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Ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic enzymes often

exhibit promiscuous substrate preferences that cannot be reduced to simple rules. Large language

models are promising tools for predicting the specificity of RiPP biosynthetic enzymes. However, state-

of-the-art protein language models are trained on relatively few peptide sequences. A previous study

comprehensively profiled the peptide substrate preferences of LazBF (a two-component serine

dehydratase) and LazDEF (a three-component azole synthetase) from the lactazole biosynthetic

pathway. We demonstrated that masked language modeling of LazBF substrate preferences produced

language model embeddings that improved downstream prediction of both LazBF and LazDEF

substrates. Similarly, masked language modeling of LazDEF substrate preferences produced embeddings

that improved prediction of both LazBF and LazDEF substrates. Our results suggest that the models

learned functional forms that are transferable between distinct enzymatic transformations that act within

the same biosynthetic pathway. We found that a single high-quality data set of substrates and non-

substrates for a RiPP biosynthetic enzyme improved substrate prediction for distinct enzymes in data-

scarce scenarios. We then fine-tuned models on each data set and showed that the fine-tuned models

provided interpretable insight that we anticipate will facilitate the design of substrate libraries that are

compatible with desired RiPP biosynthetic pathways.
1 Introduction

Ribosomally synthesized and post-translationally modied
peptides (RiPPs) are a broad category of natural products with
largely untapped clinical potential.1,2 A typical RiPP precursor
peptide contains an N-terminal leader region followed by a core
region (Fig. 1).3 RiPP precursor peptides undergo post-
translational modications (PTMs) in the core region, which
serve to restrict conformational exibility, enhance proteolytic
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resistance, and chemically diversify the natural product.3 Aer
modication of the core peptide, the leader region is cleaved,
releasing the mature RiPP. The PTMs are installed by RiPP
biosynthetic enzymes, some of which display high levels of
specicity while others act on diverse peptides.4 A signicant
effort has been dedicated to characterizing the substrate pref-
erences of RiPP biosynthetic enzymes and PTM enzymes in
general, which, in many cases, cannot be explained by a simple
set of rules.5–10 Consequently, machine learning and deep
learning are increasingly used to develop predictive models of
PTM specicity.5,11,12 For instance, XGBoost was used to predict
the protein substrates of phosphorylation and acetylation in
multiple organisms,13 and a transformer-based protein
language model was applied to predict glycation sites in
humans.14 Finally, MusiteDeep is a web server for deep learning-
based PTM site prediction and visualization for proteins.15

Characterizing RiPP biosynthetic enzyme specicity is chal-
lenging, mainly due to their uninterpretable substrate prefer-
ences and the scarcity of sequences labeled as substrates or
non-substrates.18,19 Accordingly, pretrained protein language
models can be used to embed peptides as information rich
vector representations to combat data scarcity.20 Protein
language models are transformer-based neural networks that
learn the biological properties of polypeptides by predicting the
Digital Discovery, 2025, 4, 343–354 | 343
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Fig. 1 (a) The generic biosynthesis pathway of RiPPs. RiPP precursor
peptides contain a leader peptide and a core peptide. After post-
translational modifications in the core peptide, the leader peptide is
cleaved. (b) The lactazole biosynthetic gene cluster contains six
proteins. LazA is the precursor peptide. LazB (tRNA-dependent glu-
tamylation enzyme) and the eliminase domain of LazF form a serine
dehydratase while LazD (RRE-containing E1-like protein),16 LazE (YcaO
cyclodehydratase),17 and the dehydrogenase domain of LazF comprise
a thiazole synthetase. LazC is a pyridine synthase. (c) Serine dehydra-
tion catalyzed by LazBF. (d) Thiazole formation catalyzed by LazDEF.
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identities of hidden residues in a training paradigm called
masked language modeling.21,22 Masked language modeling is
a form of self-supervised learning, in which a model predicts
features contained within the training data (e.g., masked resi-
dues) instead of experimentally determined property labels. The
protein language model representations of polypeptide
sequences, also called embeddings, can be extracted and used
as feature vectors for training downstream machine learning
models.23,24 This is a canonical example of transfer learning, in
which knowledge learned during one task is utilized in
a distinct but related task.25,26 Protein language model repre-
sentations have seen widespread use in peptide prediction tasks
such as antimicrobial activity and toxicity prediction.27–31

However, protein language models have been trained mostly on
protein sequences, which are much larger andmore structurally
dened compared to peptides.32,33 Therefore, protein language
models may not fully capture peptide-specic features. Sadeh
et al. trained self-supervised language models on peptide data,
but unfortunately their models are not publicly available.34 To
the best of our knowledge, no self-supervised, sequence-based
peptide language models are publicly available. Peptide
prediction models may benet from transfer learning
344 | Digital Discovery, 2025, 4, 343–354
paradigms in which protein language models are further
trained on peptide data that is closely relevant to the down-
stream task. In a few cases, there exist large, high quality data
sets characterizing the substrate specicity of specic RiPP
biosynthetic enzymes.5,35 In this work, we evaluated whether
learning such data sets in a self-supervised fashion could more
effectively capture functional forms that are transferable to
prediction tasks of other enzymes from the same biosynthetic
pathway.

