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lysis of miniature synaptic calcium
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Ca2+ imagingmethods are widely used for studying cellular activity in the brain, allowing detailed analysis of

dynamic processes across various scales. Enhanced by high-contrast optical microscopy and fluorescent

Ca2+ sensors, this technique can be used to reveal localized Ca2+ fluctuations within neurons, including

in sub-cellular structures, such as the dendritic shaft or spines. Despite advances in Ca2+ sensors, the

analysis of miniature Synaptic Calcium Transients (mSCTs), characterized by variability in morphology

and low signal-to-noise ratios, remains challenging. Traditional threshold-based methods struggle with

the detection and segmentation of these small, dynamic events. Deep learning (DL) approaches offer

promising solutions but are limited by the need for large annotated datasets. Positive Unlabeled (PU)

learning addresses this limitation by leveraging unlabeled instances to increase dataset size and enhance

performance. This approach is particularly useful in the case of mSCTs that are scarce and small,

associated with a very small proportion of the foreground pixels. PU learning significantly increases the

effective size of the training dataset, improving model performance. Here, we present a PU learning-

based strategy for detecting and segmenting mSCTs in cultured rat hippocampal neurons. We evaluate

the performance of two 3D deep learning models, StarDist-3D and 3D U-Net, which are well established

for the segmentation of small volumetric structures in microscopy datasets. By integrating PU learning,

we enhance the 3D U-Net's performance, demonstrating significant gains over traditional methods. This

work pioneers the application of PU learning in Ca2+ imaging analysis, offering a robust framework for

mSCT detection and segmentation. We also demonstrate how this quantitative analysis pipeline can be

used for subsequent mSCTs feature analysis. We characterize morphological and kinetic changes of

mSCTs associated with the application of chemical long-term potentiation (cLTP) stimulation in cultured

rat hippocampal neurons. Our data-driven approach shows that a cLTP-inducing stimulus leads to the

emergence of new active dendritic regions and differently affects mSCTs subtypes.
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1 Introduction

Ca2+ imaging is widely used for the study of cellular activity
modulations in the brain, enabling detailed monitoring and
analysis of dynamic processes at various scales: from large
neuronal networks down to individual synapses.1,2 Exploiting
high-contrast optical microscopy approaches and uorescent
Ca2+ sensors, it offers insights into localized uctuations of Ca2+

concentration within neurons.3,4 In the last decade, the devel-
opment of a variety of sensitive Ca2+ sensors with increased
brightness and improved detection kinetics has opened up new
possibilities for the monitoring of dynamic processes occurring
in small cellular compartments such as dendritic spines.5–7 For
instance, Ca2+ imaging of miniature Synaptic Calcium Tran-
sients (mSCTs) has been studied to monitor the NMDA-receptor
driven Ca2+ inuxes generated by the spontaneous release of
glutamate-containing presynaptic vesicles.3,8–12 mSCTs are
Digital Discovery, 2025, 4, 105–119 | 105
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characterized by wide variability in their morphology and
spatio-temporal propagation, but also by a generally small
difference between peak and background intensity uctua-
tions.3 This makes the task of selecting a robust and general
method for automated mSCT analysis very challenging. Spike-
inference approaches have been developed to describe the
underlying process by which spiking activity leads to uores-
cence measurements.13,14 However, such methods do not take
Fig. 1 Deep learning algorithmworkflow. Data preparation: Ca2+ imaging
was performed with Total Internal Reflexion Fluorescence (TIRF) micro
intensity-based detection threshold (IDT) approach. Detected transients
fluorescence signal fluctuations andmSCTs. Training stage: a DLmodel is
with a PU learning scheme for automated detection and segmentation o
ground truths are compared. Detection and segmentation performance
dice similarity score, respectively. Inference stage: the trained DL mode
containing mSCTs. Maximum projections of the input video and predic
mSCTs can be used for multidimensional feature analysis.

106 | Digital Discovery, 2025, 4, 105–119
into account the spatial extent of calcium events and do not
address the problem of event detection from raw videos.
Threshold-basedmethods relying on the extraction of regions of
interest (ROIs) have been proposed to segment cell body from
whole cell Ca2+ imaging videos.15,16 Such approaches were also
applied to detect small events, such as astrocytic calcium
events,17,18 which are more similar to the task of mSCT detec-
tion. However, the accuracy of the threshold-based methods is
of the fluorescent protein GCaMP6f in cultured hippocampal neurons
scopy. The localized fluorescent transients are segmented using an
are validated by an expert to differentiate between random foreground
trained on the dataset generatedwith the expert-validated IDTmethod
f mSCTs. Evaluation stage: crops of the model predictions and expert
are assessed according to a weighted centroid detection error and the
l is used to infer segmentation masks from input Ca2+ imaging videos
ted segmented events are shown. Predicted segmentation masks of

© 2025 The Author(s). Published by the Royal Society of Chemistry
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reduced for events that propagate or change size and shape over
time. Noise-based thresholding was proposed to detect and
track sub-cellular events occurring at random locations and
propagating over time such as mSCTs.19

While user-dened analysis pipelines are still common, the
bio-imaging eld has seen a shi of paradigm in the tools
developed for quantitative analysis. Indeed, further perfor-
mance gains can be obtained with the use of deep learning (DL)
for segmentation,20 small object segmentation21 (Ma et al.22 for
a review), or calcium analysis23,24 when compared to user-
dened pipelines. DL offers data-driven approaches to auto-
matically learn features and patterns present in a dataset that
dene the structures or events. Consequently, these networks
do not require to make a priori assumptions on either the
regions of interest, model-based denitions of spatio-temporal
features, or on parameter choices specic to a given task. They
have been applied successfully to Ca2+ imaging detection tasks
at the cellular level.25–27

One limitation for the broad deployment of supervised DL-
based Ca2+ imaging analysis is the need for large annotated
datasets28 to train the DLmodels. Inmany experimental contexts,
including Ca2+ imaging, negative instances, corresponding to
pixels that do not contain a Ca2+ event at a given time point,
account for a large proportion of the image.29,30 This represents
an additional challenge for the development of DL analysis
strategies. In cases where Ca2+ transients (positive instances) are
small and scarce, a large fraction of the foreground remains
without annotation (unlabeled). Positive Unlabeled (PU) learning
was proposed to harness unlabeled instances with the intuition
that they can be leveraged to train deep neural networks.31,32 It
can be used to address challenges associated with the impossi-
bility to annotate all negative instances due to time constraints or
subjectivity of the annotation process.33 During PU training, the
DL model has access to positive instances and a predened
number of unlabeled instances. This signicantly increases the
size of the training dataset by providing additional information
to the DL models and leveraging the abundance of unlabeled
data. In the context of mSCT detection, we reason that unlabeled
crops contain information about random Ca2+ uctuations that
can be leveraged by the DL model during training to better
differentiate between mSCTs and random uctuations. PU
learning has already been applied with success to several bio-
image analysis tasks.34–36

