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ce theory: forecasting the flow of
programmable catalytic loops†
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Paul J. Dauenhauer *ab and Christopher J. Bartel *b

Chemical transformations on catalyst surfaces occur through series and parallel reaction pathways. These

complex networks and their behavior can be most simply evaluated through a three-species surface

reaction loop (A* to B* to C* to A*) that is internal to the overall chemical reaction. Application of an

oscillating dynamic catalyst to this reactive loop has been shown to exhibit one of three types of

behavior: (1) a positive net flux of molecules about the loop in the clockwise direction, (2) a negative net

flux of molecules about the loop in the counterclockwise direction, or (3) negligible flux of molecules

about the loop at the limit cycle of reaction. Three-species surface loops were simulated with

microkinetic modeling to assess the reaction loop behavior resulting from a catalytic surface oscillating

between two or more catalyst surface energy states. Selected input parameters for the simulations

spanned an 11-dimensional parameter space using 127 688 different parameter combinations. Their

converged limit cycle solutions were analyzed for their loop turnover frequencies, the majority of which

were found to be approximately zero. Classification and regression machine learning models were

trained to predict the sign and magnitude of the loop turnover frequency and successfully performed

above accessible baselines. Notably, the classification models exhibited a baseline weighted F1 score of

0.49, whereas trained models achieved weighted F1 scores of 0.94 and 0.96 when trained on the

parameters used to define the simulations and derived rate constants, respectively. The trained models

successfully predicted catalytic loop behavior, and interpretation of these models revealed all input

parameters to be important for the prediction and performance of each model.
Introduction

Chemical transformations on surfaces are dened by the
sequence of elementary reactions that determine the overall
catalytic rate and selection of chemical products.1–3 All
elementary steps including adsorption, desorption, bond-
breaking and bond-forming reactions together describe the
complete decomposition and formation of molecules on the
surface.4 Molecules reacting through the entire mechanism can
move forwards and backwards along parallel reaction pathways
on multiple catalytic active sites.5 Reaction networks also
exhibit interconnectedness that creates internal reaction loops
(Fig. 1a), such that molecules can react through a sequence of
elementary steps to return to original chemical intermediates
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(e.g., A* to B* to C* to A*, where * indicates a surface species).6,7

Reaction loops exist for many reactions important to energy
applications including steam reforming of methane, water gas
shi, and methanol synthesis, and these loops can contribute
signicantly to diminished catalytic rates or altered product
selectivity.8–10

The concept of a reaction loop was examined by Onsager in
the ‘triangle reaction’ of homogeneous reactants shown here
(Fig. 1b) for an alternative application as a cyclic surface reac-
tion of A*, B*, and C*.11 Any surface species may react to form
any of the others, with the forward direction (A* to B* with rate
coefficient k1) dened as clockwise and the reverse reaction
direction (A* to C* with rate coefficient k−3) dened as coun-
terclockwise. By the principle of microscopic reversibility, each
forward and reverse reaction occurs through the same transi-
tion state such that the forward and reverse rates are equal at
equilibrium.7,12,13 A detailed balance of the triangle reaction
yields the Onsager reciprocal relationship:

1 ¼
�
k1

k�1

��
k2

k�2

��
k3

k�3

�
; (1)

which demonstrates the dependent relationship of rate
constants around the reaction loop. As the reaction proceeds to
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Fig. 1 Circumfluence of programmable catalytic loops. (a) Surface chemistries exist as a network of series and parallel reactions with multiple
internal loops. (b) The smallest possible reaction loop consists of three surface species connected through three unique transition states. (c)
Oscillation of the catalyst surface electronic state through two ormore states can lead to a net flux of molecules in a reaction loop. Three general
behaviors of a three-species surface reaction loop include a limit cycle oscillating between three species (d), an oscillation predominately
between two species (e), and termination of the reaction as a single surface species (f).
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equilibrium, the surface coverages of A*, B*, and C* proceed
towards their steady state value with equal forward and reverse
rates and zero net ux around the loop.14

A catalyst that can change with time to promote catalytic
reactions away from equilibrium was rst described by Jencks
in 1969.15 His theoretical enzyme could be forced into two
states, E and E0, each exhibiting unique state conformations
such that forced enzyme state-to-state changes could catalyze
either bond-breaking or bond-forming reactions. The limitation
of this concept was the challenge of focusing the energy input to
elicit precise changes to the enzyme, resulting in a reaction that
could promote reactions away from equilibrium without
violating microscopic reversibility.14–16 Enzymes naturally
exhibit a range of conformational oscillations, but the mecha-
nistic role of these oscillations attributed to catalysis is
debated.17 Instead, other non-biological mechanisms have been
developed to force catalysts between electronic and/or physical
catalytic states18 with precisely dened temporal transitions
(i.e., programmable catalysis) including: periodic illumination
of heterogeneous catalysts,19 oscillating catalyst surface strain,20

and oscillating surface charge.21,22 These heterogeneous catalyst
perturbation methods forcibly change the free energy of
adsorbed molecules as well as their transition state barrier
energies.