Transfer learning between the substrate preferences of
enzymes from the same biosynthetic pathway could enhance
data efficiency in situations with low data availability and
accelerate the design of natural products with desired proper-
ties. To date, little work has been performed to investigate
transfer learning between substrate prediction tasks of related
enzymes. Lu et al. used a geometric machine learning approach
to model the substrate preferences of protease enzymes.36 This
work found that models trained to predict the substrates of
a single protease were able to generalize to other protease
variants with multiple amino acid substitutions. In the case of
RiPP biosynthetic enzymes, transfer learning could also help
evaluate the degree of shared features between distinct
enzymes. Such insights could aid peptide engineering tasks and
facilitate a more holistic understanding of RiPP biosynthesis.

Thiopeptides are a specialized form of pyritide antibiotics
deriving mostly from Bacillota and Actinomycetota.3,37,38 Lacta-
zole A (LazA)39 is a natural product from the pyritide family of
RiPPs40,41 which is encoded by a biosynthetic gene cluster con-
taining 5 synthetases (Fig. 1). A diverse array of precursor
peptides can be converted to lactazole-like products by these
biosynthetic enzymes which catalyze post-translational modi-
cations.42 LazBF is a split Ser dehydratase which installs a Dha
residue in LazA precursor peptides.43,44 LazDEF is a split azole-
forming enzyme complex which produces thiazoles in LazA
precursor peptides.45 A previous study comprehensively proled
the peptide substrates of LazBF and LazDEF (LazC was not
included in their study) via the generation of two data sets each
containing over 8 million LazA core sequences labeled as
substrates or non-substrates.5 This study trained convolutional
neural networks which showed excellent performance on
substrate classication tasks. In the case of LazBF, dehydration
sites and important residues were identied using integrated
gradients,46 an interpretable machine learning technique which
determines the positive or negative contribution of each residue
to the model's prediction. Despite the robust interpretability of
their models, this study was unable to produce a general set of
rules describing the substrate preferences of either LazBF or
LazDEF. The comprehensive nature of the LazBF/DEF substrate
data sets, and the fact that both data sets characterize related
but distinct enzymes from the same biosynthetic pathway make
them good candidates for exploring the plausibility of transfer
learning between peptide substrate prediction tasks.

In this work, we used masked language modeling to further
train protein language models on RiPP biosynthetic enzyme
substrates and non-substrates. We then evaluated transfer
learning between the substrate preferences of LazBF and Laz-
DEF. Specically, we observed that embeddings from a self-
© 2025 The Author(s). Published by the Royal Society of Chemistry
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supervised language model trained on LazBF substrates and
non-substrates outperformed baseline protein language model
embeddings on either substrate classication task. We show
a similar result in the opposite direction, where embeddings
from a self-supervised model of LazDEF substrates and non-
substrates outperformed baseline embeddings on either
substrate classication task. Another language model trained
on substrates and non-substrates for all 5 lactazole biosynthetic
enzymes showed improved ability to predict the substrates of
LazBF and LazDEF individually. Embeddings from our RiPP
biosynthetic enzyme-specic language models also out-
performed embeddings from a baseline peptide language
model trained on a diverse collection peptides from UniRef50
(ref. 47) and PeptideAtlas,48 a repository of mass-spectrometry
identied peptides. We then trained our language models to
directly classify peptides as substrates or non-substrates
through a process called ne-tuning. Finally, we evaluated the
transferability of interpretable machine learning techniques
between the LazBF and LazDEF substrate prediction tasks.
Specically, we showed that a model ne-tuned to classify
LazDEF substrates correctly identied the residue types and
Fig. 2 A schematic representation of the workflow for masked
language modeling (MLM) of LazBF and LazDEF substrate preferences.
(a) LazBF and LazDEF substrate/non-substrate embeddings were
extracted from the protein language model ESM-2 (Vanilla-ESM). The
baseline performance of downstream classification models was
assessed. (b) Peptide language models (Peptide-ESM, LazBF-ESM,
LazDEF-ESM, LazBCDEF-ESM) were developed via masked language
modeling of 4 peptide data sets. Embeddings were extracted and the
performance of downstream substrate prediction models was
compared to baseline. (c) Protein language models were further
trained to directly classify LazBF/DEF substrates. The models' predic-
tions were analyzed with interpretable machine learning techniques
including attention analysis (see Methods).

© 2025 The Author(s). Published by the Royal Society of Chemistry
positions important for LazBF substrate tness. We expect
interpretable machine learning models to uncover patterns
describing RiPP biosynthetic enzyme substrate specicity that
are oen difficult to infer manually, thereby promoting the
design of novel substrates. Fig. 2 presents a schematic repre-
sentation of our overall workow. Our results suggest that (1)
some degree of features are shared between the substrate
preferences of LazBF and LazDEF, and (2) masked language
modeling and transfer learning lead to improved predictive
performance on RiPP biosynthetic enzyme prediction tasks,
especially when large unlabeled data sets are available. With the
increasing power of high-throughput methods, this work could
advance natural product engineering by leveraging large data
sets and transfer learning to predict RiPP biosynthetic enzyme
substrates.

