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d uncertainty-aware deep
learning uncovers high-affinity plastic-binding
peptides

Abdulelah S. Alshehri, †ab Michael T. Bergman, †c Fengqi You ade

and Carol K. Hall *c

Plastic pollution, particularly microplastics (MPs), poses a significant global threat to ecosystems and human

health, necessitating innovative remediation strategies. Biocompatible and biodegradable plastic-binding

peptides (PBPs) offer a potential solution through targeted adsorption and subsequent MP detection or

removal from the environment. A challenge in discovering plastic-binding peptides is the vast

combinatorial space of possible peptides (i.e., over 1015 for 12-mer peptides), which far exceeds the

sample sizes typically reachable by experiments or biophysics-based computational methods. One step

towards addressing this issue is to train deep learning models on experimental or biophysical datasets,

permitting faster and cheaper evaluations of peptides. However, deep learning predictions are not always

accurate, which could waste time and money due to synthesizing and evaluating false positives. Here,

we resolve this issue by combining biophysical modeling data from Peptide Binder Design (PepBD)

algorithm, the predictive power and uncertainty quantification of evidential deep learning, and

metaheuristic search methods to identify high-affinity PBPs for several common plastics. Molecular

dynamics simulations show that the discovered PBPs have greater median adsorption free energies for

polyethylene (5%), polypropylene (18%), and polystyrene (34%) relative to PBPs previously designed by

PepBD. The impact of including uncertainty quantification in peptide design is demonstrated by the

increasing improvement in the median adsorption free energy with decreasing uncertainty. This robust

framework accelerates peptide discovery, paving the way for effective, bio-inspired solutions to MP

remediation.
Introduction

The global proliferation of microplastic (MP) pollution poses
a pressing threat to ecosystems and human health.1–4 With
estimates of millions of tons of MPs contaminating marine
environments alone,5,6 these ubiquitous pollutants disrupt
ecological balance and can be vectors for harmful contami-
nants. This contributes to adverse health effects in humans,
including inammation and oxidative stress7,8 and heart
disease.9 MPs may also cross the blood–brain barrier.10

Addressing this crisis necessitates the development of innova-
tive, targeted remediation strategies.
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Peptides may be valuable for tackling MP pollution.1,11,12 The
promise of peptides lies in their inherent biocompatibility and
biodegradability, strong adsorption to polymeric materials,13

and potential ability to bind preferentially to one material over
others. Thus, PBPs could offer a sustainable solution to facili-
tate the detection, capture, and degradation of MPs.1

Peptide design14–16 is hampered by the vast combinatorial
space of peptide sequences (i.e., over 1015 for 12-mer
peptides).17 Experimental library screening has successfully
identied peptides with affinity for various inorganic
substrates18,19 by sampling up to 1010 sequences, but this is still
only a small fraction of possible sequences and peptide
sequences are sampled randomly. This limitation combined
with the experimental labor and cost of library screening
encourages the use of alternative design strategies. One alter-
native is biophysics-based design, which reduces the use of
experimental resources and can intelligently explore peptide
sequence space.17 Examples include Rosetta surface design,20

iterative procedures combining experimental and computa-
tional data,21,22 and the Peptide Binder Design (PepBD) algo-
rithm.23 PepBD is especially relevant to this work as it was
recently used to design PBPs for four common plastics:
Digital Discovery, 2025, 4, 561–571 | 561
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polyethylene (PE), polypropylene (PP), polystyrene (PS), and
polyethylene terephthalate (PET).17 However, a major drawback
of biophysical methods is that they sample even fewer peptides
than library screening due to the computational expense of
modeling peptide-plastic interactions. This motivates the
adoption of deep learning (DL) models, which can be trained on
modeling or library screening datasets to identify relationships
between the peptide sequence and the design target,24,25 i.e.
peptide affinity to a certain type of plastic. There are many
examples of DL having success in this domain, including
predictions of whether a peptide will bind polystyrene using PS-
Binder,12,26 discovery of quartz-binding peptides,27 and
improvement of binding selectivity of peptides between gold
and silver.28

DL's promise in design is oen limited by methods that,
while powerful, typically do not offer quantied estimations of
the reliability of the predictions.29 Thus, a crucial consideration
in DL-based peptide design, and in molecular design in general,
is uncertainty quantication, which aims to estimate the
model's condence in its predictions.24,25 Uncertainties in
model predictions can preclude sampling of peptides with high
affinity and lead to over-sampling in regions where the model
lacks condence and over-generalizes.30,31 This is particularly
relevant to peptide design, where the training data oen covers
a tiny fraction of possible amino acid sequences, and testing
and synthesizing peptides is expensive and time-consuming. It
thus is highly desirable to incorporate uncertainty quantica-
tion into the peptide design process to strategically navigate the
vast combinatorial space and to prioritize candidates based on
both predicted affinity and the reliability of predictions derived
from biophysics-based calculations.32,33