The implication of forced perturbation of catalysts for cata-
lytic loops is described in Fig. 1c. For the three-species catalytic
loop of A* to B* to C* to A*, molecules adsorb to and desorb
412 | Digital Discovery, 2025, 4, 411–423
from the surface with varying binding energy between two
catalyst states; state 1 (brown) is weak binding, while state 2
(green) is strong binding. The extent of binding energy change
of each intermediate varies with different reaction parameters,
catalyst composition and structure, and method of perturba-
tion,23 ultimately requiring four scaling parameters to describe
the dynamics of each interconnected elementary reaction and
transition state.24 The difference in intermediate binding energy
in each state is dened by a linear scaling with slope, g, and
offset, d, while the linear scaling of the transition state between
two intermediates is dened using a Brønsted–Evans–Polanyi
relationship with offset, b, and slope, a, proportional to the
enthalpy of the surface reaction.23,25–27 With two parameters
describing each elementary reaction of species i on the catalyst
surface (ai, bi) and two parameters describing the relationship
between species i* and species A* (di–A, gi–A), the energy of each
transition state varies uniquely with changes in catalyst state.
For example, in the depicted system of Fig. 1c, the A*-to-B*
transition state energy decreases signicantly between catalyst
state 1 and state 2; this also leads to the formation of an ‘energy
ratchet’ that prohibits B* from reacting backwards to A* in
catalyst state 1.28–30 The result is a sequence of catalytic reactions
that enable continuous ow of molecules in a loop of A* to B* to
C* to A* as long as the catalyst continues to oscillate between
states.31,32

Microkinetic models of three-species loops on heteroge-
neous catalyst surfaces (e.g., metals) have described the net ux
© 2025 The Author(s). Published by the Royal Society of Chemistry
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of reactions in loops.32 With four chemistry parameters (a, b, g,
and d) describing each of the three elementary reactions, there
exist several triangle reaction behaviors on oscillating catalyst
surfaces. As depicted in Fig. 1d, triangle reaction systems on
programmable catalyst surfaces that exhibit a net ux around
the reaction loop are described with a limit cycle in catalyst
surface coverage. Independent of the initial surface coverage, all
reactions of this type converge on a limit cycle that changes
shape and extent of surface coverage with different amplitude
and frequency of surface oscillation.32 For certain combinations
of chemistry parameters, the net ux of the dynamic system can
be forced to proceed in either the clockwise or counterclockwise
direction.32 Alternatively, some triangle reactions on program-
mable catalyst surfaces merely oscillate between a surface
coverage of two species (Fig. 1e) or terminate in a surface
covered in a single chemical species (Fig. 1f). These two distinct
behaviors of productive and non-productive loops pose both
challenges and opportunities regarding programmable cata-
lysts. Net loop behavior can behave productively, as a catalytic
surface pump, to promote cyclic reactions from reactants to
products. However, net loops can also be undesirable if they
exist amongst surface intermediates, causing the dynamic input
energy to the catalyst to be consumed by the continuous ow of
molecules about an intermediate loop.

Predicting the non-equilibrium ow of reactions in loops has
a basis in the behavior of molecular machines and Brownian
ratchets, which use chemical ‘fuel’ to promote non-equilibrium
steady-state net circular ux of molecules in loops or in
a continuous sequence.33–35 Examples of these systems that
operate at non-equilibrium steady state include catenane,
a molecular structure of two interlocking rings for which one
ring can rotate unidirectionally around the other using chem-
ical energy,36–39 and kinesin, a biological protein motor that
moves unidirectionally along intracellular microtubules using
chemical energy (ATP to ADP).40,41 The unidirectional motion of
these chemically driven systems, rings and protein walkers (and
molecular pumps), is predictable via ‘ratchet constants’, which
compare the relative magnitude of forward and reverse kinetic
rates.34,42–44 However, chemically driven non-equilibrium
systems are different from chemical reaction systems such as
depicted in Fig. 1c, for which molecules are excited to a higher
energy state via mechanisms such as strain, condensed charge,
or light.14,42,45,46 One device that couldmodulate surface energies
in this manner is a catalytic condenser;21,47,48 these devices
enable pre-determined modulation of catalytic surface energy
with time via an input ‘program’ that denes the timescales and
extent of binding energy shi of all surface species. As such,
existing descriptions of stochastic chemically driven mecha-
nisms cannot predict the non-equilibrium behavior of pre-
determined programmable energy-driven catalytic reaction
loops.

The type of oscillatory behavior exhibited by a loop triangle
reaction on a programmable heterogeneous catalytic surface is
determined by the four parameters that describe the chemistry
of each elementary step (a, b, g, and d). Prediction of loop
behavior in programmable triangle reactions remains a chal-
lenge due to themultiple possible catalytic behaviors (Fig. 1d–f),
© 2025 The Author(s). Published by the Royal Society of Chemistry
the signicant number of parameters that describe the chem-
istry, the complexity of programs that dene the transient
behavior of catalyst surface states, and the effects of reaction
conditions (e.g., temperature).

In this work, we examined the catalytic surface triangle
reaction (A* to B* to C* to A*) under surface energy modulation
using simulated surface chemistry with microkinetic models
and machine learning. In the interest of rst understanding the
simplest loop scenario, adsorption and desorption were not
considered in this analysis. An 11-dimensional parameter space
(each describing the chemistry of elementary steps) was
uniformly sampled using 177 147 (311) microkinetic simula-
tions for a specied catalyst program. Machine learning (ML)
models were trained to predict the results of a simulation (loop
behavior) given these 11 input parameters as features. These
models were further interrogated using interpretable ML tech-
niques to understand which parameters govern loop behavior
(e.g., change the loop from unproductive to productive). These
simulations and the ensuing data analysis help shed insight on
the complex interplay between these parameters in governing
the productivity of loop reactions on programmable catalytic
surfaces.

