Open Access Article. Published on 23 October 2024. Downloaded on 12/2/2025 2:57:47 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

#® ROYAL SOCIETY
PPN OF CHEMISTRY

Digital
Discovery

View Article Online

View Journal | View Issue

From text to test: Al-generated control software for

i'.) Check for updates‘
materials science instruments+

Cite this: Digital Discovery, 2025, 4, 35

Davi Fébba, © Kingsley Egbo, William A. Callahan® and Andriy Zakutayev ®

Large language models (LLMs) are one of the Al technologies that are transforming the landscape of
chemistry and materials science. Recent examples of LLM-accelerated experimental research include
virtual assistants for parsing synthesis recipes from the literature, or using the extracted knowledge to
guide synthesis and characterization. However, these Al-driven materials advances are limited to a few
laboratories with existing automated instruments and control software, whereas the rest of materials
science research remains highly manual. Al-crafted control code for automating scientific instruments
would democratize and further accelerate materials research advances, but reports of such Al
applications remain scarce. The goal of this manuscript is to demonstrate how to swiftly establish
a Python-based control module for a scientific measurement instrument solely through interactions with
ChatGPT-4. Through a series of test and correction cycles, we achieved successful management of
a common Keithley 2400 electrical source measure unit instrument with minimal human-corrected
code, and discussed lessons learned from this development approach for scientific software.
Additionally, a user-friendly graphical user interface (GUI) was created, effectively linking all instrument
controls to interactive screen elements, and text prompts as well as JSON templates for interaction with
ChatGPT are provided for this and other instruments. Finally, we integrated this Al-crafted instrument
control software with a high-performance stochastic optimization algorithm to facilitate rapid and
automated extraction of electronic device parameters related to semiconductor charge transport
mechanisms from current—voltage (IV) measurement data. This integration resulted in a comprehensive
open-source toolkit for
measurements. We demonstrate the application of these tools by acquiring, analyzing and
parameterizing IV data from a Pt/Cr,0<:Mg/B-Ga,Os heterojunction diode, a novel stack for high-power
and high-temperature electronic devices. This approach underscores the powerful synergy between

semiconductor device characterization and analysis using IV curve

Received 29th May 2024
Accepted 22nd October 2024

DOI: 10.1039/d4dd00143e LLMs and the development of instruments for scientific inquiry, showcasing a path to further accelerate

rsc.li/digitaldiscovery research progress towards synthesis and characterization in materials science.

LLMs, endowed with natural language understanding and
generation capabilities, have been particularly useful for devel-

1 Introduction

Recent advancements in artificial intelligence, particularly the
emergence of Large Language Models (LLMs) such as OpenAlI's
GPT-3 and 4, have sparked the interest of the scientific
community. A growing body of knowledge now evaluates LLMs
for chemistry and materials science related tasks, such as
chemistry knowledge,"? text-parsing of solid state synthesis
recipes,® domain-specific chatbots for scientific literature,* and
also in fully autonomous experimentation workflows,> among
many other applications.® ChatGPT, specifically, was recently
included as a non-human addition to Nature's 10 due to its
profound impact on science in 2023.”

Materials Science Center, National Renewable Energy Laboratory (NREL), Golden, CO,
80401, USA. E-mail: Andriy. Zakutayev@nrel.gov; DaviMarcelo.Febba@nrel.gov
(ESI) DOL:

T Electronic supplementary information available. See

https://doi.org/10.1039/d4dd00143e

© 2025 The Author(s). Published by the Royal Society of Chemistry

oping computing code for a myriad of tasks,® and thus offer
unprecedented opportunities for expediting the development of
control solutions tailored to laboratory instruments, which
traditionally involves intricate programming, extensive testing,
and iterative refinement over prolonged periods. LLMs revolu-
tionize this process by enabling researchers to articulate desired
functionalities in plain language, thereby automating the
generation of code snippets or complete control algorithms.
Consequently, the development cycle is significantly compressed,
allowing researchers to allocate more time to experimental
design and scientific inquiry. Furthermore, the agility afforded by
LLM-generated code empowers researchers to swiftly adapt
control solutions to evolving experimental requirements or
unforeseen challenges.