Here, we present a PU learning-based strategy for the analysis
of mSCTs in cultured rat hippocampal neurons (Fig. 1). The
approach was developed to be applicable for the detection and
segmentation of mSCTs characterized by a large diversity of
signal amplitudes, frequencies, and spatial distributions. Our
algorithm provides both mSCT detection and segmentation
through the use of spatio-temporal (2 spatial dimensions + 1
temporal dimension) DL models (3D U-Net37 and StarDist-3D38).
We introduce PU learning in the context of mSCTs detection,
using foreground intensity uctuations as unlabeled instances
and mSCTs as positive instances. In the absence of unlabeled
instances for training, our algorithm is similar to that of Dotti
et al.,39 which implements a 3D U-Net for segmentation of low
SNRCa2+ events in full-frame confocal imaging data. The authors
© 2025 The Author(s). Published by the Royal Society of Chemistry
tackled a multi-label instance segmentation task to differentiate
between types of Ca2+ release in the context of cardiomyocytes.
We build upon this work in an instance segmentation task and
show that the addition of unlabeled instances to the training
procedure leads to signicant gains in the performance of the 3D
U-Net. To the best of our knowledge, this is the rst use of PU
learning for Ca2+ imaging analysis. We leverage the trained DL
model to create a multidimensional analysis framework, which
allows the analysis of mSCT features associated with the appli-
cation of a chemical long term potentiation (cLTP) inducing
stimulus.

2 Methods
2.1 Neuronal cell culture

Dissociated rat hippocampal cultures were prepared as
described previously.40,41 In brief, hippocampi were dissected
out of P1 rats, following approved protocols from the Université
Laval animal care committee, dissociated enzymatically
(papain, 12 U/ml; Worthington), and mechanically (trituration
through Pasteur pipette). Aer dissociation, the cells were
washed, centrifuged, and plated on poly-D-lysine-coated glass
(18 mm) coverslips at a density of ∼67 500 cells per mm2.
Growth media consisted of Neurobasal and B27 (50 : 1), sup-
plemented with penicillin/streptomycin (50 U/ml; 50 mg ml−1)
and 0.5 mM L-glutamax (Invitrogen). Fetal bovine serum (2%;
HyClone) was added at time of plating. Aer 5 days, half of the
media was changed without serum and with Ara-C (5 mM;
Sigma-Aldrich) to limit proliferation of non-neuronal cells. Aer
that, half of the growth medium was replaced with serum- and
Ara-C-free medium twice a week. For Ca2+ imaging, neurons
were transfected with GCaMP6f-expressing plasmid (pGP-CMV-
GCaMP6f)6 using Lipofectamine 2000 (Invitrogen). For the
plasticity experiments, neurons were transfected at day in vitro
(DIV) 9–13 and imaged 24 h later. For the generation of the
training dataset for the detection and segmentation of mSCTs,
videos from neurons imaged at DIV 7–17 were included.

2.2 Imaging solutions and pharmacology

The HEPES-buffered aCSF solution used for Ca2+ imaging con-
tained: 104 mMNaCl, 5 mM KCl, 10 mMNa-HEPES, and 10 mM
glucose. To initially maintain little or no NMDA receptor activity
during the transfer of the coverslip to the microscope, this
solution contained 0.6 CaCl2 and 5.0 MgCl2 (high-Mg2+-aCSF).
For mSCT measurements, the solution was adjusted to contain
no Mg2+, 1.2 mM Ca2+ and 0.5 mM Tetrodotoxin (TTX, Alomone
Labs) (0Mg2+/TTX-aCSF). For chemical long term potentiation
(cLTP) stimulation, the aCSF solution without Mg2+ was sup-
plemented with 0.2 mM glycine and 0.01 mM bicuculline
(0Mg2+/Gly/Bic-aCSF).42 The osmolarity of every solution was
maintained around 230 Osm, close to the neurobasal-based
growth media value of the neuronal cell cultures.

2.3 Live imaging and plasticity protocol

Neurons were imaged using a 100x 1.49NA immersion objective
on an inverted Olympus IX-71, equipped with a TIRF
Digital Discovery, 2025, 4, 105–119 | 107
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illuminator, set on an oblique illumination mode to detect
uorescence with improved contrast.43 The microscope was
equipped with a multi-valve perfusion system (VC3-8xG, ALA
Scientics instruments) and an inline heater (SF-28, Warner) so
that neurons were continuously perfused with heated (32 °C)
solutions. Transfected neurons were imaged with a Toptica
iChrome MLE laser at 488 nm. GCaMP6f uorescence emission
was ltered through a Semrock, Brightline 520/35 cube placed
before the objective and recorded on a Charge-coupled device
(CCD) camera (Princeton ProEm 512B-FT) at a rate of 10 frames
per second. The pixel size was 0.16 mm. Image acquisition was
performed using a custom written Matlab script in Matlab2007
(ref. 43).

For the generalization experiment of the trained model,
time-lapse imaging of GCaMP6f was performed at room
temperature using an upright microscope (Axioskop FS2; Zeiss)
equipped with a 63x 0.95 NA Achroplan water immersion
objective (Zeiss) and a multivalve perfusion system (PTR-2000;
ALA Scientic Instruments). Fluorescence excitation was ach-
ieved using a Lambda DG-4 system with a 175 W Xenon lamp
(Sutter Instrument), using a 485/20 nm excitation lter and
a LP515 emission lter. Images were acquired in epiuor-
escence mode with an EMCCD camera (QuantEM:512SC;
Photometrics) using an exposure time of 150 ms and a 2 × 2
binning.

For the mSCT plasticity experiments, neurons were trans-
fected at DIV 9–13 and imaged 24 h later. Coverslips were rst
transferred from the incubator to the perfusion chamber con-
taining fresh high-Mg2+-aCSF, to block the activity and prevent
any cellular stress. The perfusion was switched for the imaging
session to 0Mg2+/TTX-aCSF and a baseline Ca2+ imaging video
of 600 frames (60 seconds) was acquired. Immediately aer, the
perfusion was changed to 0Mg2+/Gly/Bic-aCSF for 7 minutes for
the cLTP stimulation. Aer the 7 min cLTP stimulation, the
perfusion was switched back to 0Mg2+/TTX-aCSF solution. For
the control condition, neurons were kept in the 0Mg2+/TTX-
aCSF throughout. Neurons were not imaged during the cLTP
stimulation to prevent photobleaching of the Ca2+ sensor.
Directly aer the stimulation, the perfusion was switched back
to 0Mg2+/TTX-aCSF. For both conditions a baseline Ca2+

imaging video was rst acquired followed by a second video,
starting 10 min aer the end of the baseline. During the
acquisition of both Ca2+ imaging videos the solution was 0Mg2+/
TTX-aCSF.
2.4 Intensity-based detection threshold (IDT) annotator

We developed an intensity-based detection threshold (IDT) algo-
rithm to detect and segment mSCTs while recording their
temporal and spatial position. IDT is implemented in Matlab
2018 (Mathworks Inc., Natick, USA). It consists of 3 phases: (i)
data preprocessing, (ii) automated detection and segmentation of
mSCTs, and (iii) manual verication of the detected Ca2+ events.