Methods
Kinetic model

The three-species reaction loop was modeled using Julia 1.9.0.
This three-species loop simulation was consistent with that of
the previous work studying this general loop reaction.32 The
model accounts for only the surface conversion of A*, B*, and
C*; the adsorption and desorption energies were assumed too
large to contribute to the chemical system, such that the
molecules remained only on the surface. The microkinetic
model included a unimolecular surface reaction for three
elementary steps. The binding energy of each species changed
in accordance with the dynamic perturbations of the catalyst
surface. The mathematical derivation of these perturbations
and their effect on the binding energies of surface species
through linear scaling relationships and Brønsted–Evans–
Polanyi relationships is included in previous work and the
ESI.†32

With the reaction model, forward integration was performed
using Rosenbrock23 in Julia 1.9.0. The maximum number of
oscillations was set to 5000, which at the xed frequency of 50
s−1 allows 100 seconds for the systems to converge on a steady
state solution. Periodic checks for steady state, implemented
with callbacks, resulted in the termination of the simulation
once the time-averaged elementary rate over one oscillation for
all three elementary reactions was equal. Following the termi-
nation of the solver, the loop turnover frequency (TOF), dened
as the time-averaged elementary rate of net reaction about the
loop over one period of oscillation, was computed. Using mass
action kinetics, the data stored in the simulation for the surface
coverage of each species as a function of time was converted
into elementary reaction rates as a function of time. The time-
averaged rate for each elementary reaction was determined by
integrating forward and reverse elementary rates from the start
Digital Discovery, 2025, 4, 411–423 | 413
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of an oscillation (t1) to the end of an oscillation (t2) and then
dividing by the period,

TOFloop ¼
Ð t2
t1
ðr1ðtÞ � r�1ðtÞÞdt

t2 � t1
¼

Ð t2
t1
ðriðtÞ � r�iðtÞÞdt

t2 � t1
(2)

These simulations always resulted in a non-zero loop TOF (in
part, due to oating point precision). As such, loop TOF
magnitudes < 10−4 were assigned values of zero. In this way,
systems that exhibited a loop TOF > 10−4 s−1 had a positive loop
TOF and a clockwise non-equilibrium steady state ux about the
loop, and those that exhibited a loop TOF < −10−4 s−1 had
a negative loop turnover frequency with counterclockwise non-
equilibrium steady-state ux. Systems between those two cutoff
values were assigned zero loop TOF, with negligible net ux of
surface species at steady state.

To evaluate the full parameter space for the simulation of the
three-species catalytic loop, the 11 parameters dening the
chemistry of the elementary steps were assigned a high,
medium, and low value within ranges of reasonable values, all
of which are listed in Table 1. These values and their ranges
were chosen such that they span the values recorded in litera-
ture for surface reactions.23,27,28,32 Six additional parameters
required to perform the simulations were assigned a xed value:
the frequency (f xed to 50 Hz), catalyst descriptor (binding
energy of A in catalyst state 1, BEA, xed to 0.8 eV), temperature
(T xed to 298.15 K), total surface coverage of bound species (q
xed to 1.0), duty cycle (D xed to 0.5), and waveform shape
(xed to a square waveform). Assigning xed values to these
parameters reduced the dimensionality of the parameter space
and decreased the number of simulations required to survey the
parameter space. As the relationship between the catalyst's
oscillation frequency and the resulting loop turnover frequency
has already been established, it was not included.32

With these values, there are 177 147 (311) unique combina-
tions of simulation parameters. From each of these combina-
tions, the energy diagram was computed using gi–A and di–A to
compute the binding energies of species B* and C* in each state
and ai and bi to compute the activation energy of each surface
reaction. For all instances where an elementary step yielded
a negative activation energy, the parameter set was excluded.
Aer removing these instances of negative activation energy,
174 312 combinations remained. The microkinetic simulations
were performed in parallel using CPU resources provided by the
Minnesota Supercomputing Institute. Each parameter set was
simulated using the three-species reaction loop simulation. In
Table 1 Values used to generate the input parameters for the
simulations

Parameter Low value Medium value High value

a [A, B, C] 0.2 0.6 0.9
b [A, B, C] (eV) 0.6 0.9 1.2
g [B–A, C–A] 0.6 1.4 1.8
d [B–A, C–A] (eV) 0.5 1.0 1.5
DBEA (eV) 0.3 0.5 0.8

414 | Digital Discovery, 2025, 4, 411–423
the loop simulation, integration was performed using Rose-
nbrock23 with a relative tolerance of 10−8 and an absolute
tolerance of 10−10. The callback set implemented in the solver
included a periodic check for steady state aer every ten oscil-
lations. The check required the time-average of each elementary
rate over two oscillations to be less than a set tolerance of 10−5.
This analysis effectively checked that each elementary rate was
equal within the set tolerance ðr1 ¼ r2 ¼ r3Þ. Upon terminating
the integration, the solution was returned. This denition of
steady state mitigates the effect of poor integration on the
simulation results. Simulations had to achieve steady state with
precision to be recorded in the results.

Simulations that failed to converge on a steady-state solution
in 5000 oscillations were re-simulated with a new oscillation
limit of 10 000. Extending the number of oscillations allowed
some simulations to reach convergence; however, for most of
these simulations, this extension did not result in convergence
of the system, but rather led to issues of solver convergence and
memory handling problems. Simulations that failed to
converge were discarded, because the loop TOF could not be
computed to a steady-state solution. The absence of these data
points may remove particular clusters in the sampled parameter
space, but these systems are also recognized to encompass
many different time scales in the rate equations that may not be
present in real systems and lead to stiff equations in the
microkinetic model. The remaining 127 688 converged simu-
lations were used to develop and test machine learning
approaches to model and understand the behavior of the three
species loop on dynamic catalyst surfaces.
Machine learning models

Three common machine learning architectures – Extreme
Gradient Boosting (XGBoost or XGB), Random Forest (RF), and
Support Vector Machines (SVM) – were benchmarked against
one another to determine which method provided the best
performance for the given data. Each method was used to train
classication and regression models on the same 90/10
training/test data split, which were implemented using
a combination of the XGBoost and scikit-learn packages.49,50

XGBoost is an open-source library which provides an effi-
cient implementation of the gradient boosting framework.49,51