2 Methods
2.1 Data preprocessing

Vinogradov et al. used an mRNA display based proling method
and next-generation sequencing to generate two data sets of LazA
core peptide sequences labeled as either substrates or non-
substrates for LazBF and LazDEF respectively.5 As opposed to
truly random sequences, the data sets contained high tness
substrates and low tness non-substrates and were limited to the
sequence space of peptides with either relatively high or low
affinity for each enzyme.5 For LazBF substrates/non-substrates,
each core peptide contained a serine residue anked by ve N-
terminal and ve C-terminal residues (library 5S5). For LazDEF
substrates/non-substrates, each core region contained cysteine
anked by six residues on each side (library 6C6). Duplicate
sequences were removed from both libraries. Pairs of identical
sequences found in the substrate and non-substrate bins were
removed. For both libraries, a random sample of 1.3 million
sequences containing an equal number of substrates and non-
substrates was selected. A random subset of 50 000 peptides
Fig. 3 A schematic representation of our data preprocessing pipeline.
(a) LazA core sequences (n= 1.3million) were selected from library 5S5
and used for masked language modeling (MLM) of LazBF substrate
preferences. A ‘held-out’ data set of 50 000 peptides was set aside for
downstreammodel training and evaluation. (b) LazA core sequences (n
= 1.3 million) were selected from library 6C6 and used for masked
languagemodeling (MLM) of LazDEF substrate preferences. A held-out
data set of 50 000 peptides was set aside for downstream model
training and evaluation.

Digital Discovery, 2025, 4, 343–354 | 345
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from each sample was excluded as “held-out” data for training
and validation of downstream models aer masked language
modeling. The remaining 1.25 million LazA core peptide
sequences in each sample were used as the training data for
masked language modeling. Importantly, none of the held-out
sequences were seen during masked language modeling. Fig. 3
provides a schematic of the data preprocessing pipeline.

In a later study, Chang et al. used mRNA display based
proling to generate a data set of LazA core peptide sequences
labeled as either substrates or non-substrates for all 5 synthetases
(LazBCDEF).49 This study comprehensively proled the combined
substrate preferences of the entire biosynthetic pathway as
opposed to individual enzymes. This data set was preprocessed in
a manner identical to the LazBF/DEF substrate data sets.
2.2 Masked language modeling

Masked language modeling is a widely-used strategy for pre-
training large language models.50,51 In the context of protein
language models, masked language modeling takes a poly-
peptide sequence and replaces a random subset (15%) of the
amino acids with a masking token ([MASK]). Partially masked
polypeptides are fed into the model, which is optimized to
predict the identity of masked residues given the context of the
surrounding amino acids. This ‘self-supervised’ pretraining
objective has enabled models to learn the biological features of
proteins including secondary structure, long range residue–
residue contacts, and mutational effects.23 We hypothesized
that, for a pretrained protein language model, further masked
languagemodeling of the LazBF or LazDEF substrate preference
data sets would update the model's representations and enable
better discrimination between substrates and non-substrates.
Additionally, we sought to test how well the representations
from a model trained on LazBF substrates and non-substrates
would be able to discriminate LazDEF substrates and vice versa.

ESM-2 is a family of transformer-based protein language
models with state-of-the-art performance on various protein
and peptide prediction tasks.52,53 ESM-2 is composed of a series
of encoder layers, where each layer takes a numerically repre-
sented polypeptide as input and maps it to a continuous vector
representation. Layers are stacked sequentially to produce
increasingly rich representations. A 33-layer, 650 million
parameter version of ESM-2 was used as a baseline model
(Vanilla-ESM). 4 copies of Vanilla-ESM underwent additional
training using masked language modeling. “LazBF-ESM” was
trained on 1.25 million LazA core peptide sequences from the
LazBF data set. “LazDEF-ESM” was trained on 1.25 million LazA
core peptide sequences from the LazDEF data set. “LazBCDEF-
ESM” was trained on 1.25 million LazA core peptide sequences
from the LazBCDEF data set. The three models were each
trained for 1 epoch (i.e., one complete pass through the training
data set) on their respective data sets with a learning rate of 3 ×

10−6 and a batch size of 512. “Peptide-ESM” was trained on 1
491 625 peptide sequences collected from UniRef50 (ref. 47) and
Peptide Atlas.48 Peptide-ESM underwent training for 2 epochs
using a learning rate of 3 × 10−6 and a batch size of 256.
Peptide-ESM was trained using GaLore, a memory efficient
346 | Digital Discovery, 2025, 4, 343–354
training strategy due to computational limitations at the time of
training. All hyperparameters for additional training on peptide
data are available in Table S4.†
2.3 Embedding extraction and downstream model training

Each layer of a protein language model produces vector repre-
sentations of protein sequences that encode biological structure
and function.54,55 Protein language model representations, are
commonly used as the input to downstream machine learning
models trained on various protein and peptide prediction
tasks.56,57 The embeddings for all core peptides in the LazBF and
LazDEF held-out data sets were extracted from Vanilla-ESM,
Peptide-ESM, LazBF-ESM, and LazDEF-ESM. For each
sequence, the last layer representation was obtained as a matrix
of shape L × 1280, where L was the length of the sequence. The
last layer representation was averaged across the length
dimension to obtain a single 1280-dimensional mean repre-
sentation. The “beginning of sequence” ([BOS]) and “end of
sequence” ([EOS]) token embeddings were included in the
mean representation. The embeddings from the held-out LazBF
and LazDEF data sets were used for training and validation of
various machine learning models as described in the
proceeding subsections. Each downstream model type was
trained and validated independently on both the LazBF and
LazDEF held-out data sets. All downstream models were
implemented in Scikit-learn.58 StandardScaler was applied to all
embeddings following standard protocols prior to training.