The integration of LLMs democratizes control solution
development and fosters interdisciplinary collaboration in the

Digital Discovery, 2025, 4, 35-45 | 35

http://crossmark.crossref.org/dialog/?doi=10.1039/d4dd00143e&domain=pdf&date_stamp=2025-01-11
http://orcid.org/0000-0001-7456-5512
http://orcid.org/0000-0002-8701-1508
http://orcid.org/0000-0002-3054-5525
https://doi.org/10.1039/d4dd00143e
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00143e
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD004001

Open Access Article. Published on 23 October 2024. Downloaded on 12/2/2025 2:57:47 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

scientific community. These models provide a user-friendly
interface that simplifies the conversion of ideas into func-
tional code, enabling effective contributions from researchers
with diverse backgrounds. Furthermore, applications developed
using LLMs, particularly in Python, can amplify the application
of the FAIR principles—data is Findable, Accessible, Interop-
erable, and Reusable. Python's comprehensive suite of open-
source libraries inherently makes both the source code and
output file formats open source, which significantly contributes
to the FAIR data principles by ensuring that data handling
practices are transparent and the generated data is readily
accessible and useable by the wider research community.

The transformative benefits of LLMs in simplifying code
development and enhancing data management seamlessly
translate to specialized applications across scientific disci-
plines. Current-voltage (IV) characteristics, for example, play
a pivotal role in understanding the fundamental properties and
operational behavior of semiconductor devices, serving as
a critical tool for diagnosing device performance, efficiency, and
for identifying potential areas for optimization. For example, in
solar cells, IV curves are essential for determining device-level
parameters like open-circuit voltage, short-circuit current, and
fill factor, which are key indicators of device efficiency,’ and also
for extracting parameters related to the fundamental physical
processes, such as Shockley-Read-Hall recombination param-
eters.'® Additionally, by modeling the IV curves with equivalent
circuits and diode models, parameters such as reverse satura-
tion current, diode ideality factor, series and shunt resistance,
can be extracted." " Similarly, in diodes and transistors, IV
curves help in assessing threshold voltage, leakage current, and
on-off ratio, important parameters for evaluating device
switching behavior and power consumption.**

IV measurement and analysis setups are widespread in mate-
rials science laboratories and are often automated using custom
LabView or Python programs. Graduate students typically take on
the task of automating these instruments, dedicating substantial
time to navigating detailed reference manuals and developing
and testing the control code. The analysis step of extracting
physical parameters from IV curves also presents a significant
challenge due to the nature of the equations resulting from
equivalent circuit modeling. Traditional parameter extraction
methods often involve tedious, manual adjustments and
assumptions that can introduce errors or biases, making the
process time-consuming and less accurate. Moreover, the sheer
volume of data generated by modern semiconductor testing
necessitates a more efficient approach to parameter extraction to
keep pace with rapid technological advancements. Metaheuristic
optimization algorithms, such as genetic algorithms, simulated
annealing, and particle swarm optimization, provide a powerful
solution to these challenges and have indeed been successfully
applied to this problem in the field of photovoltaics.’® By
exploring the vast search spaces associated with IV curve analysis,
these algorithms can find optimal or near-optimal parameter
values that closely match experimental data, with no need to rely
on any model assumptions, making these algorithms effective
alternatives to automate the analysis of IV data.

36 | Digital Discovery, 2025, 4, 35-45

View Article Online

Paper

ChatGPT-crafted

v

|V characterization

Parameter extraction

Device redesign

Physical insights

Fig. 1 Diagram depicting the Al-engineered current—voltage (IV)
characterization module and parameter extraction tool described in
this work. The Source Measure Unit (SMU) is connected to a control
computer running a Python application developed by ChatGPT. The
collected IV characterization data is subsequently processed using
a high-performance differential evolution algorithm for automated
parameter extraction from the IV curves, to provide insights for
redesigning the device stack.

Here, we demonstrate the application of LLMs, specifically
OpenAl's ChatGPT-4, to rapidly automate a Keithley 2400
Source Measure Unit (SMU), which is widely used for IV
measurements, and create a graphical user interface (GUI) for
it. The final control solution was accomplished without
resorting to model fine-tuning, and serves as a compelling
example of how LLMs can significantly lower the barriers to
rapid automation in laboratory settings, especially for
researchers with limited software development experience.
Moreover, due to the versatile nature of LLMs, other charac-
terization and synthesis instruments using standard
commands for programmable instruments (SCPI), Modbus or
other standard commands and protocols, can be automated by
the same approach. We also address common pitfalls
encountered during this process and present effective solu-
tions, such as structured prompts and JSON file templates,
with the objective of ensuring successful integration of LLMs
for equipment automation.