Gradient boosting works by training a pool of ‘weak learners,’
decision trees whose predictions are slightly better than an
average guess, and generating an ensemble of these learners
from the initial pool. Weak learners are added to the ensemble
sequentially by a gradient descent algorithm such that the
residuals of the ensemble are reduced. RF algorithms train
similar models by implementing bagging as opposed to boost-
ing. With bagging, a number of individual decision trees are
trained on separate randomized subsections of the available
data before all trees are aggregated to form the nal model.
During prediction for regression tasks, the results of each
individual tree are averaged, while for classication tasks, the
nal class label is determined by a majority vote of the indi-
vidual decision trees. In addition to tree-based models, regu-
larized linear models with stochastic gradient descent (SGD)
© 2025 The Author(s). Published by the Royal Society of Chemistry
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were used for the SVM architecture. Additionally, as the
parameter space evaluated for the microkinetic simulations
resembles a design of experiments approach with 11 features
and 3 levels (low, medium, high), a second order surface
response model was also t and compared to the machine
learning approaches.

Hyperparameters of each model type were tuned using
a randomized grid search and ten-fold cross validation on the
training dataset (90% of full dataset). For each architecture,
models were trained separately for two objectives: (i) a classi-
cation problem to label the loop TOF as positive, negative, or
zero, (ii) for non-zero loop TOF simulations, a regression
problem to predict the magnitude of loop TOF. For each
problem, two feature sets were explored: (a) one relying only on
the 11 input parameters, and (b) another that replaces the
chemistry features with twelve rate constants derived from the
original parameters (see ESI for details†). The chemistry
parameters (ai, bi, di–A, gi–A) were used to describe each
elementary reaction. The binding energy of each surface species
and the activation energy of each reaction were determined
using linear scaling relationships and Brønsted–Evans–Polanyi
(BEP) relationships, respectively.23,27,28,32 With the heat of reac-
tion and activation energy for each elementary reaction, the
forward and reverse rate constants of each were computed using
transition state theory.27,32 Classication models were evaluated
primarily using weighted F1 score, while regressionmodels were
evaluated primarily on their median absolute error (median AE)
due to the many orders of magnitude spanned by the loop TOF.
To apply the models for a new set of parameters, one could
apply the trained classication model, then the regression
model for all samples classied as having non-zero loop TOF
(positive or negative) to realize full predictability of the loop
TOF.

Permutation feature importances (PFI),52 counterfactual
explanations,53 and Shapley additive explanation (SHAP)
Fig. 2 Complete three-species loop simulation dataset. (a) Simulations th
s−1. Most simulations exhibited lower magnitudes of loop TOF, <10−2 s−

were zero, defined as having magnitude less than 10−4 s−1, with slightly

© 2025 The Author(s). Published by the Royal Society of Chemistry
values54 were used to understand the best performing subset of
trained models (see Benchmarking machine learning models).
Each interpretable ML approach was applied to the 10% of the
data that was not used for model training. PFI was performed
with 10 repeats, using the sklearn package. SHAP was per-
formed using the shap package for each target class (positive,
negative, and zero TOF).54 Counterfactuals were generated for
three transformations – zero to positive loop TOF, positive to
negative loop TOF, and negative to positive loop TOF, using the
Diverse Counterfactuals Explanations (DiCE) package.53 For
each transformation, features were minimally perturbed (as
measured by Euclidean distance) to change the class label. For
features involved in the perturbations (i.e. those with non-zero
change) that resulted in the desired transformation, the mean
perturbation was computed and normalized by the range of
values simulated for that feature.
Results & discussion
Dataset

174 312 microkinetic simulations were performed to determine
the steady-state loop TOF as described inMethods. The uniform
sampling of parameter combinations yielded certain parameter
sets that proved difficult to converge. Of all the parameter
combinations, 127 688 simulations converged to a steady state,
comprising 73% of the total parameter space, while 46 624
simulations failed to converge. For further analysis, only the
results of the converged simulation were considered. To classify
the behavior of each converged simulation, the loop TOF,
dened in eqn (2), quantied the net ux of reacting surface
species about the reaction loop at steady state. Simulations were
separated into those with a zero loop TOF (jTOFj < 10−4 s−1) and
those with a non-zero loop TOF. Of the simulations, 63% had an
output of zero loop TOF, while 37% were non-zero. Amongst the
data for non-zero loop TOF, ∼60% of the simulations exhibited
at returned a non-zero loop TOF ranged in magnitude from 10−4 to 50
1. (b) Nearly two-thirds of the output loop turnover frequency values
more of the non-zero simulations having positive loop TOF.

Digital Discovery, 2025, 4, 411–423 | 415
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Fig. 3 Analysis of output loop TOF based on applied amplitude. A
zoomed in normalized histogram highlighting the distribution of non-
zero loop TOF simulations with respect to DBEA. Each histogram is
normalized by the number of converged simulations with the corre-
sponding DBEA. For all DBEA values, near-zero TOF is the most
common, though there were slightly more near-zero TOF for the
smaller DBEA simulations. The DBEA of 0.8 eV is most prominent in the
samples with significant output frequency.
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a positive loop TOF, while ∼40% exhibited negative loop TOF.
This distribution of the loop TOF outputs is depicted in Fig. 2.