2.3.1 Supervised classication models. Supervised
learning models are trained by predicting properties of labeled
data points (e.g., substrate or non-substrate). Logistic regres-
sion (LR), random forest (RF), AdaBoost (AB), support vector
classier (SVC), and multi-layer perceptron (MLP) models were
trained via supervised learning to predict LazBF and LazDEF
substrates using the embeddings from each of the 5 language
models as input. Stratied 5-fold cross validation was per-
formed for each model. For each fold, the accuracy between
the ground truth labels and the predicted labels was calcu-
lated. The nal model performance was described by the
average metrics across 5 repeats of 5-fold cross validation. To
emulate real-world scenarios in which training data is limited,
each model type was trained and validated under 3 conditions.
For each condition, a random subset of peptides was selected
from the held-out data sets. In the “high-N” condition, 5-fold
cross validation was performed with 1000 peptides. In the
“medium-N” condition, 5-fold cross validation was performed
with 500 peptides. In the “low-N” condition, 5-fold cross vali-
dation was performed with only 200 peptides. Hyper-
parameters of each supervised model were optimized
separately for each set of embeddings under each condition
using grid search. The grid for hyperparameter optimization is
available in Table S1 and the optimized hyperparameters for
all downstream models are in Tables S2 and S3.†

2.3.2 Embedding space visualization. t-Distributed
Stochastic Neighbor Embedding (t-SNE) was used to visualize
the embeddings from each protein languagemodel. A sample of
5000 peptides from both held-out data sets were selected for
© 2025 The Author(s). Published by the Royal Society of Chemistry
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visualization. The 1280-dimensional embeddings were rst
reduced to 10 dimensions with PCA, and then further reduced
to two dimensions with t-SNE.
2.4 Fine-tuning, integrated gradients, and attention analysis

Fine-tuning refers to further training a language model to
directly predict properties of labeled data points using super-
vised learning.59 Fine-tuning boosts the model's performance
on a downstream task in part by transferring broader knowl-
edge learned during masked language modeling. The embed-
dings from the language model are not extracted at any point
during ne-tuning. Instead, all the model's parameters are
adjusted to directly classify labeled training data. A classica-
tion head was appended to the nal layer of Vanilla-ESM for
ne-tuning. A feed forward layer transformed the mean repre-
sentation of Vanilla-ESM embeddings to another 1280-dimen-
sional representation. Dropout regularization was applied
before an additional feed forward layer projected the output to 2
dimensions and a Tanh activation function was used to
compute logits. Fine-tuning was performed for one epoch with
a learning rate of 2 × 10−4. All hyperparameters for ne-tuning
are available in Table S5.† 3 copies of Vanilla-ESM (each with
650 M parameters) were ne-tuned using supervised learning to
predict the substrates of LazBF, LazDEF, and the entire lacta-
zole biosynthetic pathway respectively. For each model, the
same sequences used for masked language modeling were used
as the training set for ne-tuning. The same held-out data sets
containing sequences unseen during masked language
modeling and ne-tuning were used to evaluate the ne-tuned
models. The accuracy on each held-out data set was calculated
for each of the 3 ne-tuned models. A lightweight version of
Vanilla-ESM with only 12 layers and 35 million parameters was
also ne-tuned on each of the 3 tasks in an identical manner.

Integrated gradients are an interpretable machine learning
technique used to quantify the positive or negative contribution
of input features to a model's prediction for a given data point.46

In the context of predicting whether a peptide is the substrate of
an enzyme, a positive value for a given residue implies that the
residue is important for substrate tness. A negative value for
a given residue suggests that the residue is associated with
being a non-substrate. The ne-tuned LazBF model and the
ne-tuned LazDEF model were separately used to calculate the
integrated gradients for each peptide in the held-out LazBF data
set. For each model, and for each residue type, all contributions
of that residue across all 50 000 sequences were summed and
then divided by the frequency of that residue in the held-out
LazBF data producing two vectors of length 1 × 20 represent-
ing the average contribution of each residue type according to
the integrated gradients of each model. A similar procedure
produced two 1 × 11 matrices, representing the average
contribution of each position for each model. Finally, a similar
procedure produced two 20 × 11 matrices, representing the
average contribution of each residue type in each position for
each model.

ESM-2 employs a multi-head self-attention mechanism,
where each of the 33 layers produce 20 attention heads (660
© 2025 The Author(s). Published by the Royal Society of Chemistry
attention heads in total).52 Each attention head is a 2D matrix
a of shape L × L, where L is the length of the tokenized input
sequence. The tokenized input sequence includes a “beginning
of sequence” ([BOS]) and an “end of sequence” ([EOS]) character
in addition to the amino acids. Individual attention weights ai,j
quantify how much the residue at position i affects the model's
representation of the residue at position j, with greater values
suggesting greater inuence. Attention weights have been
shown to highlight biological features of proteins including
residue–residue contacts and binding sites.62 The pairwise
nature of the self-attention mechanism resembles epistatic
interactions in protein/peptide tness landscapes.63 Vinogradov
et al. calculated pairwise epi-scores that attempted to quantify
how the tness of a residue at a given position is affected by
residues at other positions.5 Thus, we looked for similarities
between self-attention matrices and the pairwise epi-scores
calculated in previous work for one LazBF and one LazDEF
substrate. All attention matrices were obtained for both
peptides.
3 Results and discussion
3.1 Vanilla-ESM baseline