Traditional uncertainty quantication methods in deep
learning, such as Bayesian neural networks34 and sampling-
based35 approaches, although useful, are oen computationally
intensive for large datasets,29,36 potentially compromising both
efficiency and accuracy.37 These limitations are particularly
pronounced in the context of peptide design, where the sheer
number of theoretically possible sequences and the different
types of peptide–plastic interactions (e.g. hydrogen bonding, pi–
pi interactions, hydrophobic forces) pose signicant challenges.
As an alternative, evidential deep learning (EDL) directly learns
and represents uncertainties without the need for extensive
sampling.36 Furthermore, EDL's seamless integration with
domain-specic architectures amplies its capacity to quantify
uncertainty across peptide–plastic binding affinities and
diverse plastic types.38

In this work, we pair biophysical modeling with EDL to
discover PBPs for several types of plastic. We hypothesize that
quantifying score prediction uncertainty will lead to more
effective exploration of peptide sequence space by encouraging
the model to ignore sequences for which it cannot condently
predict affinity. To test this hypothesis, we train a convolutional
neural network (CNN) with an EDL layer on PepBD data, then
combine the trained model with biased random key genetic
algorithm (BrKGA) to search for peptides with high affinity for
four common plastics: polyethylene, polypropylene, poly-
styrene, and PET. The trained model accurately predicts affinity
562 | Digital Discovery, 2025, 4, 561–571
calculations from PepBD and generates unique peptides with
higher predicted affinity than the best corresponding PepBD
designs for all plastics. Validation of EDL peptides using
molecular dynamics simulations shows that the EDL peptides
have greater affinity than random sequences of amino acid for
all plastics, and greater affinity than PepBD peptides for all
plastics but PET. For PET, EDL peptides have slightly lower
affinity than PepBD peptides, which we attribute to the greater
chemical complexity of PET relative to the other plastics.
Overall, our results show that uncertainty-aware design can
discover and optimize biomaterials for microplastic remedia-
tion, and more generally develop solutions to complex envi-
ronmental and technological problems.

Methods

This section outlines the methodologies employed, including
the PepBD method, EDL and optimization framework, and MD
simulations. First, the PepBD method17 is briey described,
which utilizes Metropolis Monte Carlo sampling to calculate
scores for amino acid sequences adsorbing to various plastic
surfaces. Next, we detail the EDL-based design framework,
combining peptide representation, EDL-based binding predic-
tion, design constraints, and the BrKGA method to design high-
affinity PBPs. Lastly, we describe the MD simulations performed
to validate peptide affinities, using high-temperature simula-
tions and clustering to identify stable adsorbed conformations
and then calculating adsorption free energies with the
MMGBSA method.39

PepBD method

PepBD was previously used17 to calculate scores for a large
number of amino acid sequences adsorbing to a PE, PP, PS, or
PET surface. We provide a brief description of PepBD here, and
more details can be found in previous work.40 PepBD samples
peptide conformations and amino acid sequences using
Metropolis Monte Carlo. A random change is made either to the
sequence or backbone dihedral angles, the side chains are
energy minimized, and the peptide is scored via

Score = DG + aUpep (1)

where DG is the binding free energy calculated using the MM/
GBSA method,41 Upep is the peptide internal energy, and a is
a scaling factor set to 0.01. Upep is included to ensure the
peptide structure does not have high energy. The likelihood of
accepting the change to the peptide is given by the Metropolis
criterion,

Pacc ¼ min

�
1; exp

��ðscorenew � scoreoldÞ
kT

��
(2)

kT is the reference temperature which governs the likelihood of
accepting a change that worsens the peptide score. Given
a starting peptide sequence and structure provided by the user,
tens of thousands of sequence or conformation changes are
attempted per design run. The reference temperature is reduced
during design per an annealing schedule, resulting in PepBD
© 2025 The Author(s). Published by the Royal Society of Chemistry
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converging to a local minimum. Since the local minimum is not
guaranteed to be the global minimum, peptide design is
repeated several times for a given starting conformation over
many different starting conformations. For the data set used in
this paper, a total of 20 conformations were used for PE designs,
and 11 conformations were used for PP, PS, and PET designs,
with 5 designs performed for each starting conformation.
This gave a total of 939k, 484k, 457k, and 442k unique
sequence : score data points for the PE, PP, PS, and PET data-
sets, respectively.
Evidential deep learning and optimization framework

Our EDL framework combines peptide representation, EDL-
based binding prediction, design constraints, and a genetic
algorithm to design PBPs. First, peptides are encoded into one-
hot vectors. Next, a tailored CNN with an EDL layer36 predicts
peptide-plastic binding affinity and associated uncertainty.
Design constraints based on hydrophobicity, the PepBD data-
set, and predicted uncertainty guide the optimization process.
Finally, the BrKGA optimization method is used to explore the
search space, utilizing the deep learning model for tness
evaluation to identify promising PBPs. These components are
shown in Fig. 1, and the following paragraphs discuss each
component in the given order.