We then integrated an evolutionary optimization algorithm
into this measurement framework to extract semiconductor
device parameters from IV measurements of electronic devices,
such as those of diodes. This integration resulted in a compre-
hensive, end-to-end software solution that automates the entire
process — from measuring current-voltage characteristics to
extracting device parameters and gaining insights into semi-
conductor transport properties (Fig. 1). Finally, we applied this
software solution to the characterization of Pt/Cr,0;:Mg/B-
Ga,0; heterojunction diode operating under harsh environ-
mental conditions. Given the widespread use of IV measure-
ment methods and instruments discussed in this work, we have
made the software available as open-source on GitHub, aiming
to provide researchers with a solid foundation for more
advanced electrical analysis.

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00143e

Open Access Article. Published on 23 October 2024. Downloaded on 12/2/2025 2:57:47 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

2 ChatGPT-crafted automation
2.1 Controlling the SMU

There are multiple approaches to code development, ranging
from fully manual, human-driven methods to advanced AI-
assisted systems. These include Al-aided dialogue, where
users interact with the model to manually request and integrate
code, as well as API calls to an LLM, which enable the AI to
generate and directly insert code into projects. Other options
include IDEs with AI integration that support in-environment
code generation, and fully Al-managed platforms. Addition-
ally, LLM-based software engineer agents can automate coding
tasks,” ™ offering further levels of automation.

We selected the Al-aided dialogue approach due to its
simplicity, minimal setup, and the low level of coding expertise
required. This method allows for rapid code generation and
modification through natural language prompts, without the
limitations on the number of LLM calls that can occur in some
IDEs with LLM integration. Additionally, it gives the user the
flexibility to choose any IDE, as the process is not tied to
a specific development environment. To streamline our
discussion, we focus on the overarching elements of code
development and outcomes, with the comprehensive prompt
history detailed in the ESL.}

Our initial inquiries evaluated ChatGPT's ability to generate
Python code and its familiarity with the SCPI (Standard
Commands for Programmable Instruments) protocol required
for instrument control, as illustrated in Fig. 2. Despite including
acronyms and an unintentional typographical error in our

(-)

User: Can you run python code?
ChatGPT: Yes, I can run Python code. Feel free to ask for any
kind of Python-related task, such as calculations, data analysis,
generating graphs, or running simulations. Just let me know what
you need, and I'll do my best to assist you!

User: Are you aware of the SCIPI for instruments, such as Keithley
SMUs?

ChatGPT: Yes, I'm aware of SCPI (Standard Commands for
Programmable Instruments), which is a standardized language used
for controlling programmable test and measurement devices. SCPI
is widely used in various instruments, including Keithley Source
Measure Units (SMUs). Keithley SMUs, like many other test and
measurement devices, often use SCPI commands for automation
and control. These commands allow users to set up the instrument,
perform measurements, and retrieve data in a standardized way,
which is particularly useful in automated test environments. For
example, in Python, you might use libraries like PyVISA to commu-
nicate with instruments using SCPI commands. PyVISA acts as an
interface to the VISA library, which is an industry-standard API for
communication with test and measurement equipment. With this
setup, you can send SCPI commands to a Keithley SMU to configure
it, initiate measurements, and read the results. If you have a specific
task or question related to controlling Keithley SMUs or using SCPI
commands in Python, feel free to ask!

- J

Fig. 2 Initial prompts evaluating ChatGPT's comprehension of SCPI
(Standard Commands for Programmable Instruments) and its profi-
ciency in generating Python code. The dialogue demonstrates
ChatGPT's resilience to a typographical error (SCIPI instead of SCPI),
underscoring its robust understanding and ability to accurately
respond to queries related to programming and instrument control.

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

prompt, ChatGPT skillfully navigated these minor obstacles,
accurately interpreting the context and providing relevant
responses. Additionally, ChatGPT suggested using the PyVISA
library, a Python interface to the Virtual Instrument Software
Architecture (VISA) API, which is a standard framework for
enabling communication between software applications and
test and measurement equipment.

Subsequently, we tasked ChatGPT with the development of
a Python class for managing a Keithley 2400 SMU, detailed in
Fig. S1 of the ESI.f We provided comprehensive instructions,
outlined initial tasks, and suggested internet searches for
additional information, leveraging the ability of ChatGPT-4 to
augment its responses with web-based data. We also used
standard terminology relevant to the field, including “4-wire
measurement mode” and “compliance level”.

Beyond a full comprehension of the task, ChatGPT proposed
initial steps for creating a Python class to interface with the
instrument, presenting a systematic approach for class devel-
opment that includes initialization, connection, and identifi-
cation, along with methods for instrument control. It also
emphasized the critical requirement of installing PyVISA
through pip and the need for a VISA backend, essential for
enabling the Python scripts to communicate with the instru-
ment. The complete ChatGPT's answer is shown in Fig. S1 of the
ESI,T and the resulting Python code for this initial step in shown
in Fig. 3. It is worth highlighting the understanding of SCPI
commands and the requirement to encapsulate them in strings
when transmitting them to the instrument through the PyVISA
write method.