Acquired streams were initially aligned in x and y to the rst
frame of the video using the custom written Matlab code of
Guizar-Sicairos et al.44 Subsequently, the background noise was
removed by manually choosing a region of interest in the
108 | Digital Discovery, 2025, 4, 105–119
background and by subtracting its average intensity from each
frame. To detect the foreground, a spatial median lter was
applied (kernel size of 3) and manual adjustment of an
intensity-based threshold was performed. Ca2+ transient
detection was performed pixel-wise from the foreground mask.
For each pixel the uorescence intensity was extracted and the
baseline was corrected using asymmetric re-weighted penalized
least square algorithm (arPLS).45 The uorescence signal F was
normalized to the baseline uorescence F0 with:46

DF=F0 ¼ F � F0

F0

: (1)

To identify real Ca2+ events from uorescence foreground
uctuations, we rst evaluated the noise of the baseline uo-
rescence trace. We compared the standard deviation (STD) of
the signal while iteratively excluding the time points with the
highest values, which correspond to Ca2+ events rather than
noise uctuations. When the STD between 2 consecutive itera-
tion steps becomes similar, indicating that most of the Ca2+

events have been removed, we use the measured STD as an
approximation of baseline noise uctuations for subsequent
steps. Ca2+ transients are detected with the Matlab function
ndpeaks. The rst threshold is used to detect peaks in the
baseline corrected time traces and set at 4 × STD (detection
threshold). A second threshold of 2 × STD is applied subse-
quently and used for the segmentation of the mSCTs
(segmentation threshold). The segmentation threshold is
applied within a time window of 1500 ms before and aer the
peak to determine the length of the mSCTs. Using this
approach, events lasting only 1 frame are discarded.

The spatial and temporal properties of the segmented
objects are calculated using the regionprops function in Matlab.
The events having one of their spatial axis #3 pixels are
removed. Following this rst automated detection step, the user
is asked to verify each detected event with the help of a graph-
ical user interface (GUI). The GUI displays a small crop centered
around each event (64 by 64 pixels, 12 frames), the corre-
sponding baseline-correction, and detection of the normalized
Ca2+ transients. In the GUI, the user inspects the detected
events to determine which ones correspond to mSCTs and
should be kept for future analysis. To facilitate the analysis,
events detected at different time points but with weighted
centroids closer than 2.55 mm are given the same region iden-
tier (ID) and can be proofed at the same time. We noted that
mSCTs which occur at a high frequency at the same position are
oen missed by ITD. Additionally those segmented events
typically last longer than 4.5 seconds. This issue arises from
dening the end of an event as the uorescence signal dropping
below the second threshold, particularly during bursts of
events. Hence, the user is asked to inspect these events with
another GUI showing the mSCT (64 by 64 pixels, 12 frames) and
the overlapped segmentation at the maximal peak intensity
frame. This is required to extract the total number of events but
does not affect themask of IDT used to train the DLmodels. The
analysis time of a video strongly depends on the number of Ca2+

transients. On average we can nd between 100–800 events and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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the analysis of such videos can require from 2 to 4 hours
(automated and manual steps combined).

2.5 Dataset

The training dataset consisted of 14 Ca2+ imaging videos
acquired on different neurons. To account for the very small
size of the training dataset, we measured the averaged perfor-
mance of each model trained with ve independent random
seeds and ve distinct groups of 14 Ca2+ imaging videos anno-
tated using the IDT algorithm. Positive crops (64 × 64 × 64
pixels) were generated for each transient detected by IDT and
manually validated by an expert. For each subset, unlabeled
crops were sampled from the foreground to obtain the desired
PU ratio. Unlabeled crops from a smaller PU ratio are a subset of
the next PU ratio, e.g. the set of unlabeled crops used to train the
models with a PU ratio of 1–2 is contained in the set of unla-
beled crops used to train the models with a PU ratio of 1–4. The
validation dataset was kept constant for all training and con-
sisted of 15 independent Ca2+ imaging videos that were anno-
tated with the IDT algorithm.

The testing detection dataset consisted of 10 independent
Ca2+ imaging videos that were manually annotated by an expert
at the peak intensity of the mSCT. The manual detection of
mSCTs consisted of point annotations of the event centroids at
the maximal DF/F0 frame. The segmentation testing dataset
consisted of manual segmentation masks obtained from two
experts for 69 mSCTs of varied size, shape, and intensity. The
masks were drawn on (32 × 32 pixels) pixel crops centered on
the frame withmaximalDF/F0 for eachmSCT. This was required
to reduce the impact of missed events (false negatives) and the
imprecise segmentation masks from the IDT algorithm during
the evaluation.

2.6 DL models

All DL models were trained on crops of size (32 × 32 × 32) from
the aligned and normalized version of the acquired Ca2+

imaging videos (baseline correction and DF/F0, see 2.4) and the
corresponding IDT annotations. Training parameters varied for
both models and are described below. At inference, tiles of size
(64 × 64 × 64) are used to make the nal prediction.

2.6.1 3D U-net. A modied 3D U-Net was implemented37 in
PyTorch.47 The encoder part of the architecture consisted of 5
layers of double convolution blocks followed by max pooling
with a kernel size and stride of 2. The number of lters was
doubled aer each layer (8, 16, 32, 64, 128). Throughout the
model, a kernel size of 3 with zero-padding and a stride of 1
were used. Aer each convolution, a batch normalization layer
and leaky ReLU (0.02) were used. The bottleneck of the model
consisted in two convolution layers, each followed by a ReLU
activation. For the decoder part, features from lower layers were
upscaled using transposed convolutions and concatenated with
the information obtained from the skipping links located at the
same depth. This was followed by a double set of convolution,
batch normalization and ReLU. A nal convolution layer pro-
jected the information to a single channel prediction and was
followed by a sigmoid function.
© 2025 The Author(s). Published by the Royal Society of Chemistry
The model was trained with the Adam optimizer, with
default parameters and a learning rate of 0.0002, to minimize
the mean quadratic error. The model was trained for 100k steps
with a batch size of 128. Every 100 steps, the complete validation
dataset was used to assess the generalization performance.
Random crops and spatial ip were used during training for
data augmentation. The model with the best performance on
the validation test was kept for testing.