In Fig. 3, we probe how the amplitude of oscillation in the
catalyst program (DBEA) inuences the magnitude of loop TOF,
showing that the simulations with higher magnitudes of loop
TOF were associated with higher DBEA. This is consistent with
previous results where higher amplitudes of oscillation were
identied to increase the TOF of catalytic loops having the same
reaction parameters.32 Despite the increase in high jTOFj
simulations associated with larger DBEA, the magnitude of
DBEA did not have an appreciable effect on the number of
simulations yielding zero TOF. This indicates that the lack of
dynamic behavior in a catalytic loop is not due to the catalyst
program (i.e., description of the catalyst surface oscillation) but
rather due to the chemistry parameters (ai, bi, di–A, gi–A) and the
resulting reaction coordinate for the sampled amplitudes.
Table 2 Benchmark results for regression models trained on the origina

Regression

Original parameters

Random
forest

Extreme
gradient
boosting

Support
vector
machine

Response
surface Baselin

RMSE 2.51 4.56 5.69 7.07 5.63
Mean AE 0.44 0.60 1.11 6.66 1.39
Median AE 9.08 × 10−5 1.54 × 10−4 1.23 × 10−3 7.87 1.46 ×

75th
percentile

1.75 × 10−3 2.22 × 10−3 7.01 × 10−3 8.22 0.36

a All metrics are given in units of s−1 and reported for the test set. b Basel
calculated with the mean value of the training set (0.36 s−1) while median A

416 | Digital Discovery, 2025, 4, 411–423
Benchmarking machine learning models

Machine learning (ML) methods were leveraged to understand
the three-species dynamic loop and to predict loop behavior
without the need for microkinetic simulations. Two feature sets
were explored in this work – one making use of the 11 param-
eters that dene each simulation (referred to as the original
parameter, OP, dataset) and another that replaces the chemistry
parameters with rate constants derived from transition state
theory (RC). The behavior of the reaction loop (positive, nega-
tive, or zero TOF) was predicted using multi-class classication
methods. For classication purposes, the output data was rst
divided into three classes based on loop turnover frequency
with class 0 (jTOFj < 10−4 s−1), class 1 (TOF > 10−4 s−1), and class
2 (TOF < −10−4 s−1). For simulations having non-zero TOF, the
TOF magnitude (jTOFj) was predicted using regression models.
Due to the distribution of jTOFj in the dataset (Fig. 2a), the data
were best interpreted on a log-scale. Models were therefore t to
a dataset that removed all samples with zero TOF and consid-
ered ln(jTOFj) for the remaining samples. Model performance
was then assessed by mapping the predicted values back to
a linear scale (eprediction) for comparison to the jTOFj resulting
from the microkinetic simulations.

Using the two input datasets, models were trained using the
XGBoost, Random Forest, or Support Vector Machine architec-
tures. Model performance was assessed using weighted F1
scoring and accuracy for classication and median absolute
error (median AE), mean absolute error (mean AE), root mean
squared error (RMSE), and 75th percentile error for regression.
This is the rst work to predict the dynamic behavior of catalytic
loops using ML. As such, there is not an established baseline for
comparing the performance of the models trained in this work,
so simple baselines were generated for comparison. For the
multi-class classication models, the baseline model predicts
the most common class (zero TOF) for all samples. For the
regression models, the baseline model always predicts the
mean or median jTOFj of the regression test dataset, 0.36 s−1 or
2.32 × 10−4 s−1 respectively. If the ML models learn useful
information, then their performance on held-out data should
yield higher classication metrics and lower regression metrics
l input parameters and computed rate constantsa

Rate constants

eb
Random
forest

Extreme
gradient
boosting

Support
vector
machine

Response
surface Baselineb

2.47 2.23 5.69 18.46 5.63
0.41 0.35 1.11 6.95 1.39

10−4 5.96 × 10−5 8.97 × 10−5 1.72 × 10−3 7.88 1.46 × 10−4

1.34 × 10−3 1.41 × 10−3 5.35 × 10−3 8.22 0.36

ine predictions for the RMSE, mean AE, and 75th Percentile metrics are
E is calculated with the median value of the training set (2.32× 10−4 s−1)

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Benchmark results for classification models trained on the original input parameters and computed rate constantsa

Classication

Original parameters Rate constants

Random
forest

Extreme gradient
boosting

Support vector
machine

Response
surface Baselineb

Random
forest

Extreme gradient
boosting

Support vector
machine

Response
surface Baselineb

Accuracy 0.94 0.91 0.63 — 0.63 0.96 0.96 0.54 — 0.63
Weighted
F1 score

0.94 0.91 0.53 — 0.49 0.96 0.96 0.48 — 0.49

a Performance was assessed on the test set. b Baseline predictions assume the most common class, zero TOF, for all predictions. The response
surface was not t for classication due to the poor regression performance.
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than the baselines. Benchmark results for each type of model
are shown in Tables 2 and 3.

Based on the results of the regression task benchmarking,
shown in Table 2, both RF and XGB models outperform the
näıve baseline models when trained on OP or RC parameters.
The RF regression model trained on RC parameters improves
slightly over that trained on OP parameters for all metrics. For
the case of XGB, there appears to be signicant improvement in
the RC model as opposed to the OPmodel, again for all metrics.
The linear SVM models are consistent with the näıve baseline
when trained on either dataset, while the traditional second
order response surface performs worse than baseline predic-
tions in both cases. These results suggest that the simulation
parameters have a strongly nonlinear effect on the resulting
loop TOF.

The classication task benchmarking, shown in Table 3,
depicts similar trends. RF and XGB models are shown to
perform well above baseline metrics and see slight increases in
both accuracy and weighted F1 score when trained on RC
parameters. The linear SVMs again perform on par with base-
line predictions, reinforcing the nonlinear inuence of the
input parameters on the microkinetic simulations. Due to the
overall better performance of the RF models when trained on
OP input parameters and the comparable performance of the
RF model when trained on RC input parameters, as compared
to XGB, the RF models were chosen as the focus of the
remaining discussion. “OP/RC classier/regressor” and
“models” will henceforth refer to those with the RF architecture
unless otherwise specied. Analogous results for XGB are also
provided in the ESI† for comparison.
Classication of zero, positive, or negative TOF