Peptides were represented using a one-hot encoding scheme,
transforming each amino acid into a 21-dimensional vector (20
common amino acids plus one placeholder for unknown or
other amino acids). The dataset was split into 90% for training,
5% for validation, and 5% for testing. This encoding method
Fig. 1 An overall schematic outlining the steps of the deep learning an
framework consists of four steps: (1) peptide representation: peptides are
a tailored convolutional neural network (CNN) with an Evidential Deep
affinities. (3) Design constraints: identify constraints on hydrophobicity, c
random Key Genetic Algorithm (BrKGA): a genetic algorithm-based op
peptides with high affinity that meet specific design criteria using the E
Biorender.

© 2025 The Author(s). Published by the Royal Society of Chemistry
preserves the sequential nature of peptide information,
enabling direct input into computational models. More
complex representations, such as graphs, did not yield perfor-
mance improvements and performed worse, likely due to the
need for spatial and conformational information. This obser-
vation aligns with ndings from state-of-the-art protein classi-
cation and regression models, such as ProtCNN.42

An optimized CNN with an EDL output layer was developed
to predict PBPs affinities. Initially trained on PE data, the model
was adapted through transfer learning to improve performance
for other plastics by approximately 10%. The one-dimensional
CNN architecture includes an input layer for one-hot encoded
peptide sequences, three convolutional layers with 128, 64, and
32 lters, respectively, and max pooling layers to reduce
dimensionality. Two fully connected layers further process the
features, with dropout regularization to prevent overtting. The
EDL output layer, specically a normal gamma layer, performs
the regression task, predicting binding affinity and its associ-
ated uncertainty. The EDL layer is crucial for providing con-
dence intervals alongside binding affinity predictions, aiding in
the selection of top candidate peptides. The model uses the
adam optimizer, EDL-specic loss function, and Mean Absolute
Error (MAE) as an evaluation metric, with L2 regularization to
mitigate overtting. Overall, the devised CNN architecture
strikes a balance between expressive power and computational
efficiency with 81 700 trainable parameters, making it well-
suited for the compact representations of peptides featuring
252 integer elements. We observe that more complex models,
such as transformers43 and ProtCNN,42 yielded slightly worse
d optimization framework for designing plastic-binding peptides. The
encoded using a one-hot encoding scheme. (2) Deep learning model:
Learning (EDL) output layer is used to predict peptide-plastic binding
onstraints derived from the PepBD dataset, and uncertainty. (4) Biased
timization method is employed to identify plastic-binding candidate
DL model for evaluating generations of peptides. Figure created with

Digital Discovery, 2025, 4, 561–571 | 563
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results likely due to the low dimensionality of peptide data.
Additional architectural details and hyperparameters are also
available in our models and data repository.

The BrKGA optimizationmethod44 on Pymoo45 was employed
to optimize peptide sequences for binding affinity to plastics,
leveraging the predictions from the CNN-EDL model. BrKGA
was chosen for its success in solving complex combinatorial
problems, efficient search mechanisms, and adaptability to
various problem structures.46 The algorithm's fast convergence
and effective handling of large search spaces make it ideal for
peptide design. Initial populations were generated with and
without bias towards amino acids known to enhance plastic
binding. The tness function integrated predicted binding
affinity, uncertainty magnitude, and constraint violations,
guiding the selection of promising candidate peptides. Key
operators included tournament selection, simulated binary
crossover, and polynomial mutation to maintain diversity.
Hyperparameters were ne-tuned using a systematic grid
search, optimizing crossover probability, distribution indices,
population size, and the number of generations. Because all
peptides in the PepBD dataset do not use the amino acids
cysteine or proline and allow no more than 3 tryptophan per
peptide to maintain peptide solubility in water, these
constraints were also enforced by BrKGA. We observe that this
combination of BrKGA with EDL predictions enhances the
identication of high-affinity PBPs in terms of PepBD scores.
Molecular dynamics simulations