2.6.2 StarDist-3D. We used the default implementation
from ref. 38 and 48. In brief, the StarDist approach proposes to
localize objects of interest via star-convex polygons. More
specically, the StarDist method trains a 3D U-Net architecture
to predict object probabilities as well as star-convex polygons
parameterized by the distances to object boundaries. These
predictions produce a set of candidate polygons for a given
input image, aer which a nal result is obtained via non-
maximum suppression (NMS) of the candidates.

The model was trained for 400 epochs with a batch size of 64
and 100 batches per epochs. The same data augmentation
technique to the 3D U-Net was used during training.

2.6.3 UNetR and Attention-UNet. We used the UNetR49

model implementation from the MONAI library with default
parameters.50 For Attention-UNet,51 we also used the model
implementation from the MONAI library. We set the number of
channels at each layer to 16, 32, 64, 128, 256 and used a stride of
2. Other parameters were set to their default values.

The models were trained with the Adam optimizer, with
default parameters and a learning rate of 0.0002. The models
were trained with their recommended loss function (DiceCE
loss: a weighted sum of the dice loss and the cross-entropy loss)
or with the mean squared quadratic loss function. In all cases,
the models were trained for 100k steps with a batch size of 128.
Every 100 steps, the complete validation dataset was used to
assess the generalization performance. Random crops and
spatial ips were used during training for data augmentation.
The model with the best performance on the validation test was
kept for testing.
2.7 Positive unlabeled learning

Typical supervised DL algorithms learn to represent data using
raw inputs and their corresponding annotations.52 A binary
classication problem consists in training a model to discrim-
inate two classes of events (e.g., positive and negative). Tradi-
tionally, supervised machine learning makes use of a dataset
{(x0, y0), (x1, y1),.} where xi˛ℝD is the input and yi, the associ-
ated annotation. In the case of the detection task we have yi˛ {0,
1}, with the sample being positive when y = 1 and negative
otherwise (y = 0).

In Positive Unlabeled (PU) learning,31 a binary variable s˛ {0,
1} on whether an example was annotated or not is introduced in
the training dataset {(x0, y0, s0), (x1, y1, s1),.}. When the anno-
tation process does not make annotation errors, it implies that
ℙðy ¼ 1js ¼ 1Þ ¼ 1. When s = 0, then the example can belong to
both classes.

In some elds, such as biomedical imaging, deep learning
algorithms can be difficult to implement due to the scarcity or
Digital Discovery, 2025, 4, 105–119 | 109
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cost of acquiring data belonging to the positive class, or label.53

In this study, mSCTs account for a very small portion of the
training dataset (<0.05% of total pixels, or <0.3% of foreground
pixels). In a PU learning framework the network learns from
positive (mSCTs detected with IDT) and unlabeled examples
(extracted from the foreground). Unlabeled examples differ
from negative examples as they could be a positive or negative
instance, albeit with a much larger chance of belonging to the
negative class for very sparse and small events such as mSCTs.
Consequently, PU learning is particularly appealing and effi-
cient when unlabeled examples are available at low cost and in
large quantities.31

In our imaging dataset, mSCTs are the positive samples, and
to construct a PU learning dataset, we sample regions along
dendrites where no mSCTs were detected with IDT. As mSCTs
account for such a small portion of the total video pixels, we can
acquire unlabeled crops in large quantities. To better study the
effect of the number of unlabeled crops on model performance,
we rst evaluate the performance of a model trained in a posi-
tive-only context (PU ratio 1–0). Both StarDist-3D and 3D U-
Net are trained in a PU learning setting, with PU ratios
ranging from 1–1 to 1–256.
2.8 Evaluation strategies

2.8.1 Detection. To assess the detection performance of the
DL models, we frame the evaluation as a linear assignment
problem which we solve using the hungarian algorithm54 and
the linear_sum_assignment function from the Python library
Scipy. The hungarian algorithm aims to assign elements from
group A to elements from group B while minimizing the cost of
assignment. In our case, the elements of groups A and B are the
centroids of the model and ground truth segmentations, and
the cost of assignment is dened as a distance metric
(euclidean) between the centroids. We dene a value of 6 pixels
as the maximum distance for a possible assignment. The
performance is evaluated on the detection testing dataset con-
sisting of 10 videos in which the centroids of all mSCTs were
identied by an expert. We identied true positives (TP), false
positives (FP) and false negatives (FN) with 100 evenly spaced
thresholds in the interval [0.0, 1.0], which allowed computation
of recall and precision scores for IDT, StarDist-3D and 3D U-Net.
We also compute the average precision (AP) of every DL model
for a more concise report of performance. The AP metric is
dened as:

AP ¼
X

n

ðRn � Rn�1ÞPn (2)

where Pn and Rn are the precision and recall at the nth
threshold. Detection accuracy, recall and precision were also
evaluated for different groups of event DF/F0. mSCT events were
placed into 0.5 DF/F0 bin increments (except for the last bin
which groups all events with DF/F0 > 3). The aforementioned
metrics were computed for each bin, resulting in the matrices
shown in Fig. 3g. All detection results are averaged over the 25
effective training repetitions described in the Dataset section.
110 | Digital Discovery, 2025, 4, 105–119
2.8.2 Segmentation. The segmentation performance of the
DL models is reported as the dice similarity score55 between
the model's binarized predictions and the ground truth
segmentation obtained from the testing segmentation dataset.
To measure intra-expert agreement, the same segmentation
task was performed by experts on the testing dataset twice,
with a two-week delay between annotation sessions. To
measure inter-expert agreement, we compared the annotations
from both experts in their rst annotation session. Expert
agreement was also measured using the dice similarity score.
Considering that the annotations from expert 2 were in better
agreement with IDT and in turn with the networks' annota-
tions, we used expert 2's annotations as the segmentation
performance of the models for different PU ratios (Fig. 4c). We
considered a model better than inter-expert level when it had
a dice value at peak distribution density higher than that of the
inter-expert distribution (gray vertical lines in Fig. 4b). We
opted for this denition rather than the distribution mean
because of the double penalty that is being forced uponmodels
which miss a large number of events (many false positives).
Explicitly, models are being penalized twice on missed events;
once in detection and once again in segmentation with a dice
score of 0. This causes many models (especially for StarDist-
3D) to show a bimodal dice score distribution with rst
mode near zero, which skews the distribution mean towards
lower values. In contrast, experts were only shown frames
displaying a mSCT, i.e., they could never be penalized for
a missed event, and therefore do not exhibit this bimodal dice
score distribution in their agreement.
2.9 Multdimensional analysis

2.9.1 Identication of mSCT subtypes. The mSCT subtypes
are identied using the K-means algorithm. The number of
subtypes (K = 5) is obtained from the Silhouette score56 and the
Elbow method,57 which nd the optimal number of subtypes by
computing the value of K at which the Silhouette score is
maximal and the Elbow method exhibits a linear decreasing
trend with increasing number of subtypes (ESI Fig. 5†). More
specically, K-means is performed on the dataset X˛ℝN�M ,
where N is the number of detected mSCTs andM is the number
of features characterizing the mSCTs (note that these are
manually dened, ESI Table 2†).58 Each detected mSCT is
associated with its closest subtype using the pairwise euclidean
distance between the averaged feature vectors of the subtypes
and the feature vector of each mSCT.