The OP classier achieved a weighted F1 score of 0.94 on an
excluded test set of 12 768 simulations (10% of the total),
improving dramatically upon the baseline model that always
predicts a loop TOF of zero (F1 = 0.49). The RC classier
improved slightly upon the OP classier with a weighted F1
score of 0.96 on the test set. Interpretable ML methods (PFI,
SHAP, and counterfactual explanations) were applied to the
trained models to understand the inuence of the input
parameters on model predictions and performance on held-out
© 2025 The Author(s). Published by the Royal Society of Chemistry
data. While the RC classier improves upon the OP classier,
rate constant features are much more challenging to interpret
than the original parameters used to dene the microkinetic
simulations. As such, the focus of this analysis will be the OP
models. In Fig. 4a, we show the sorted PFI for the OP classier.
The bi features are shown to be the most important for deter-
mining the classication performance, followed relatively
closely by di and gi–A features. As bi is the offset in the BEP
relationship for each elementary reaction, its value contributes
signicantly to the activation energies of each reaction. The
high values of bi (1.2 eV, see Table 1) result in a barrier to
reaction much larger than for small values of bi (0.6 eV). The
size of the reaction barrier of each elementary step is predictive
of whether a surface species can react about the loop, and
therefore permutations of this parameter deteriorate the clas-
sication of positive, negative, or zero TOF. di–A and gi–A dene
the intermediate linear scaling relationships, determining the
binding energies of each surface species. These values deter-
mine which species are energetically favored in each catalyst
state, dictating the equilibrium coverages of each state. When
different species are energetically favored in each state, there is
higher or lower probability for a net ux of molecules at
dynamic steady-state. In this way, di–A and gi–A are related to the
tendency for a reaction to ux in a loop-like manner when an
oscillating stimulus is applied, causing them to be important
features for determining the model's performance. Although bi

is shown in Fig. 4a to have the highest importance, it is note-
worthy that all 11 input parameters have signicant importance
in determining the performance of the trained classier. This
suggests that the loop behavior is governed by the thermody-
namics and kinetics of all elementary steps as well as the
amplitude of oscillations in the catalyst program.

The feature importance analysis suggests species-dependent
importances in the models (e.g., the PFI for bC > bA > bB).
However, the differences observed across the species-dependent
parameters in Fig. 4a are a result of the nite number of
simulations that converged and the randomness associated
with the method by which each model was trained. Due to the
symmetry of the loop reaction that results from rotation of the
loop, species dependence should not bring about higher
importance; instead, if innite data was provided, then each
parameter for A, B, and C should have identical importance in
Digital Discovery, 2025, 4, 411–423 | 417
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Fig. 4 Permutation feature importance and SHAP analysis of the OP classifier. (a) Permutation feature importance (PFI) analysis on the original
parameter (OP) classificationmodel (RFmodel). (b–d) SHAP analysis on the OP classifier for each class: (b) zero TOF, (c) positive TOF, (d) negative
TOF.
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the model since A, B, and C are equivalent for the purposes of
the model systems studied here. In general, the similarity of
feature importances within each parameter (e.g., all di–A

importances are similar to one another) suggests generally
uniform sampling of the input data with respect to species (A, B,
and C).

SHAP (SHapley Additive exPlanations) values were used to
interpret the relationship between the values of parameters
(features) and the model predictions (positive, negative, or zero
loop TOF). For this multi-class classication model, the SHAP
values were three-dimensional, where each sample, dened as
a unique set of parameter inputs (unique feature values), had
a different output SHAP value for each class. For a given sample,
the SHAP values reect how each feature contributes to the
(model-predicted) probability of that sample belonging to
a given class. In Fig. 4b–d, we show the SHAP values for each
class – zero TOF (class 0), TOF > 0 (class 1), and TOF < 0 (class 2),
respectively. When the model predicts zero loop TOF (Fig. 4b),
the SHAP analysis is consistent with the PFI results, with bi

being the most important feature and di–A and gi–A also holding
high importance. For class 0 (zero TOF) in Fig. 4b, high values of
bi (up to 1.2 eV, see Table 1) correspond with the highest SHAP
values, indicating an increase in the probability that a given
418 | Digital Discovery, 2025, 4, 411–423
sample has zero TOF. For an elementary step, a high value of bi
decreases the probability of reaction at that given step,
increasing the probability of a zero TOF loop.

Interestingly, when the model predicts the directionality of
loops with non-zero loop TOF, ai becomes a more important
feature to govern whether the direction is clockwise (positive
loop TOF, Fig. 4c) or counterclockwise (negative loop TOF,
Fig. 4d). High values of ai (up to 0.9, see Table 1) were found to
correspond almost exclusively with a high probability that
a given sample is class 1 (positive loop TOF) and low probability
that it is class 2 (negative loop TOF). Accordingly, low values of
ai were found to correspond almost exclusively with a low
probability of a sample being class 1 and a high probability that
it is class 2. This is contradictory to the other most important
feature, bi, where values on either extreme (high or low) corre-
spond to a moderately low and moderately high impact. The
parameter ai is the slope of the BEP relationship and multiplied
by the heat of surface reaction (DHR) when determining the
activation energy of each step. In this way, the value of ai

determines how the activation energy scales with respect to
DHR. High values of ai lead to high barriers to reaction when
DHR > 0 and lower barriers when DHR < 0. As DHR is dened in
the clockwise direction, the reactions with low barriers are
© 2025 The Author(s). Published by the Royal Society of Chemistry
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thermodynamically driven in the forward direction, with DHR <
0, promoting the clockwise direction of reaction. Conversely, for
low value of ai, the dependence of the activation energy on DHR

is weakened, allowing for more manageable reaction barriers
when DHR > 0, promoting reactions in the negative, counter-
clockwise direction.