To prepare simulations, the peptide in an extended conforma-
tion was placed near the plastic surface by rotating the peptide
so its long axis was parallel to the plastic surface, then trans-
lated so that the distance between the peptide center of mass
and the top of the plastic surface was 4 Å. tLEaP solvated the
system by adding TIP3P water 15 Å above the peptide and 10 Å
below the bottom of the plastic surface, giving a simulation box
size of roughly 50 Å in the direction normal to the plastic
surface. The Amber coordinate and parameter les were con-
verted to Gromacs format using Parmed47 before running
simulations with Gromacs version 2019.6.48 The system was
energy minimized for up to 1000 steps using steepest descent,
heated to 300 K in the NVT ensemble for 100 picoseconds, then
equilibrated at 1 bar and 300 K in the NPT ensemble for 200 ps.
Different adsorbed conformations were obtained by running
a high temperature simulation. The system was heated to 550 K
over 200 picoseconds in the NVT ensemble, then simulated for
an additional 10 ns. To prevent the peptide from diffusing too
far from the surface, the Wall utility in PLUMED49 was added to
the simulation at a distance of 10 Å from the top of the plastic
surface. k-Means clustering with CPPTRAJ50 using the peptide
alpha carbons extracted 16 representative adsorbed conforma-
tions. A representative of each cluster was simulated by rst
cooling back to 300 K in the NVT ensemble for 100 picoseconds,
then simulating for 1 ns at 300 K. Adosrption free energies for
each conformation were calculated using Amber's MMGBSA
tool.51 The 8 conformations with the lowest binding free energy
were simulated an additional 4 ns, then the adsorption free
564 | Digital Discovery, 2025, 4, 561–571
energy calculation was repeated. The lowest adsorption free
energy was selected as representative of the peptide's binding
affinity. Simulations used the TIP3P water model,52 GAFF40

parameters for plastics with partial charges calculated in our
previous work,17 and the ff14SB force eld53 for peptides.
Atomistic models of plastic surfaces were taken from our
previous work.17 Position restraints were applied to non-
hydrogens in the plastic using a force constant of
5000 kJ mol−1 nm−2. The LINCS algorithm54 restrained bonds to
hydrogen. Long-range electrostatic interactions were treated
using particle mesh Ewald. The simulation time step size was 2
fs. The velocity rescaling algorithm55 controlled the system
temperature in the NVT and NPT ensembles. The time constant
was 0.1 picoseconds, and separate thermostats were applied to
water molecules versus the rest of the system. The semi-
isotropic Berendsen barostat56 controlled the pressure in NPT
simulations. The x and y dimensions of the simulation box were
allowed to change independently from the z-dimension, the
isothermal compressibility was set to 4.5 × 10−4 for all direc-
tions, and the time constant was set to 5 ps.
Results and discussion

In this study, we evaluate the performance of an EDL framework
tailored for uncertainty quantication in the computational
design of PBPs to estimate uncertainties in binding scores. The
framework leverages a convolutional neural network (CNN)
architecture with an evidential layer trained on data generated
by the PepBD algorithm, a biophysics-based method that has
successfully designed peptides that bind to proteins and, more
recently, common plastics.17 The EDL model is trained to
predict, for a given sequence, the PepBD score, a measure of the
peptide's affinity for the given plastic, along with the uncer-
tainty in the predicted score. We expect that accounting for the
uncertainty in the predicted score will help the model avoid
sampling sequences for which it cannot condently predict the
affinity. To discover PBPs, we connect the trained EDL model to
the Biased Random Key Genetic Algorithm (BRKGA).44 This
integrated approach allows us to assess the predictive capabil-
ities of the EDL model by comparing the binding affinities and
uncertainties of the resulting EDL-designed peptides to those
generated by PepBD alone on four common plastics: poly-
ethylene, polypropylene, polystyrene, and polyethylene tere-
phthalate (PET). We further employ MD simulations to validate
the binding free energies of the top-ranking PBPs and bench-
mark their performance against both existing PepBD-designed
peptides and randomly generated sequences. This compre-
hensive evaluation demonstrates that our framework can
accelerate PBP discovery which can aid MP remediation efforts.
Evidential deep learning enables enhanced plastic-binding
peptide design with biophysical modeling data

Fig. 2A highlights the capacity of the EDL model to leverage
PepBD data and identify PBPs with superior predicted binding
affinities compared to the PepBD method alone. Across all four
plastics (polyethylene, polypropylene, polystyrene, and PET),
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00219a


Fig. 2 Performance comparison of Evidential Deep Learning (EDL) and PepBD for plastic–peptide binding design. (A) Distribution of predicted
binding scores for the top 100 EDL candidates and top 1000 PepBD candidates across four plastics: polyethylene (PE), polypropylene (PP),
polystyrene (PS), and polyethylene terephthalate (PET). (B) t-Test statistic for each plastic, indicating the statistical significance of the score
differences between DL and PepBD candidates (all p-values = 0). The ranking (smallest to largest) reflects the order in which the plastics exhibit
themost substantial performance differences between the twomethods. (C) Comparison of the top 20 DL and PepBD candidate scores for each
plastic, highlighting the effect of uncertainty quantification in DL predictions. The DL ranges represent the mean ± 95% confidence interval for
the predicted binding scores using EDL.
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the distributions of predicted binding scores for the top EDL
candidates are consistently lower (indicating stronger binding)
than the scores for PepBD candidates. This suggests that the
EDL model effectively identies peptides within the vast
sequence space that were not discovered by PepBD. The degree
of improvement varies across plastics, with PE exhibiting the
largest enhancement. This material-dependent effect may arise
due to differences in the complexity of peptide–plastic interac-
tions, inherent biases in the PepBD data for each plastic type, or
differences in the size of the PepBD data set between the
plastics.