2.9.2 Determination of event categories. We determined
event categories using the spatial coordinate of the segmenta-
tion masks. We can associate mSCTs occurring in the same
region at different time points and classify them as: Silenced (S)
when they are present only in the baseline video, New (N) for
events detected only aer the stimulus, and recurrent (R) for
events detected in the same region before (Rb), and aer (Ra) the
stimulus. A baseline event is considered recurrent when its
weighted centroid is within 6 pixels (spatially) from an event
detected in the second movie.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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2.9.3 Association of recurrent events. In Fig. 5g, we asso-
ciated the subtypes of recurrent baseline events Rb with the
subtypes of their corresponding events detected aer the cLTP
stimulation Ra. The colormap of the association matrix corre-
sponds to the percentage of Rb events of a given subtype that
were associated with a specic subtype Ra.

2.9.4 Feature-based classication of mSCTs. We trained
a decision tree on a binary classication task to assignmSCTs to
distinct categories (silenced, recurrent, new) based on their
features. The implementation from Pedregosa et al.59 was used.
The hyper-parameters of the decision tree are given in ESI Table
5.† For each binary classication we used 70% of events for
training and 30% for testing.

We computed the features with the most impact on the
classier's predictions using SHapley Additive exPlanations
(SHAP) values, which is a game theory approach used to explain
the output of machine learning models.60 SHAP values give
information regarding the contribution of each feature of the
mSCT to the classier prediction. The SHAP values predict how
the machine learning model would perform with and without
each specic feature to discriminate between the different
mSCT categories, giving insights into the most important
features to distinguish, for example, mSCTs detected only prior
(silenced) or aer (new) the cLTP simulation.

In Fig. 5h, we plot the SHAP value for each event in the
testing dataset, color-coded by their normalized feature values.
The grey line corresponds to a SHAP value of 0, indicating no
preference towards either class. Higher (or lower) SHAP values
correspond to a greater inuence on the model's output. The
SHAP values are arranged according to their distribution
spread, with a larger spread indicating greater importance of
this feature in the decision tree prediction. The color-coding of
the events highlights the relationship between the value of each
feature and its impact on the model's prediction.

2.9.5 Statistical analysis. The statistical difference for the
fold change difference was tested using the Wilcoxon Signed
Rank Test,61 which compares the distribution of differences
between two observations and tests for the median of zero,
rather than the t-test which uses the mean and would produce
a different result if the distribution of distances was non-
Gaussian, which we test for using the Shapiro–Wilk statistical
test.62 Otherwise, a t-test was used to determine the statistical
signicance. Points were considered as outliers and were dis-
carded when they were 1.5 × IQR (interquartile range) away
from the median.

The statistical difference between the proportion of subtypes
was computed using the c2 statistical analysis followed by
a post-hoc c2 analysis test.

3 Results
3.1 Intensity threshold-based detection of mSCTs

Ca2+ imaging was performed with video microscopy of cultured
rat hippocampal neurons transfected with a genetically-
encoded Ca2+ indicator (GCaMP6f),6 using a TIRF microscope
set in the oblique illumination mode.43 To reveal mSCTs, the
neurons were perfused with HEPES-buffered articial
© 2025 The Author(s). Published by the Royal Society of Chemistry
cerebrospinal uid (aCSF) lacking Mg2+ and supplemented with
0.5 mM Tetrodotoxin (TTX) to block action potentials. The
localized transient changes in Ca2+ concentration, triggered by
spontaneous release of glutamate and Ca2+ inux through
NMDA receptors were monitored in proximal dendrites (Fig. 2a–
c). Videos of 60 s were acquired using a sampling frequency of
10 Hz. Lateral dri and background corrections were rst
applied to the raw videos (see Methods). The uorescence signal
F was normalized to the baseline F0 (DF/F0, see Methods).46

We developed an intensity-based detection threshold (IDT)
approach for the detection and segmentation of mSCTs in the
baseline-corrected dataset. We adopted a two-threshold
approach to automatically detect and segment mSCTs in the
Ca2+ imaging videos (Fig. 2d), followed by manual inspection of
the detected events. The rst threshold (4 standard deviations
(STD) above the baseline noise) was used to detect transients at
their maximal DF/F0 value, while the second threshold (2 ×

STD) was used to generate a segmentation mask covering the
entire duration of the mSCT (see Methods). A manual validation
step of the detected transients was essential to conrm the
detection results, as most mSCTs had a maximal DF/F0 < 1,
making it difficult to distinguish real events from foreground
uorescence signal uctuations using a fully-automated
threshold-based approach (Fig. 1 – Data preparation). This
manual step limited the number of false-positive detected
events associated with noise and background uctuations that
were included in the nal annotated IDT-dataset.
3.2 Detection of mSCTs with PU-learning

We used the manually curated IDT-annotated dataset of Ca2+

imaging videos as the ground truth to train the DL models in
a supervised setting to automatically detect and segment mSCTs.
The training sets consisted of 5 sets of 14 videos. The validation
set included 15 annotated Ca2+ imaging videos. The detection
performance was evaluated on a test set consisting of 10 Ca2+

imaging videos in which the x, y, t coordinates of the brightest
point for all mSCTs were manually annotated by an expert.
Manual annotation of the test set was necessary to overcome the
lower detection accuracy of IDT for transients with a DF/F0 # 1.
To leverage the spatio-temporal dynamics of mSCTs, we chose
3D deep neural networks that are well established in the eld of
microscopy: 3D U-Net37 and StarDist-3D.38 The 3D U-Net was
implemented in the ZeroCostDL4Mic standard63 and is available
for the community.{ For StarDist-3D, we used the seminal
implementation.38,48 Both of these DL models are trained to
minimize the squared error (mean squared error loss) between
their prediction and the corresponding IDT annotations (see
Methods). We also trained two more complex models: the
UNetR49 and the Attention-UNet.51 We rst used the DiceCE Loss
(weighted sum of the dice loss and the cross entropy loss) as in
the seminal implementations of those models (from the MONAI
library50). We found that the precision of both models was very
low due to a large number of false positives (ESI Fig. 1†). Using
the mean-squared error, as for the 3D-UNet and StarDist-3D, we
Digital Discovery, 2025, 4, 105–119 | 111
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Fig. 2 Video-microscopy of mSCTs. (a) Left: maximum projection of Ca2+ imaging video of GCaMP6f in cultured dissociated hippocampal
neurons acquired on a custom-built TIRF microscope in oblique illumination mode. Right: inset (blue square) highlighted in the left image of the
full field of view at different time points. The yellow, green, and cyan regions in the insets are mSCTs detected by the IDTmethod. (b) Kymograph
of the dendritic region delimited by the magenta line in (a). The arrows point to the events segmented in the top-left (yellow) and bottom-left
(cyan) sub-region from (a). (c) (Left) Detected fluorescence signal measured at different time points for the highlighted region (red box) from the
top right inset of panel a. (d) Raw and baseline Ca2+ traces for the mSCT shown in (c). IDT is based on two thresholds, for peak detection
(threshold 1) and for transient segmentation (threshold 2).
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improved the precision of UNetR and Attention-UNet but the
performance remained signicantly lower than that of the 3D U-
Net and StarDist-3D (ESI Fig. 1†). We therefore only use the latter
two for the PU experiments. To improve the DLmodels' ability to
differentiate between uorescence signal uctuations and
mSCTs, we included in the training set unlabeled (U) foreground
regions in addition to the positive (P) annotations obtained with
IDT. We introduced a variable number of unlabeled instances to
the training dataset (Fig. 3a) to measure the impact of learning
from unlabeled instances and validate the benet of PU learning
for a small data regime.