We rst evaluated the performance of downstream LazBF and
LazDEF substrate classication models trained on embeddings
from a baseline protein language model (Vanilla-ESM). The
performance of each model type was evaluated separately under
a high-N, medium-N, and low-N condition dened by the
number of sequences used for training. The results of each
model type trained on embeddings from Vanilla-ESM – without
any additional masked language modeling – are displayed in
Table 1. Embeddings from Vanilla-ESM perform reasonably
well on RiPP biosynthetic enzyme substrate classication tasks,
particularly in the high-N condition for the LazBF substrate
prediction task. Vanilla-ESM embeddings also outperformed
extended connectivity ngerprints (ECFPs), a common topo-
logical encoding for peptides/small molecules,60 and embed-
dings from ProtBert,61 an alternative protein language model
with 420 million parameters (Fig. S1†). The reasonable perfor-
mance of Vanilla-ESM embeddings underscores the richness of
protein language model representations, which can effectively
generalize to novel tasks. Models trained on fewer training
samples (i.e., low-N) had lower performance. This reects the
importance of having sufficiently large and diverse training data
in supervised learning paradigms.
3.2 Masked language modeling of either data set improves
LazDEF substrate classication performance

The accuracy of each supervised model type trained on LazDEF
substrate/non-substrate embeddings from each of the ve
language models are presented in Fig. 4. LazDEF-ESM produced
embeddings that signicantly increased the performance of all
downstream LazDEF substrate classication models across all
training sizes. We suspect that during masked language
modeling, the model became attuned to specic features of the
LazDEF data set, including the features that distinguish
Digital Discovery, 2025, 4, 343–354 | 347
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Table 1 Classification accuracy with Vanilla-ESM embeddingsa

Training size LR RF AB SVC MLP

LazBF High-N 91.2 � 0.003 87.3 � 0.001 87.0 � 0.004 89.3 � 0.002 90.5 � 0.003
LazDEF High-N 86.7 � 0.003 78.1 � 0.004 77.7 � 0.007 81.6 � 0.003 81.2 � 0.002
LazBF Medium-N 88.4 � 0.003 85.4 � 0.002 86.2 � 0.003 87.5 � 0.003 87.6 � 0.004
LazDEF Medium-N 82.3 � 0.003 75.1 � 0.003 73.5 � 0.008 78.4 � 0.004 78.7 � 0.007
LazBF Low-N 86.8 � 0.003 86.0 � 0.006 84.2 � 0.010 86.4 � 0.006 85.5 � 0.004
LazDEF Low-N 73.9 � 0.004 71.1 � 0.008 71.7 � 0.009 71.8 � 0.010 74.3 � 0.009

a Accuracy of logistic regression (LR), random forest (RF), AdaBoost (AB), support vector classier (SVC), and multi-layer perceptron (MLP) models
trained on embeddings from Vanilla-ESM on both substrate classication tasks. Values are mean± SE across 5 repeats of 5-fold cross validation for
the high-N condition (n = 1000), medium-N condition (n = 500), the low-N condition (n = 200). The best performing model in each row is
highlighted.
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substrates from non-substrates. The model's representations
were updated in accordance with these features, allowing for
improved discrimination of substrate and non-substrate
sequences.

Strikingly, LazBF-ESM also produced embeddings that
signicantly increased the performance of LazDEF substrate
classication models. Nearly every LazDEF substrate classica-
tion model across all training sizes showed a sizable improve-
ment in performance when trained on embeddings from LazBF-
ESM, demonstrating that transfer learning improved the perfor-
mance of the models. A similar trend was observed for
LazBCDEF-ESM embeddings, but to a lesser extent. Embeddings
from Peptide-ESM also improved LazDEF substrate classication
models in nearly all cases, but to a smaller degree than LazBF-
ESM or LazDEF-ESM embeddings. This indicated that large
data sets characterizing the substrate preferences of specic RiPP
biosynthetic enzymes provided the most utility in improving
RiPP biosynthetic enzyme substrate classication models.

t-SNE was then used to reduce each set of embeddings to two
dimensions for visualization. t-SNE plots of the Vanilla-ESM and
Peptide-ESM embedding spaces of LazDEF substrates and non-
substrates do not show any apparent distinction between
substrates and non-substrates (Fig. 5 and S5†). Notably, the
LazBF-ESM embedding space shows a visibly higher degree of
clustering within substrates and non-substrates than the Vanilla-
ESM embedding space. This agrees with the increase in down-
stream LazDEF substrate classication model performance
observed aer masked language modeling of the LazBF data set.
Finally, the LazDEF-ESM embedding space shows the most
obvious segregation (Fig. 5). The increased ability to distinguish
LazDEF substrates/non-substrates suggests that using embed-
dings from a language model trained on a large data set relevant
to the task of interest can greatly increase the predictive power of
downstream classiers through transfer learning.
3.3 Masked language modeling of either data set improves
LazBF substrate classication performance