The difference in binding score distributions of EDL and
PepBD designs, visualized in Fig. 2A, are statistically signicant
for all plastics. As shown in Fig. 2B, negative t-test statistics57

and p-values < 0.001 for all four plastics demonstrate that
peptides designed by EDL have muchmore negative scores than
those generated by PepBD. Ranking of the t-values shows
polyethylene has the most pronounced difference between the
two methods. To address the normality assumption inherent to
t-tests, a non-parametric Mann–Whitney U test58 was also per-
formed, yielding similarly signicant results with all p-values
being 0, further corroborating the observed performance gap.59

The calculated average mean improvements of EDL over
PepBD—9.8% (polyethylene), 6.3% (polypropylene), 4.0%
(polystyrene), and 5.1% (PET)—provide a quantitative measure
© 2025 The Author(s). Published by the Royal Society of Chemistry
of the EDL model's advantage. However, statistical signicance
does not equate to practical relevance, so we incorporated
uncertainty quantication early in model development to
ensure the reliability and applicability of predictions.

Fig. 2C presents an assessment of the uncertainty in EDL-
predicted binding affinities. While EDL outperforms PepBD in
mean predicted scores, the associated uncertainties, visualized as
condence intervals, vary across plastics and candidates. Average
uncertainties range from 4.3 kcal mol−1 (polyethylene) to
14.6 kcal mol−1 (PET), highlighting the model's reduced con-
dence for certain predictions, especially PET. Material-specic
variation in uncertainty may stem from differing complexities
in peptide-plastic interactions or biases within the PepBD
training data. For example, PET hasmore functional groups than
polyethylene, meaning there are more types of peptide–plastic
interactions to consider such as hydrogen bonding and pi–pi
stacking. Recognizing this modelling limitation, the EDL
framework incorporates uncertainty directly into the objective
function in the generation process, prioritizing peptides with
lower uncertainties to enhance the condence and practical
relevance of our designs. Although this may yield slightly less
favorable mean binding scores compared to a purely score-driven
approach, it prioritizes candidates with a higher likelihood of
strong binding in simulation and experimental validation. We
expand on this topic in the discussion section.
Digital Discovery, 2025, 4, 561–571 | 565
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Fig. 3 Properties of EDL designs. (A) The amino acid frequency in the 100 peptides with the best scores for polyethylene designed by either EDL
or PepBD. (B) The amino acid frequency in the 100 peptides with the best scores for polyethylene (PE), polypropylene (PP), polystyrene (PS), and
polyethylene terephthalate (PET) designed by EDL.
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Deep learning identies novel peptides for plastic binding
with enhanced hydrophobicity and selective affinity proles

EDL peptides are unique relative to the PepBD peptides. This is
clearly demonstrated by the difference in the amino acid
frequencies between the top 100 PepBD and EDL designs
(Fig. 3A). EDL designs are more enriched in bulky and hydro-
phobic residues methionine (M) and phenylalanine (F), while
PepBD designs are enriched in charged or hydrophilic residues
arginine (R), asparagine (N), and glutamine (Q). This suggests
that EDL's approach for increasing peptide affinity was to
increase peptide mass and hydrophobicity, in agreement with
physical intuition for this design task. However, EDL's strategy
has a more complexity, as reected by two observations. First,
not all bulky or hydrophobic residues are used. Tyrosine (Y),
isoleucine (I), and leucine (L) all appear infrequently in EDL
designs, a trend likely learned from the PepBD data where these
residues were also used infrequently. Second, EDL designs have
a greater frequency of lysine (K), a charged residue with
a smaller mass than arginine. Thus, EDL appears to have
learned a nuanced representation of peptide affinity for plastic.

Comparing the amino acid composition of EDL peptides for
all the plastics reveals common peptide features. The same
amino acid types appear with high frequency, namely arginine
(R), histidine (H), methionine (M), phenylalanine (F), and tryp-
tophan (W) (Fig. 3B). These residues all have bulky side chains,
indicating that EDL increases peptide affinity by increasing the
number of possible intermolecular interactions or reducing the
solvent-accessible surface area of the plastic. We note that the
frequency of tryptophan is identical for all plastics due to a limit
566 | Digital Discovery, 2025, 4, 561–571
of 3 or fewer tryptophan per peptide, a constraint also used when
generating the PepBD data set. While the amino acid frequencies
are general similar between all plastics, there are some differ-
ences. Methionine (M) is more frequent in PE designs, perhaps
because the crystallinity of the polyethylene surface facilitates
interactions with the amino acid. Designs for PET have the
greatest frequency of arginine (R), likely because it can form
electrostatic interactions with the oxygens in the terephthalic
acid group, which carry a partial negative charge. Isoleucine (I)
and leucine (L) are more common in designs for polypropylene
and polystyrene, respectively. This may be because the models of
these plastic surfaces used to collect PepBD data have greater
surface roughness, and the greater conformational freedom of
leucine and isoleucine permits closer conformation to the plastic
surface compared to amino acids with more rigid side chains. A
question raised by Fig. 3B is how selective a peptide will be for
a given plastic. The similar amino acid compositions suggest
there are peptides that can bind strongly to multiple types of
plastics. The amino acid composition differences also suggest
that there may be peptides that bind selectivity, at least to some
degree, to each plastic. However, it should be noted that peptide
affinity depends on the arrangement of amino acids rather than
just on the amino acid composition,20 and that these hypotheses
merit further investigation.
Designed peptides conrmed to have high affinity for plastic
in molecular dynamics simulations