The feature importance results of Fig. 4a identied di–A and
gi–A to have important inuence on the model's performance,
while the SHAP analysis in Fig. 4b–d reveals that different values
of di–A and gi–A do not prominently lead to different output
predictions. The SHAP values instead reveal that the model uses
bi as the key differentiation between loop and no loop behavior,
while using ai to differentiate between positive and negative
behavior. Similar conclusions can be drawn from SHAP analysis
of the XGB models (Fig. S4†) further supporting the importance
of bi and ai in classifying loop behavior.

Counterfactual explanations provided further interpretation
of the classication model and the mechanism of its decisions.
Counterfactuals were generated to nd the smallest perturba-
tion to the features of a given sample that resulted in the model
predicting a different desired class. In generating counterfac-
tuals, the size of the perturbation was minimized as the
Euclidean distance between the original feature values and the
counterfactual values within the 11-dimensional feature space.
This resulted in simultaneous perturbations to multiple
features to realize the change in prediction. In Fig. 5, we show
the mean perturbation to each group of features associated with
three different class prediction changes – positive TOF to
negative TOF (blue), negative TOF to positive TOF (pink), and
zero TOF to positive TOF (yellow). The mean perturbation
indicates the size of each perturbation normalized to the range
of the feature's simulated values (difference between the high
and low value for each feature in Table 1), where a small (large)
relative perturbation indicates that small (large) changes to the
Fig. 5 Counterfactuals of the OP classifier model. Counterfactuals
were explored for three class switches in the OP classifier model (RF
model) – switching the model prediction from positive to negative
loop TOF (blue), negative to positive (purple), and zero to positive
(pink). Each counterfactual involves a perturbation of the features
corresponding with a given sample. The perturbation to each feature
was averaged over all samples, then averaged across each type of
feature (e.g., ai includes perturbations to aA, aB, and aC).

© 2025 The Author(s). Published by the Royal Society of Chemistry
given feature are necessary to change the prediction label. This
analysis indicates that perturbations on the order of 10–25% to
any of the original parameters (the chemistry parameters or the
amplitude of the catalyst program) can alter the direction or
productivity of the catalytic loop. As with the SHAP analysis, the
counterfactual analysis supports the suggestion that bi is a key
parameter in dictating the behavior of the loop TOF, as evident
by the small relative perturbations required to change class
labels, which indicates the sensitivity of the loop TOF to slight
changes in bi. It is also noted that large changes in ai are
required to induce a change in prediction from negative to
positive loop TOF. This is consistent with the SHAP analysis in
which low values of ai strongly correlated to a negative classi-
cation and high values with a positive classication. Overall,
this counterfactual analysis using the trained models provides
useful context for guiding the design of catalyst programs to
achieve specic reaction behavior given some xed inputs (e.g.,
the chemistry of certain elementary steps). Once again, we nd
similar results with the XGB models (Fig. S5†) supporting that
the observations are robust with respect to model architecture.
Regression models to predict the TOF magnitude

The median AE for the OP regressor was 9.08 × 10−5 s−1 on the
test set, which is a ∼38% decrease in median AE from the
baseline of 1.46 × 10−4 s−1, where the baseline model always
predicts jTOFj to be the median of the training dataset. When
evaluating the predictions on a parity plot, Fig. 6a revealed that
the predictions generally trended strongly with the actual values
resulting from the simulations, with most errors within one
order of magnitude of the target. The RC regressor was trained
and assessed in the same way as the OP regressor but utilizing
the derived rate constant (RC) features instead of the original
parameters. The RC regressor performed with a median AE of
5.96 × 10−5 s−1, improving upon the OP regressor by ∼34%.
The median AE values of the predictions reveal a moderate
increase in performance from the OP regressor to the RC
regressor. In Fig. 6b, the parity plot for the RC predictions
shows stronger correlation with the target than the OP
regressor. Despite the similar median AE's between the two
models, the 75th percentile error for the OPmodel is 1.75× 10−3

s−1 while that for the RC model is 1.34 × 10−3 s−1. Together
these indicate small errors by the RC model for many more
samples than the OP model. Similar to the comparison of the
OP and RC models for classication, using rate constants as
features improves model performance at the detriment of
model interpretability. Similar trends can be seen for the XGB
models (Fig S6†).

PFI for the OP regressor shown in Fig. 7a was consistent with
the OP classier as bi was again identied as the most impor-
tant feature. However, the regression models show signicantly
more dependence upon the most important bi features
compared with the classication models, which show relatively
uniform reliance on several features (Fig. 4a). As with the SHAP
values associated with zero TOF predictions made by the OP
classier (Fig. 4b), the SHAP values for the OP regressor shown
in Fig. 7b indicate that bi features have the most importance in
Digital Discovery, 2025, 4, 411–423 | 419
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Fig. 6 Parity plots for the RF regressors. (a) TheOP regressormodel demonstrates the proper trend of prediction vs. actual value, yet the width of
the results identifies significant variation between the actual and predicted loop turnover frequencies. (b) The RC regressor demonstrates more
accurate performance on the dataset as indicated by more narrow spread on the parity plot. For both plots, the number of points lying in
a particular region of the parity plot is indicated by the colorbar and the histogram on either axis. The red dashed line indicates a perfect 1 : 1
correlation.
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determining the model prediction. Low values of bi were found
to correspond almost exclusively with a high value of loop TOF
while high values correspond almost exclusively with low values
of loop TOF. Interestingly, and in contrast with any of the
classication predictions, the catalyst program amplitude,
DBEA, is shown to contribute strongly to the magnitude of TOF
predicted by the models, as indicated by the large SHAP values
and clear trend between high (low) values of DBEA and high
(low) values of predicted jTOFj. XGB models indicate similar
importance in bi features and an increased importance in DBEA
for the prediction of TOF values (Fig. S7†).
Comparison of random forest machine learning models