The accuracy of each model type trained on embeddings of
LazBF substrates/non-substrates from each of the 5 language
models are presented in Fig. 6. Similarly, LazBF-ESM produced
embeddings that signicantly improved the performance of
supervised classication models of LazBF substrates across all
348 | Digital Discovery, 2025, 4, 343–354
training sizes. LazDEF-ESM also produced embeddings that
improved the performance of most LazBF substrate classica-
tion models. In the low-N condition, most models showed
performance increases, with multi-layer perceptron showing
the most improvement. Most supervised models trained using
the medium-N and high-N conditions also showed improved
performance. RF and SVC showed the largest and most
consistent increases across these two conditions. Expectedly,
the low-N condition produced models with higher variance,
which likely contributed to more unstable results. In most
cases, LazDEF-ESM embeddings also outperformed Peptide-
ESM embeddings. Similarly, embeddings from LazBCDEF-
ESM improved LazBF substrate prediction with performance
increases being most pronounced in the low-N condition.
Training LazDEF-ESM with higher learning rates (3 × 10−4, 3 ×

10−5) and different batch sizes (64, 128) did not improve LazBF
substrate prediction (Fig. S2 and S3†). Extending the training of
LazDEF-ESM to 5 epochs with a learning rate of 3× 10−6 did not
improve LazBF substrate prediction (Fig. S4†).

A t-SNE plot of the LazBF substrate/non-substrate embeddings
from Vanilla-ESM and Peptide-ESM show an already apparent
distinction between substrates and non-substrates (Fig. 5 and
S5†). This suggests that the pretrained model is sensitive to
differences inherent in LazBF substrates and non-substrates. The
visual divergence of substrates and non-substrates is arguably
more apparent in the embedding space of LazDEF-ESM (Fig. 5e).
Predictably, the embedding space of LazBF-ESM shows the most
dramatic separation of substrates from non-substrates (Fig. 5f).
This is consistent with large increases in downstream LazBF
substrate classication model performance aer masked
language modeling of the LazBF data set.

The observation that LazBF substrate classiers showed
improved performance when trained on embeddings from
LazDEF-ESM suggests that information relevant to LazBF classi-
cation was learned during masked language modeling of the
LazDEF substrates/non-substrates. However, Vanilla-ESM
embeddings already showed good performance on LazBF
prediction tasks. We suspect that this le less room for
improvement throughmasked language modeling of the LazDEF
data set. However, any improvement is compelling given that (1)
LazBF and LazDEF catalyze disparate transformations and (2) the
substrate tness landscapes of LazBF and LazDEF are reported to
be divergent from one another, particularly in the degree to
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00170b


Fig. 4 Accuracy of logistic regression (LR), random forest (RF), Ada-
Boost (AB), support vector classifier (SVC), and multi-layer perceptron
(MLP) models trained to predict LazDEF substrates. Models are trained
on embeddings from a protein language model (green), a peptide
language model trained on diverse peptides (orange), a peptide
language model trained on LazBF substrates/non-substrates (blue),
a peptide language model trained on LazDEF substrates/non-
substrates (pink), and a peptide language model trained on substrates/
non-substrates for the entire lactazole biosynthetic pathway (lime) in
the (a) low-N condition (n = 200), (b) medium-N condition (n = 500),
and (c) high-N condition (n = 1000). A star indicates the top per-
forming model for each set of embeddings.

Fig. 5 t-SNE visualization of the LazDEF embedding space for (a)
a protein language model, (b) a peptide language model trained on
LazBF substrates/non-substrates, and (c) a peptide language model
trained on LazDEF substrates/non-substrates. t-SNE visualization of
the LazBF embedding space for (d) a protein language model, (e)
a peptide language model trained on LazDEF substrates/non-
substrates, and (f) a peptide language model trained on LazBF
substrates/non-substrates. Substrates are red and non-substrates
samples are blue.
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which pairwise positional epistasis affects tness.5 Tanimoto
similarity is a common metric used to quantify the chemical
similarity between small molecules and peptides. The average
Tanimoto similarity between peptides in the held-out LazBF and
held-out LazDEF substrate data sets was calculated to be 0.354 ±

0.031, suggesting that the data sets contained relatively dissim-
ilar sequences. The results of this and the previous section show
that knowledge learned during the unsupervised modeling of
© 2025 The Author(s). Published by the Royal Society of Chemistry
RiPP biosynthetic enzyme substrates/non-substrates can be
transferred to other tasks, particularly those that involve related
but distinct enzymes from the same biosynthetic pathway.
Additionally, training on the substrates/non-substrates of the
entire biosynthetic pathway enabled enhanced substrate predic-
tion for individual enzymes from the pathway. Finally, unsuper-
vised modeling of RiPP biosynthetic enzyme substrates/non-
substrates appear to produce better representations than unsu-
pervised modeling of diverse peptides.