MD simulations show that the EDL peptides consistently have
greater affinity for plastic than randomly generated amino acid
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Validation of EDL designs in molecular dynamics simulations.
Adsorption free energies (DG) of EDL peptides designs, PepBD designs,
and randomly generated amino acid sequences to polyethylene (PE),
polypropylene (PP), polystyrene (PS), and polyethylene terephthalate
(PET). The sample size for each design type with each plastic was 12
peptides, except for PE where 15 EDL peptides and 20 PepBD peptides
were tested to evaluate variance between designs over a larger sample
size. Results are shown as a box plot for the range of adsorption free
energies of each design type.

Table 2 Best peptides found using EDL for all plastics

Plastic Peptides sequence DG (kcal mol−1)

Polyethylene RMHWWMKWFMRR −48.0
FFMWHMKWYMRW −43.0
SWMHKIHWHMRW −34.1

Polystyrene WWMRHMFAWRIF −35.0
FWWRTIVWRHIR −28.3
YFIWWWRMFFFR −27.2

Polypropylene FIFRWWQWHVRM −20.3
WWMRWHRLFFIR −16.0
WRWIRLIWQGHR −12.5

PET FHVWWINIFWFF −22.0
FMRWWRMYWFDF −21.7
FHEWWRMYWHRY −19.9
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sequences for all plastics, and greater affinity than PepBD
peptides for polystyrene and polypropylene. We validated the
EDL peptides by performing MD simulations and comparing
the results to peptides from two other design methods: PepBD
and random generation of amino acid sequences in which each
amino acid was selected randomly and independently of all
other residues. Twelve peptides were tested for each plastic:
design method combination to enable comparison between the
design methods over a large sample size at a reasonable
computational cost. A larger sample size of peptides was used
for polyethylene: PepBD (20 peptides) and polyethylene: EDL (15
peptides) to evaluate variability in a given designmethod for the
same plastic. The adsorption free energy (DG) calculated for
each peptide is shown in Fig. 4. Note that affinity increases as
DG decreases. The percent difference in the median DG for EDL
designs relative to PepBD designs shows that EDL peptides have
higher affinity than PepBD peptides for polypropylene (18%),
polystyrene (34%), and polyethylene (5%), but slightly lower
affinity for PET (−11%) compared to PepBD designs. EDL
peptides have higher affinity than random sequences of amino
acids for all plastics. The statistical signicance of the
Table 1 EDL peptides have high affinity for plastic relative to PepBD PB

Plastic

EDL vs. PepBD

p-Valuea Percent median DG improvem

Polyethylene 0.140 +5%
Polypropylene 0.126 +18%
Polystyrene 2.40 × 10−2 +34%
PET 0.205 −11%

a Calculated using a two-sided, equivariance t-test. b Median improvemen
corresponds to higher affinity for EDL peptides to the given plastic than e

© 2025 The Author(s). Published by the Royal Society of Chemistry
difference in affinity was evaluated using a two-sided equivar-
iance t-test. The difference between EDL and PepBD peptides is
signicant for polystyrene, while the difference between EDL
and random peptides is signicant for all plastics except PET
(Table 1). We thus conclude that pairing EDL with PepBD data
can effectively design PBPs, although improvements could be
made in designing PBPs for polyethylene and PET. The best
three EDL designs for each plastic are provided in Table 2.

The variability in molecular dynamics results emphasizes
the need for this screening step prior to using the designed
peptides for MP remediation. The values of DG span a large
range, highlighting the need to evaluate not just the best design
but multiple designs. Scores, either from PepBD or EDL, are
only predictions of affinity and do not guarantee that high
affinity will be observed in MD simulations or experimentally.
Thus, MD can screen out false positives to minimize the cost,
time, and labor of developing effective peptide-based tools of
MP remediation. While the MD protocol can evaluate many
peptides (∼150 total) at a reasonable computational cost, its
relatively simplistic theoretical basis reduces the accuracy of
calculations. It is proper to view the MD results as an initial
screen that identies promising peptides which require more
rigorous evaluation, as we describe in detail in the discussion.