ML models trained on high-throughput microkinetic simula-
tions revealed how the inputs to the simulations (the nature of
the reaction and catalyst system) determined the behavior of
Fig. 7 Permutation feature importance and SHAP analysis on the OP reg
original parameter (OP) regressor model. (b) SHAP analysis on the OP re

420 | Digital Discovery, 2025, 4, 411–423
three-species dynamic loops. All ML models also reected large
savings in computational cost relative to the microkinetic
simulations. Collection of the dataset required 6 months of
running simulations with a typical simulation time ranging
from 30 seconds to 96 hours (max time allowed for simulation).
The ML models, once trained, require <30 ms to perform the
inference, realizing a signicant reduction in computational
time relative to the microkinetic model. Model training is also
comparatively fast, as the nal OP models were trained in ∼5
minutes. The classication models exhibited high weighted F1
scores of 0.94 and 0.96 for the OP and RC models, respectively.
These scores are near that of a perfect model (weighted F1 score
of 1.0) and are drastic improvements from a baselinemodel that
always predicts a loop TOF of zero (F1 of 0.48). Both regression
models also exhibited improved performance relative to the
baseline median AE (1.46 × 10−4 s−1) realizing a ∼38% and
∼59% decrease in median AE relative to the baseline model, for
ressor model. (a) Permutation feature importance (PFI) analysis on the
gressor.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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the OP and RC regressor models, respectively. The separate
training and disparate performance of classication and
regression models suggests that it is more straightforward to
nd relationships between the inputs and the direction of the
catalytic loop (classication) than to directly predict the
magnitude of the loop TOF (regression). Predicting jTOFj may
be complicated by the nature of the data, which spans∼6 orders
of magnitude for the diverse parameter combinations explored
in this work.

The classication model trained on the original chemical
parameters (OP) presented interpretable results that empha-
sized all features to have importance in the trained model.
Breakdown of the PFI and SHAP reected minor differences,
where bi was identied as the most important feature to
determine whether a loop reaction will have a zero or non-zero
loop TOF. Furthermore, gi–A and di–A were also identied as
important features, and ai was isolated as a key feature to
determine positive versus negative dynamic behavior. Interpre-
tation of the regression model having the same features showed
again that all features informmodel prediction and indicated bi

to be the most important parameter in dictating the magnitude
of the loop TOF. The classication model and regression model
trained on the rate constant data (RC classier and regressor)
resulted in higher performance than the models trained on the
original chemical parameters (OP classier and regressor);
however, the models trained on the rate constants are difficult
to interpret due to the inability to differentiate between each
different rate constant in the context of a symmetrical reaction.

The MLmodels performed consistently on training and tests
sets but may not generalize to out of distribution (OOD) data.
Since these models have only seen three values of each input
parameter, their performance may decrease when assessed on
systems that include more varied parameter values. In response
to this, there are key takeaways that will help inspire future work
in this area. This dataset would have benetted from explora-
tion of multiple frequencies and a more random parameter
selection. Simulating multiple frequencies would have aided in
the understanding of cutoff frequencies for each individual
elementary reaction; it would also have helped to understand
reaction systems that have no loop TOF at low applied frequency
but signicant loop TOF at high applied frequencies. A more
random generation of the input parameter sets would have
challenged the models to learn more complex underlying rela-
tionships between these parameters and the loop dynamics.

Despite the shortcomings associated with the discrete
parameter sampling, the models were found to be effective in
predicting the loop behavior and allowed for insight into the
relative importance of each parameter in predicting the
behavior of a loop reaction. If specic catalytic loop behavior is
desired, then the data and models can be leveraged to under-
stand the value of scaling parameters or catalyst programs that
would produce that behavior and desired loop turnover
frequency. Furthermore, the new understanding of which
features are most consequential to each behavior improves our
understanding of which scaling parameters should be the focus
in designing dynamic catalyst systems. For more complex
systems that require more than 11 parameters (accounting for
© 2025 The Author(s). Published by the Royal Society of Chemistry
adsorption/desorption, multiple active sites, diffusion, etc.), the
brute force sampling used in this paper quickly becomes
computational expensive. With the new understanding of which
scaling parameters are most consequential, future exploration
can collapse the sample space to recognize variation across only
those parameters to make these methods more tractable for
larger systems.

Conclusions

Applying a dynamic surface to a three-species catalytic reaction
loop results in three types of steady state behavior: clockwise
reaction ux about the loop (positive loop TOF), counterclock-
wise reaction ux about the loop (negative loop TOF), and
negligible ux (jTOFj < 10−4 s−1). Screening the input parame-
ters for this catalytic system demonstrated that most considered
reaction loops yield negligible loop TOF. Machine learning
models trained on the generated dataset were successful in
predicting the loop behavior and improved further using
derived rate constants as input features. However, applying
these models to more complex chemistries may require further
development of the predictive models and their infrastructure.
The ML models also demonstrate that all studied parameters
play a role in determining the performance of the models and
their predictions of surface behavior. Among the studied
parameters, bi (the offset parameter in the BEP relationship,
used to determine activation energy of each elementary reac-
tion) was found to be the most consequential parameter,
especially for determining the magnitude of the loop TOF.
Overall, this work shows how the connection of microkinetic
simulation andmachine learning can be further integrated with
the design of programmable dynamic catalyst systems. The
ability to predict system behavior from fundamental reaction
parameters or to determine the parameters necessary to achieve
a desired catalytic behavior indicates a promising future
direction for rational design of programmable catalysts for
reactions with complex surface mechanisms.

Data availability

Code and data used to generate the presented results are
available at https://github.com/Bartel-Group/programmable-
loop-directionality. A fully archived version of the code and
data can also be found through the Data Repository for the
University of Minnesota (DRUM): https://doi.org/10.13020/
bh14-3q71. Due to GitHub space limitations, the pre-trained
random forest models are only available through DRUM.
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