Despite catalyzing different transformations, both LazBF
and LazDEF bind LazA precursor peptides as substrates.
Therefore, there is expected to be some degree of similarity
between the substrate preferences of the two enzymes. However,
we observed that more information about LazDEF substrate
preferences was learned from masked language modeling of
LazBF substrate preferences than vice versa. We suggest that
this asymmetry stems from the fact that Vanilla-ESM performs
better at LazBF substrate classication and additional
improvement is harder to achieve. We also speculate that this
observation could result from the order of the post-translational
modications that occur during lactazole biosynthesis. In
nature, LazDEF modies LazA precursor peptides prior to
LazBF.45 Therefore, self-supervised modeling of LazBF substrate
preferences learns the biophysical features of substrates that
are likely to have been modied by LazDEF. However, the
opposite is not necessarily true. This presents an alternative
explanation as to why transfer learning showed greater success
at improving LazDEF substrate classication models.
3.4 Fine-tuned language model performance on RiPP
biosynthetic enzyme classication tasks

3 copies of Vanilla-ESM were then trained to classify the
substrates LazBF, LazDEF, and the entire lactazole biosynthetic
Digital Discovery, 2025, 4, 343–354 | 349
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Fig. 6 Accuracy of logistic regression (LR), random forest (RF), Ada-
Boost (AB), support vector classifier (SVC), and multi-layer perceptron
(MLP) models trained to predict LazBF substrates. Models are trained
on embeddings from a protein language model (green), a peptide
language model trained on diverse peptides (orange), a peptide
language model trained on LazBF substrates/non-substrates (blue),
a peptide language model trained on LazDEF substrates/non-
substrates (pink), and a peptide language model trained on substrates/
non-substrates for the entire lactazole biosynthetic pathway (lime) in
the (a) low-N condition (n = 200), (b) medium-N condition (n = 500),
and (c) high-N condition (n = 1000). A star indicates the top per-
forming model for each set of embeddings.

Table 2 Zero-shot classification accuracy of fine-tuned models

Supervised
LazBF (%)

Supervised
LazDEF (%)

Supervised
LazBCDEF (%)

LazBF test set 99.4 69.7 64.4
LazDEF test set 50.9 99.2 58.9
LazBCDEF test
set

52.3 64.2 95.8
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pathway through a training procedure called ne-tuning. 3
copies of a smaller version of Vanilla-ESM with over 94% fewer
parameters were also trained on each task. All 6 ne-tuned
model showed excellent performance on their respective held-
out data set (>0.95 accuracy in each case). When ne-tuned,
the larger copies of Vanilla-ESM did not outperform the
350 | Digital Discovery, 2025, 4, 343–354
smaller copies despite having signicantly more parameters
(Table S6†). This implies that when large high-quality data sets
are available, smaller models with fewer parameters can achieve
satisfactory performance. Fine-tuned LazBF substrate predic-
tion models trained with classication head dropout probabil-
ities greater than 0.1 did not show improved performance
(Table S7†). Additionally, ne-tuned models trained for addi-
tional epochs did not show signicant increases in performance
(Tables S9–S11†). The smaller ne-tuned models with dropout
probability set to 0.1 were used for evaluation. We tested how
well each ne-tuned model performed on the other held-out
data sets without any further training (Table 2). The ne-
tuned LazBF-ESM model showed no ability to classify LazDEF
substrates, and showed little ability to classify substrates for the
entire pathway aer supervised training. In contrast, the ne-
tuned LazDEF model achieved 0.697 accuracy on the held-out
LazBF substrate data set, likely due in part to the LazBF data
set being more enriched (Fig. 5d). This model also showed some
ability to classify substrates of the entire lactazole biosynthetic
pathway. Finally, the supervised model trained to classify
substrates of the entire pathway showed some ability to classify
LazBF and LazDEF substrates without any further training.
Notably, downstream LazBF/DEF substrate prediction models
trained on as few as 200 examples outperformed the zero-shot
performance of the ne-tuned models when evaluated on the
full held-out test sets (Table S8†).

Integrated gradients can quantify how individual residues
contribute to a model's prediction. Inspired by the performance
of LazDEF-ESM on the LazBF substrate classication task, we
looked for similarities between the integrated gradients for
LazBF substrates/non-substrates from both models (Fig. 7). We
observed that the average contribution of each residue type
from ne-tuned LazDEF-ESM strongly correlated with the
average contribution of each residue type from ne-tuned
LazBF-ESM, with a spearman coefficient of 0.78 (Fig. 7a). We
ignored the contribution of serine since its importance to
substrate tness was known. The average contribution of each
position from both ne-tuned models showed a 0.73 spearman
coefficient (Fig. 7b). We ignored the contribution of position 6
since it was xed. The average contribution of each residue type
in each position also showed a correlation (0.59 spearman
coefficient). These correlations exist despite ne-tuned LazDEF-
ESM having never been trained on LazBF substrates. Therefore,
to some extent, ne-tuned RiPP biosynthetic enzyme prediction
models can produce valid and interpretable predictions about
distinct, but related prediction tasks.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 A LazBF substrate prediction model and a LazDEF substrate
prediction model produce correlated integrated gradients for LazBF
substrates/non-substrates. (a) The average contribution of each
position to substrate fitness shows a 0.73 spearman coefficient
between the two models. Position 6 is ignored due to containing
a fixed serine residue. (b) The average contribution of each amino acid
to substrate fitness shows a 0.78 spearman coefficient between the
two models. Serine is ignored because its importance for substrate
fitness is established.
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3.5 Attention analysis

Attention matrices describe the model's perceived relevance or
association between each pair of tokenized residues, including
the [BOS] and [EOS] tokens added to the beginning and the end
of the peptide respectively (see Methods). Higher values
between a pair of tokens indicates greater relevance between
them. Analyzing attention matrices can provide insight into
which residues the model regards as important for substrate
tness. We observe a general trend in which the attention heads
from earlier layers focus mainly on the [BOS] and [EOS] tokens,
while heads from later layers dedicate signicant attention to
specic residues or motifs (Fig. 8a and S6†). Our observation
Fig. 8 Attentionmaps from a languagemodel trained to predict LazBF
substrates. [BOS] and [EOS] tokens mark the “beginning of sequence”
and “end of sequence” respectively. (a) Middle and later layers focus on
specific residues and motifs. (b) Attention heads from the penultimate
layer highlight a motif with high pairwise epi-scores in a LazBF
substrate. (c) Attention heads from the final layer highlight a residue
important for substrate fitness in a LazDEF substrate.