Analysis reveals that uncertainty-aware design helps
generate better peptides. Ideally, lower uncertainty in score
predictions would correspond to better peptide performance.
To quantify peptide performance, we can use the percent
difference in the median affinity of EDL peptides relative to
Ps and random sequences of amino acid

EDL vs. random

entb p-Value Percent median DG improvement

2.94 × 10−4 +78%
−3.86 × 10−5 +81%
5.58 × 10−2 +64%
0.196 +18%

t relative to either PepBD or random peptides; a positive improvement
ither PepBD or random peptides.
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Fig. 5 Lower average uncertainty in EDL score predictions correlates with greater affinity measured by MD simulations. The x-axis is the average
uncertainty in the top 100 peptides found by EDL for each plastic. The y-axis is the improvement, or percent difference in the median adsorption
free energy between EDL peptides and either random peptides (left) or PepBD peptides (right). Average score uncertainty is taken from Fig. 1c,
and improvement is taken from Table 1.
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PepBD or random peptides, as provided in Table 1. We term this
quantity “improvement” for the sake of discussion. Noting that
uncertainty in score predictions varied greatly between plastics
(Fig. 1C), we can determine how score uncertainty relates with
peptide performance by plotting improvement versus average
uncertainty for all plastics (Fig. 5). The comparison between
EDL and random peptides clearly displays the desired trend – as
score uncertainty decreases, EDL peptides have greater
improvement. The same trend appears to be present when
comparing EDL and PepBD peptides, albeit the trend is weaker.
We attribute this to PepBD performing better for some plastics
(e.g., polyethylene, where PepBD greatly outperforms random
peptides) than others (e.g. polystyrene, where PepBD has almost
equal performance as random peptides), so possible improve-
ment of EDL designs varies between plastics. Whatever the
explanation may be, Fig. 5 shows a strong relationship between
lower uncertainty and better peptide performance.
Conclusions

Our research successfully integrates evidential deep learning
with PepBD to identify plastic-binding peptides that can be
useful for remediating MP pollution. The integrated model
nds better-scoring peptides than PepBD for the common
plastics polyethylene, polystyrene, polypropylene, and PET. The
improvement in peptide scores was statistically validated, and
uncertainty quantication allowed us to select peptides that the
model predicted to have high affinity with great certainty.
Evaluation of the designed peptides in MD simulations showed
that EDL peptides had greater affinity than PepBD, enhancing
peptide affinity with median binding free energy improvements
of 18% for polypropylene, 34% for polystyrene, and 5% for
polyethylene. This demonstrates the ability of modeling and
uncertainty quantication-based AI tools to develop biologically
568 | Digital Discovery, 2025, 4, 561–571
friendly tools that can help address the pressing environmental
issue of MP pollution.

The EDL model possesses useful properties that facilitate
peptide design. The model is statistically robust and quanties
uncertainty. This enhances condence in the predictive power
of models and guides the selection of peptides for practical
applications. The result is reduced time, labor, and cost during
the development of peptide tools for MP remediation as fewer
design iterations are required. The EDL model is general - it
designed high-affinity peptides for several common plastics,
suggesting that the model can be readily transferred to other
peptide design tasks previously addressed by PepBD, such as
proteins60 or RNA.23 The worse performance of PBP designs for
PET indicates that some degree of model tailoring may be
needed to capture the complexity of peptide interactions. For
example, improved performance for PET could be achieved
either by adding more detail to the PepBD dataset or by modi-
fying the architecture or training procedure. The EDL model is
exible. While PepBD data was used in this study to train the
model, the PepBD dataset could be complemented with the MD
dataset generated in this work to give a richer dataset to train
the EDL model. Similarly, if a sufficiently large experimental
dataset becomes available for peptide–plastic interactions, such
data could be used for model training. This can be useful given
the limitations in PepBD modeling including the limited
sampling of peptide conformations.

EDL uncertainty varies greatly between plastics and is
signicantly larger for PET than for the other plastics. We
attribute the high uncertainty with PET to two factors that make
peptide interactions with PET more complex compared to the
other plastics. PET contains polar ester groups and aromatic
moieties that interact with the peptide through hydrogen
bonding, strong electrostatic interactions, and p–p stacking.61

