-0
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICEC.1994.350042
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1162/evco.1996.4.4.361
https://doi.org/10.5120/ijca2017913370
https://doi.org/10.1007/s10559-013-9570-8
https://doi.org/10.1007/978-94-009-0909-0
https://doi.org/10.1016/j.md.2016.04.001
https://doi.org/10.1039/C9SC04026A
https://doi.org/10.1021/acscentsci.8b00307
https://doi.org/10.1021/acscentsci.8b00307
https://doi.org/10.1063/5.0048164
https://doi.org/10.1109/ICIINFS.2009.5429852
https://doi.org/10.1109/ICIINFS.2009.5429852
https://doi.org/10.1088/1749-4699/8/1/014008
https://doi.org/10.17863/CAM.16293
https://www.rdkit.org
https://doi.org/10.1021/c160017a018
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.1007/s11222-010-9224-x
https://doi.org/10.1038/s41467-020-17844-8
https://doi.org/10.1038/s41467-020-17844-8
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00226a

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 2

6
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d
on

 1
1/

21
/2

02
5

6:
07

:3
6

PM
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
96 M. Claesen and B. De Moor, Hyperparameter Search in
Machine Learning, arXiv, 2015, preprint,
arXiv:1502.02127, DOI: 10.48550/arXiv.1502.02127.

97 D. White and R. C. Wilson, Generative Models for Chemical
Structures, J. Chem. Inf. Model., 2010, 50(7), 1257–1274,
DOI: 10.1021/ci9004089.

98 W. Bort, I. I. Baskin, T. Gimadiev, A. Mukanov,
R. Nugmanov, P. Sidorov, G. Marcou, D. Horvath,
T. Madzhidov and A. Varnek, Discovery of Novel Chemical
Reactions by Deep Generative Recurrent Neural Network,
ChemRxiv, January 17, 2020, preprint, DOI: 10.26434/
chemrxiv.11635929.v1.

99 M. Skalic, J. Jiménez, D. Sabbadin and G. De Fabritiis,
Shape-Based Generative Modeling for de Novo Drug
Design, J. Chem. Inf. Model., 2019, 59(3), 1205–1214, DOI:
10.1021/acs.jcim.8b00706.

100 J. Born, M. Manica, A. Oskooei, J. Cadow, G. Markert and
M. Rodŕıguez Mart́ınez, PaccMannRL: De Novo
Generation of Hit-like Anticancer Molecules from
© 2025 The Author(s). Published by the Royal Society of Chemistry
Transcriptomic Data via Reinforcement Learning,
iScience, 2021, 24(4), 102269, DOI: 10.1016/
j.isci.2021.102269.

101 B. Pierre, Autoencoders, Unsupervised Learning, and Deep
Architectures, in Proceedings of the International Conference
on Unsupervised and Transfer Learning Workshop, PMLR,
2012, vol. 27, pp. 37–49.

102 J. Zhai, S. Zhang, J. Chen and Q. He, Autoencoder and Its
Various Variants, in 2018 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), IEEE, 2018, pp. 415–
419, DOI: 10.1109/SMC.2018.00080.

103 R. Kunimoto, M. Vogt and J. Bajorath, Maximum Common
Substructure-Based Tversky Index: An Asymmetric Hybrid
Similarity Measure, J. Comput. Aided Mol. Des., 2016,
30(7), 523–531, DOI: 10.1007/s10822-016-9935-y.

104 A. G. Beck, Bit By Bit Chemistry: Optimization And
Automation Of Chemical Systems, Purdue University, 2023,
DOI: 10.25394/PGS.23297942.v2.
Digital Discovery, 2025, 4, 1352–1371 | 1371

https://doi.org/10.48550/arXiv.1502.02127
https://doi.org/10.1021/ci9004089
https://doi.org/10.26434/chemrxiv.11635929.v1
https://doi.org/10.26434/chemrxiv.11635929.v1
https://doi.org/10.1021/acs.jcim.8b00706
https://doi.org/10.1016/j.isci.2021.102269
https://doi.org/10.1016/j.isci.2021.102269
https://doi.org/10.1109/SMC.2018.00080
https://doi.org/10.1007/s10822-016-9935-y
https://doi.org/10.25394/PGS.23297942.v2
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00226a

	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a
	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a
	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a
	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a
	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a
	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a
	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a
	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a
	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a
	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a
	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a
	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a
	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a

	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a
	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a
	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a
	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a
	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a
	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a

	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a
	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a
	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a
	Paddy: an evolutionary optimization algorithm for chemical systems and spacesElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00226a