The detection performance of the models trained with
different PU ratios is compared using precision-recall (PR) curves
112 | Digital Discovery, 2025, 4, 105–119
(Fig. 3b and c) to quantitatively evaluate the impact of leveraging
unlabeled instances during training. For each PU ratio, the DL
models were trained with 25 effective folds (5 seeds for 5 different
positive-unlabeled training datasets – see Methods) and the
averaged performance is reported. We apply the PU learning
scheme by sampling unlabeled foreground instances to generate
PU ratios ranging from 1–1 to 1–256. With the 3D U-Net, we
observe maximal detection performance for a PU ratio of 1–64,
aer which the performances decreases, albeit remaining higher
than the training scheme without unlabeled instances (ratio 1–0)
(Fig. 3b). For StarDist-3D, increasing the number of unlabeled
instances negatively impacts its performance (Fig. 3c). For PU
ratios <1–4, StarDist-3D shows a better performance than the 3D
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Detection ofmSCTswith PU learning. (a) The PU learning training dataset consists of 14 Ca2+ imaging videos in whichmSCTswere labeled
with IDT (positive instances). Unlabeled instances are sampled in each video of the training set according to the desired PU ratio. A maximum
projection of a video is shown with an example of positive and unlabeled instances resulting from three different PU configurations. (b and c) 3D
U-Net (b) and StarDist-3D (c) precision-recall curves for the different PU ratio. The 1–0 configuration corresponds to the dataset without
unlabeled instances. (d and e) Accuracy, recall, and precision of the different 3D U-Net models (d) and StarDist-3D (e) as a function of detected
events' DF/F0. (f) Number of events with a DF/F0 # 1 missed by each model. (g) F1-score of the different models, using a detection threshold
optimized on the validation set in the case of StarDist-3D and 3DU-Net. (f and g) Color-coding of the data points corresponds to the different PU
configurations for StarDist-3D and 3D U-Net shown in (c).
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U-Net in terms of average precision (AP – see Methods). However,
the 3D U-Net surpasses StarDist-3D for ratios above 1–4.
Furthermore, the best 3D U-Net models (1–16, 1–32, 1–64, and 1–
256) outperform the best StarDist-3D model in terms of AP,
reaching a value of 0.59 for the 3D U-Net trained with a PU ratio
of 1–64 (ESI Table 4†).

We then investigated the relationship between detection
performance and mSCT uorescence intensity (Fig. 3d and e).
Generally, mSCTs that are most difficult to distinguish from
other uorescence signal uctuations are small and dim (DF/F0
< 1). These account for the majority of the events annotated by
the expert in our testing dataset (ESI Fig. 2†). As expected, the
performance (accuracy, recall and precision) of the 3D U-Net
and StarDist-3D increases with increasing mSCT intensity,
stabilizing for DF/F0 > 1 for all PU ratios (Fig. 3d and e). The 3D
U-Net shows an improved accuracy and recall over StarDist-3D
for DF/F0 < 1 mSCTs (Fig. 3d and e). For the 3D U-Net, PU
learning increases the precision at the cost of a small decrease
in recall for PU ratios above 1–64. Training the 3D U-Net with
unlabeled crops results in stricter models (better precision/
© 2025 The Author(s). Published by the Royal Society of Chemistry
fewer false positives; see ESI Fig. 3†). This could be explained
by the capability of the 3D U-Net to leverage information from
unlabeled instances to rene its decision boundary between
real mSCTs and foreground signal uctuations. Fig. 3f shows
that the 3D U-Net misses fewer DF/F0 < 1 events than the IDT
annotation method (black horizontal dashed line) and StarDist-
3D. Similarly the 3D U-Net performs better than IDT and
StarDist-3D in terms of F1-score for the detected mSCTs
regardless of their DF/F0 (Fig. 3g, see Methods).

As a last experiment, we validated whether the 3D U-Net
model would generalize to an out-of-distribution dataset. This
dataset consisted of Ca2+ imaging movies of mSCTs in cultured
hippocampal neurons but was acquired on a different micro-
scope and using different experimental conditions (Methods, ESI
Fig. 4†). The mSCTs detected by the 3D U-Net trained with
different PU ratios were compared with manual expert annota-
tions of mSCTs on 5 Ca2+ imaging videos. The detection perfor-
mance of the 3D U-Net was not impacted when tested on this
dataset and improved with the PU ratios up to 1–64, aer which
the performance slightly decreases. This shows PU learning can
Digital Discovery, 2025, 4, 105–119 | 113
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be leveraged to detect Ca2+ events in out-of-distribution datasets
without ne-tuning of the 3D U-Net model.

3.3 Segmentation of mSCTs

Accurate segmentation of mSCTs is important for the extraction
of meaningful morphological (e.g. volume, area, shape) and
kinetic (e.g. duration, frequency) features from the segmented
uorescence transients. We therefore evaluated the segmenta-
tion performance of our deep neural networks (across the same
PU congurations as in Section 3.2) according to the dice
similarity score.55 A dice score of zero indicates no overlap and
a dice score of unity indicates total overlap. To obtain
segmentation ground truths, we asked two experts to manually
annotate single frames of 69 mSCTs (see Methods). The type of
events that were annotated by the experts varied in form, shape,
and intensity. They included synaptic, dendritic, and out-of-
focus events. Moreover, the annotation was performed by the
same experts at two separate time points, to assess intra- and
Fig. 4 Segmentation of mSCTs. (a) The segmentation performance of the
annotated by two experts. The segmentation masks of each mSCTs are
ability. Intra-expert agreement is evaluated using annotations from the s
reported for the DL models trained without negative instances (PU ratio
different PU configurations. Expert 2's first annotation session is used a
increased segmentation performance compared to the inter-expert agre
line) for PU ratios below 1–64. The best segmentation performance is ob
scores from the inter- and intra-expert studies. (d) Example annotations (
ground truths.