© 2025 The Author(s). Published by the Royal Society of Chemistry
that the model's attention mechanism ‘zeros-in’ on important
residues is consistent with the widespread claim that the per-
layer representations of protein language models are hierar-
chical in nature, with earlier layers encoding low-level features
and later layers encoding more global representations of
structure and/or function.62

Previous work utilized predictive machine learning models
to calculate the pairwise epi-scores for LazBF substrates. Pair-
wise epi-score values provide an estimate of the strength with
which amino acids in the core peptide region affect each other's
tness.5 The self-attention mechanism found in transformer
models resembles pairwise epi-scores by quantifying the degree
to which one amino acid affects the representations of other
amino acids in the peptide.62,63 For the LazBF substrate
FVCHPSRWVGA, the computed pairwise epi-scores suggest that
a His4-Pro5-Ser6-Arg7-Trp8 motif contributes to the tness of
the peptide.5 Fig. 8b shows that multiple attention heads in the
11th layer of the ne-tuned LazBF-ESM dedicate attention
between pairs of amino acids within this motif. This suggests
that the supervised protein language model's attention mech-
anism is somewhat able to highlight epistatic interactions and
provide a rough idea of which residues are important for tness.
Fig. S7a† provides additional examples of this motif repre-
sented in the attention matrices of a larger languagemodel ne-
tuned to predict LazBF substrates.

Surprisingly, we observe that the ne-tuned version of LazBF-
ESM also highlights some epistatic features of the LazDEF
substrate VIGGRTCDGTRYY (Fig. 8c). Precalculated epi-scores
for this peptide indicate that Asp8 has numerous positive and
negative epistatic interactions with surrounding residues
including Thr6, Gly9, and Arg11. We nd that multiple heads
from the last layer of our ne-tuned LazBF-ESM dedicate
signicant attention between Asp8 and nearby residues, thus
highlighting Asp8 as an important residue. Fig. S7b† provides
additional examples of this residue represented in the attention
matrices of a larger language model ne-tuned to predict LazBF
substrates.

4 Conclusion

In this work, we enhanced the performance of protein language
model embeddings for RiPP biosynthetic enzyme substrate
prediction tasks by performing masked language modeling of
substrate/non-substrate data. We applied transfer learning to
improve the performance of peptide substrate prediction
models for distinct enzymes from the same biosynthetic
pathway. A limited number of studies have explored transfer
learning in the domain of enzyme substrate prediction, and, to
the best of our knowledge, this is the rst work to investigate
transfer learning between RiPP biosynthetic enzymes.

We focused on LazBF and LazDEF, a serine dehydratase and
azole synthetase respectively, from the lactazole biosynthesis
pathway. Masked language modeling was used to train two
peptide language models on data sets comprised of LazA
sequences labeled as substrates or non-substrates for LazBF
and LazDEF respectively. An additional peptide language model
was trained on substrates/non-substrates for the entire lactazole
Digital Discovery, 2025, 4, 343–354 | 351

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00170b


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
D

ec
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 6

/2
7/

20
25

 6
:3

8:
37

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
biosynthetic pathway, and a nal peptide language model was
trained on a diverse set of non-LazA peptides. We found that all
peptide language models produced embeddings that increased
the performance of downstream classication models on both
substrate prediction tasks. The LazBF/DEF models provided the
largest increases in performance. This suggested some infor-
mation is shared between the two data sets, and that masked
language modeling of one data set allowed the model to learn
important features of the other data set. The performance
enhancements were most signicant for downstream LazDEF
classication models, including the medium-N and low-N
conditions.

Our workow enhanced the ability to classify RiPP biosyn-
thetic enzyme substrates in limited data regimes. Crucially, our
results indicated that a single high quality data set containing
substrates and non-substrates for a RiPP biosynthetic enzyme
can be leveraged to improve substrate prediction for other
enzymes from the same biosynthetic pathway, including when
little data is available. This holds potential to strengthen the
understanding of RiPP biosynthesis by increasing accuracy in
the absence of data. This is attractive in the context of peptide
engineering, where it could expedite peptide design and
discovery by reducing the need for comprehensive experimental
proling.

We also demonstrated that interpretable machine learning
techniques are somewhat transferable between similar RiPP
biosynthetic enzyme classication tasks. Specically, we found
that the integrated gradients for LazBF peptides from a super-
vised LazDEF model correlated with the integrated gradients
from a supervised LazBF model. Due to the increasing abun-
dance of sequence data and rapid advances in next-generation
sequencing technology, we anticipate the development of
large peptide data sets suitable for masked language modeling.
Coupled with the growing size and sophistication of protein
language models, we expect masked language modeling and
transfer learning to aid enzyme substrate prediction tasks
especially in cases where large data sets for related enzymes are
available.
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