The chemical complexity in the PET monomer also leads to
© 2025 The Author(s). Published by the Royal Society of Chemistry
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a more chemically heterogeneous surface relative to the other
plastics. These two factors make PET–peptide interactions
complicated and sensitive to system geometry. This differs from
peptide interactions with polyethylene and polypropylene,
which are driven primarily by hydrophobic and van der Waals
interactions. From a deep learning standpoint, it is notable that
even though the dataset for PET is only slightly smaller than
that used for polypropylene or polystyrene, the greater
complexity of peptide–PET interactions results in poorer
performance. Resolution of these issues is needed, else model
uncertainty will remain elevated and predictions may bias
towards simple hydrophobic binding patterns. We see two
possible solutions. The rst solution is to obtain PepBD data for
many more conformations of peptide adsorbed to PET.
Increasing the data set size ideally will help the DL model learn
a better implicit representation of PET heterogeneity. A second,
more complicated solution is to modify our current CNN-based
EDL mode, which relies solely on sequence-level features, to
include peptide and PET structure in the input representation.
This is motivated by work highlighting the importance of
capturing specic structural and electrostatic details when
modeling interactions between peptides and materials.62 This
could be achieved using graph neural networks.63

Additional evaluation of the best EDL PBPs will be essential
to determine their usefulness for MNP remediation. The MD
analysis provided in this work is coarse and preliminary, since
the free energy calculations use an implicit solvent model and
do not account fully for the peptide's conformation entropy.
These simplications were needed so we could evaluate a large
sample of peptides. Having identied the most promising
peptides, future work can focus on more rigorously evaluating
the best PBPs using simulations methods like metady-
namics64,65 or umbrella sampling.66,67 Experimental measure-
ments of peptide affinity using methods like atomic force
microscopy are also essential. These measurements are
underway and will be reported in a future manuscript that
evaluates both EDL and PepBD peptides.

The peptides identied in this work can be integrated into
many existing technologies and methods developed in recent
years for MNP remediation. Examples of these recent develop-
ments abound: MNP pollution can be detected using spectros-
copy,68 chromatography,69 image-processing,70 liquid crystals
sensors,71 or surface plasmon resonance;72 MNP pollution can be
captured with magnetic biochar,73 biopolymers,74,75 fungal
mycelium,76 carbon-based materials, chemical coagulation,77 or
lysozyme-based amyloid brils;78 and MNP pollution can be
degraded both chemically79 and biologically.80,81 We believe PBPs
can augment many of these technologies. Plastic-degrading
microorganisms can be genetically engineered to express PBPs
to facilitate biolm formation and subsequent plastic degrada-
tion. PBPs could supplement amyloid brils in capturing MNP
pollution. PBPs could help improve the sensitivity of the sensors
for MNPs. Peptides also possess two properties that are advan-
tageous for MNP remediation. First, peptides are naturally
biocompatible, meaning PBPs could help monitor or remove
MNP pollution in biological settings. Second, peptides interact
with plastic via adsorption, a process driven by surface area,
© 2025 The Author(s). Published by the Royal Society of Chemistry
which suggests that PBPs may be particularly helpful in reme-
diating nanoplastics, which have large specic surface area.

Potential limitations of applying PBPs to remediating MNP
pollution merit discussion. Perhaps the most signicant prac-
tical barrier is the cost of peptide synthesis. Two broad routes
exist for synthesizing peptides: chemical82 and biological.83

Chemical synthesis is well established and several companies
offer this service, but purchasing large quantities of peptide is
impractical due to the high cost. We thus believe that producing
PBPs through chemical synthesis would only be suitable for
small scale remediation, method development, and MNP
research. Biological synthesis of PBPs can be achieved by
engineering microbes to continually produce the PBPs. We
think that this could be a promising way to apply PBPs to MNP
remediation on a large scale, given the interest and effort in
scaling up bioremediation strategies. Another possible issue is
the complexity of environmental conditions. MNPs are found in
essentially all environment domains that span large ranges of
properties like salinity, pH, and temperature. Changes in these
properties could inuence which PBP should be selected for
a given plastic in a given environment. The environment can
contain other chemical species that compete with PBPs to
adsorb to MNPs. For example, a protein corona84 and biolm85

may form on MNPs. Predicting the inuence of these environ-
mental factors on PBP adsorption to MNPs is challenging and
should be explored in the future.

The designed peptides and our computational framework
hold signicant potential for the development of peptide-based
materials and technologies for MP detection, capture, and
degradation. The application of such peptides in environmental
safety measures could revolutionize strategies for mitigating
MP pollution, particularly in aqueous environments where such
pollution is damaging and most pervasive. Our open-source
approach to data and methodologies will help advance scien-
tic understanding of peptide–plastic interactions and foster
collaborative environment that encourages further research in
the application of peptides to MP remediation. This openness is
intended to spur innovation across disciplines, leading to more
effective solutions to difficult environmental solutions and
better functional biomaterials.
Data availability

All data, results, models, and evidential deep learning and
biased random key genetic algorithm methods are publicly
available for research use and can be accessed at: https://
github.com/AbdulelahAlshehri/Biophysics-Guided-Uncertainty-
Aware-Deep-Learning-Uncovers-High-Affinity-Plastic-Binding-
Peptides. The PepBD code used to generate the data in this work
can be accessed at https://github.com/CarolHall-NCSU-CBE/
PepBD_Plastics.
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