114 | Digital Discovery, 2025, 4, 105–119
inter-expert agreement. Fig. 4a shows the agreement results in
terms of the dice score as well as the model performance when
using either expert as ground truth. We rst observe that expert
1 and expert 2 show similar levels of intra-expert agreement,
with minimum mSCT segmentation dice scores of 0.42 and
0.36, respectively, means of 0.77 and 0.76, and maximums at
0.91 and 0.92. The inter-expert agreement values are lower, with
minimum agreement between the two experts of 0.29, mean of
0.63, and maximum of 0.93. The rather low inter-expert mean
dice score highlights the ambiguous nature of ground truths in
bio-imaging datasets. These low agreement values suggest that
the benchmark performance against which to compare the
performance of the deep neural networks is better dened as
the inter-expert level of agreement rather than a perfect dice
score of 1. When comparing the segmentation performance of
the DL models for different PU ratios (Fig. 4b–d), we observe
a slightly improved segmentation performance for the 3D U-Net
compared to the inter-expert agreement for ratios below 1–64.
models is measured on a testing dataset of 69 mSCTs (1 frame/mSCT)
compared to the one of each expert to account for inter-expert vari-
ame expert performed within a two week interval. The performance is
1–0). (b) Segmentation performance of StarDist-3D and 3D U-Net for
s ground truth to measure the dice score. The 3D U-Net achieves an
ement (distribution maximum of inter-expert agreement, gray dashed
tained for a PU ratio of 1–4. (c) Example annotations and resulting dice
IDT) and predictions (3D U-Net with PU= 1–4) compared to the expert

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Notably, ratios between 1–2 and 1–8 decrease the variability
compared to the expert annotations: the number of segmenta-
tions with low dice scores below 0.5 decreases. As for the
detection, PU learning does not improve the segmentation
performance of StarDist-3D. Additionally, all StarDist-3D
models show a bimodal dice distribution with rst mode near
zero. This indicates that StarDist-3D is unable to segment
Fig. 5 Quantitative analysis of mSCT features in a cLTP paradigm. (a)
significantly increased following a cLTP-inducing stimulus (0Mg2+/Gly/
unchanged in the control condition (CTRL; Wilcoxon Signed Rank Test
feature values for each subtype obtained from K-means clustering (ESI Ta
to each subtype is modulated by a cLTP inducing stimulus. c2 statistical a
analysis test (S0: 8.24× 10−1, S1: 7.70 × 10−4, S2: 5.35× 10−1, S3: 3.83× 1
segmentation for each mSCT subtype. (left) Image of detected transien
(green overlay). (right) Segmentation mask predicted by the 3D U-Net for
fold change in the number of new (N) events (FCNum. Events) is significant
cLTP stimulus (S, Wilcoxon Signed Rank Test: p-value = 0.02). The numb
(Ra) the stimulation (t-test: p-value= 0.30). (f) The proportion of events be
and new events (pale). c2 statistical analysis is performed (p-value= 1.36×

× 10−2, S2: 1.36 × 10−1, S3: 6.11 × 10−11, S4: 6.24 × 10−3). (g) The subtype
>20% association are displayed. The raw number of events is shown in par
tree classifier trained to differentiate between event categories (Ra vs. S,
segmentation mask for each detected mSCT (see Methods). Features ar
color-coded according to their normalized feature value (same normali

© 2025 The Author(s). Published by the Royal Society of Chemistry
a signicant number of ground truth events, which is evocative
of the large number of missed events with DF/F0 < 1 (Fig. 3f).
3.4 Multidimensional analysis of detected mSCTs

The presented detection and segmentation pipeline can serve as
a valuable tool to extract morphology and kinetic features from
mSCTs. We used the 3D U-Net trained with a PU learning ratio
The fold change in the number of detected mSCTs (FCNum. Events) is
Bic; Wilcoxon Signed Rank Test: p-value = 0.009), while it remains
: p-value = 0.644). (b) Median morphological and kinetic normalized
ble 3† for normalization values). (c) The proportion of events belonging
nalysis is performed (p-value = 1.63× 10−10) followed by a post-hoc c2

0−9, S4: 2.13 × 10−4). (d) Fluorescence signal and associated 3D U-Net
ts at their maximal DF/F0 and the corresponding segmented borders
the frame with maximal DF/F0. Crops are 10.24 mm× 10.24 mm. (e) The
ly increased compared to the number of silenced events following the
er of recurrent events is not significantly different before (Rb) and after
longing to each subtype is differently modulated for the silenced (dark)
10−10) followed by a post-hoc c2 analysis test (S0: 7.92× 10−1, S1: 2.15
s of Rb events are associated with Ra events of different subtypes. Only
enthesis. (h) SHAP value obtained on the testing dataset from a decision
Rb vs. N, and N vs. S) using the features extracted from the 3D U-Net
e ranked according to their impact on the model's output. Events are
zation as in (b)).
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of 1–64 as it provides a good trade-off in detection and
segmentation performance. The model was applied to the
detection and segmentation of mSCTs on an unseen Ca2+

imaging dataset acquired on the same microscope. This dataset
consists of paired videos of 600 frames, (see Methods) consist-
ing of a baseline and a second video acquired 17 minutes aer
the end of the baseline video. In the control condition, the
neurons were kept in a 0Mg2+/TTX solution throughout. We
tested the effect of a cLTP stimulus on mSCTs using a bath
application of a 0Mg2+/Gly/Bic solution during 7 minutes (ref.
64 and 65, see Methods) following the baseline video acquisi-
tion. The post-treatment video was acquired 10 minutes aer
the end of the stimulation, as in the control condition.

We observe a signicant increase in the number of mSCTs
following the cLTP stimulus (Fig. 5a). Seeing the heterogeneous
distribution of morphology and kinetic features of mSCTs
revealed by our quantitative analysis pipeline, we next extracted
those features from the 3D U-Net's mSCT segmentation masks
(ESI Table 2†). From all extracted features, we performed
a dependency analysis to identify the most relevant features and
reduce interdependence between the variables. The segmented
mSCTs were clustered using the K-means algorithm to identify
mSCT subtypes in the dataset. The number of subtypes K = 5 is
determined using the Silhouette score and the Elbowmethod (ESI
Fig. 5†). The median value of the features for each subtype is
shown in Fig. 5b. To evaluate the effect of the cLTP treatment, we
measured the proportion of mSCTs associated with each subtype
before and aer the cLTP stimulus (Fig. 5c). We observe that the
proportion of the most prevalent subtype (subtype 4), which
corresponds to round, short, and small DF/F0 Ca2+ events is
signicantly reduced aer the stimulus. Meanwhile, the propor-
tion of high frequency Ca2+ events (subtype 3), as well as of large
events associated with a high DF/F0 (subtype 1), is signicantly
increased by the cLTP stimulus. Fig. 5d shows examples of the
different mSCT subtypes together with the 3D U-Net's segmen-
tation mask that were used to perform the feature analysis.

Using the spatial coordinate of the segmentation masks, we
can associate mSCTs occurring in the same region at different
time points and classify them as: silenced (S) when they are
present only in the baseline video, new (N) for events detected
only aer the stimulus, and recurrent (R) for events detected in
the same region before (Rb), and aer (Ra) the stimulus. The
increase of events following the cLTP stimulus (Fig. 5a) is sup-
ported by the emergence of new active regions (Fig. 5e). We next
compared the proportion of subtypes between silenced and new
events (Fig. 5f). The measured proportions closely follow the
overall proportion that was measured when combining all
events (Fig. 5c). To measure whether the treatment impacts the
features of recurrent events differently, we associated the
subtype of each Rb event with that of Ra events. As shown in
Fig. 5g, associated mSCTs do not necessarily share the same
subtype before and aer the stimulus but stronger correspon-
dence between specic subtypes before and aer the stimulus
indicates that the modulation of recurrent events is dependant
on the features of the Ca2+ event before the cLTP treatment.

We next evaluated the importance of each feature to discrim-
inate between the differentmSCT classes (S, N, Ra, Rb). We trained
116 | Digital Discovery, 2025, 4, 105–119
a decision tree classier to differentiate mSCTs according to their
classes, and computed the SHAP values to reveal the most
important features leading to the predictions. SHAP values are
also used to assess the impact that feature values have on the
predicted outcome (in this case the classication task). In the
SHAP value plot (Fig. 5h), the features are presented in decreasing
order of importance (most important= top-most feature), and the
feature values (blue data point = low value, red data point = high
value) are ordered along the x-axis according to whether they are
likely to cause the model to predict that a mSCT belongs to one
class or to another class. From Fig. 5h, one can see that silenced
mSCTs and new mSCTs are principally differentiated from
recurrent mSCTs by their frequency. The second most important
feature indicates that smaller events in the baseline videos are
generally associated with silenced (S) mSCTs compared to recur-
rent (Rb) mSCTs. A lower integrated intensity is benecial to
differentiate between new (N) and recurrent (Ra) mSCTs in the
videos acquired aer the cLTP stimulus. The SHAP values also
indicate that the duration of the event is useful in discriminating
between S and N events, but has only little impact for the other
classes (Fig. 5h). Our automated detection and segmentation
approach with the 3D U-Net, combined with a multidimensional
feature analysis of mSCTs showed that the increase in the event
number measured following a cLTP-inducing stimulus is sup-
ported by the appearance of new active regions. Those new
regions have distinct features, among which the proportion of
events with high frequency is signicantly increased, while small
and short events are reduced following the stimulus.

4 Discussion

Through the application of PU learning to the quantitative anal-
ysis of Ca2+ imaging data, we have provided accurate detection
and segmentation of mSCTs in uorescence microscopy videos.
We could extract signal dynamics and meaningful morphological
features from these heterogeneous, low density (both spatial and
temporal), low intensity, and propagating events. We have
demonstrated that the use of unlabeled instances in a PU learning
framework can improve the performance for the detection of low
intensity Ca2+ that are missed by other approaches, including
other DLmethods using solely positive examples for training. The
improved performance observed with the 3D U-Net models was
achieved simply by adding low-cost, quickly-sampled unlabeled
instances to the existing positive instances. The training pipeline
is implemented in an easy-to-use ZeroCostDL4Mic Jupyter note-
book enabling straightforward training and ne-tuning of the
models on new datasets, and specic use cases.63

We further showed that our approach allows the extraction
of features from the segmentation masks to measure the effect
of a cLTP stimulus on mSCT morphologies and dynamics. The
Ca2+ events extracted from the 3D U-Net detection and
segmentation pipeline could be clustered into 5 main subtypes,
that are differently modulated by the cLTP protocol. Having
access to precise spatio-temporal localization of the mSCTs
revealed that such cLTP stimulus leads largely to the emergence
of new active regions, rather than an increase in the frequency
of events within regions already active prior to the stimulus.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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This result may reect a form of plasticity that is part of the
mechanisms supporting long term potentiation of synaptic
transmission.66,67 This potentiation may reect changes in
release probability in some axonal terminals,68,69 increase
recruitment of Ca2+ permeable ion channels in post-synaptic
regions,70,71 or an increase coupling between receptor activa-
tion and Ca2+ store release.4,72 The ability to identify and analyze
localized regions of activity will allow to dissect these various
mechanisms and correlate them with molecular trafficking of
proteins, such as the Ca2+/Calmodulin–Protein kinase II,73 or
cytoskeletal remodelling of dendritic actin laments.64

Using the segmentation masks, we could also train a deci-
sion tree classier to discriminate between events depending on
the moment they were detected (before or aer stimulation).
SHAP values provided better insights into which features
predominantly inuence the model's predictions, revealing that
different features are used to distinguish recurrent events from
new and silenced events.

The robustness and generalization capacities of our method
were also highlighted through its application for the detection
and segmentation of mSCTs on an unseen Ca2+ imaging dataset
acquired with a different microscope. The performance of the 3D
U-Net model was maintained on this out-of-distribution dataset.
We also showed that the PU learning setting was also benecial
for the generalization. The presented method should be readily
applicable to many other small datasets of Ca2+ imaging, in
which the events of interest are sparse and heterogeneous,
providing insight into different applications and biological
inquiries. For instance, this could be applied to the detection of
dopamine or norepinephrine dynamics using the GPCR-
activation-based (GRAB) sensors74,75 or local glutamate release
using the iGluSnFR sensor.76 We also showed that it can be
applied to datasets with missing ground truth annotations, and
still provide improvement on these annotations through the PU
training of the networks, enabling better modeling of the
boundaries between real Ca2+ transients and foreground signal
uctuations. While we have considered a simple formulation of
PU learning, it could also be of interest to consider more
sophisticated denitions such as in Wolny et al.32 on a variety of
bio-imaging datasets. Integration of the DL models into an
accessible platform such as ZeroCostDL4Mic63 should also facil-
itate the application of the proposed framework to new datasets
or using other annotation methods as ground truths for training.

Code availability

All code used in this manuscript are open source and available
at: https://github.com/FLClab/Calcium-Analysis. The
ZeroCostDL4Mic notebook allows users to train, netune, and
predict on their own dataset. Optionally, the notebook
provides a subset of data from this manuscript.

Data availability

All datasets used to train the models and the corresponding
acquired images are available for download at https://
s3.valeria.science/clab-calcium/index.html.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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