We tested this class and example usage, but changing the
instrument's general purpose interface bus (GPIB) address to
the correct one in the resource_name argument, and we
successfully were able to select the front panel, change the
measurement mode to a 4-wire mode, and set a current
compliance of 10 mA. Besides the instrument's address—which
we did not pass to ChatGPT and depends on port addressing—
no correction had to be made on the code, and no errors were
found during execution, which is notable for a first trial. After
this initial test, we informed ChatGPT about the instrument's
GPIB address and asked for methods to set current and voltage
source and measure ranges, which were successfully imple-
mented and tested, again with no errors. This step is shown in
Fig. S2 of the ESLT

The next step was to ask ChatGPT to implement the most
challenging part of the control class: a current-voltage (IV)
sweep. Given the complexity of this task, we provided specific
requirements, such as what it should source and measure,
buffer set up and initialization, and so on, as shown in Fig. S3 of
the ESL.f The resulting code missed the command to enable
output on the instrument and the previously created methods
were not used. After a few iterations to correct these issues and
an unexpected output upon testing the code, we finally decided
to provide ChatGPT with an example from the instrument's
manual on how to program a linear IV sweep. Details about
these interactions can be found in the prompt history.

The IV method was then refactored to take the provided
example into account, but accounted only for sourcing current

Digital Discovery, 2025, 4, 35-45 | 37

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00143e

Open Access Article. Published on 23 October 2024. Downloaded on 12/2/2025 2:57:47 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

import pyvisa

class Keithley2400Controller:
def __init__(self, resource_name):
self.resource_name = resource_name
self.instrument = None
self.current_compliance = 0.01 # 10 md default
def connect(self):
rm = pyvisa.ResourceManager ()
self.instrument = rm.open_resource(self.resource_name)
self.instrument.write("*RST") # Reset the instrument
self.instrument.write("*CLS") # Clear the status

def identify(self):
return self.instrument.query("*IDN?")

def select_panel(self, panel='FRONT'):

if panel.upper() == 'FRONT':
self.instrument.write(":ROUT:TERM FRON")
elif panel.upper() == 'REAR':

self.instrument.write(":ROUT:TERM REAR")

else:
raise ValueError("Invalid panel option. Choose 'FRONT'
< or 'REAR'.")

def set_measurement_mode(self, mode):

if mode == 2:
self.instrument.write(":SYST:RSEN OFF")

elif mode == 4:
self.instrument.write(":SYST:RSEN ON")

else:
raise ValueError("Invalid measurement mode. Choose 2 or
e A4t)

2-wire mode

4-wire mode

Placeholder for IV sweep method
Placeholder for setting sourcing and measurement ranges

def set_current_compliance(self, compliance):
self.current_compliance = compliance
self.instrument.write(f":SENS:CURR:PROT {compliance}")

Ezample usage
controller = Keithley2400Controller('GPIBO::24::INSTR')
< with your actual GPIB address
controller.connect ()
print(controller.identify())
controller.select_panel('FRONT')
controller.set_measurement_mode (4)
controller.set_current_compliance(0.01)

Replace

10 md

Fig. 3 ChatGPT-crafted Python class (initial architecture, before
subsequent refactoring based on prompts) for interacting with
a Keithley 2400 SMU, with methods for instrument connection, panel
and measurement mode selection, and setting a compliance level. An
example usage was also provided.

and measuring voltage, and left no room for range options,
which was in fact expected, since ChatGPT only reproduced the
example. We then instructed ChatGPT to modify this method so
we could source and measure both current and voltage, and to
not forget to leave compliance, sourcing and measuring ranges,
and number of power line cycles (NPLC) as variables, besides
making sure to use the methods it had already developed.

After another round of code refactoring, we had a functional
version of the IV sweep method. During testing, the instrument
initiated measurements, but PyVISA reported a timeout error.
We reported this issue to ChatGPT, which then updated the
controller class by adding a timeout parameter, set to a default
of 25 seconds, effectively resolving the problem. Following a few
additional instructions to manage the resulting data—with
ChatGPT executing code online to understand and format the
data—and incorporating parameters such as compliance, over-
voltage protection, and range levels, ChatGPT finally produced
a fully operational Python class to interact with the Keithley
2400 SMU.

38 | Digital Discovery, 2025, 4, 35-45

View Article Online

Paper

We needed to implement only two code modifications. The
first addressed auto-ranging during the IV sweep. We noticed
the sweep command necessitated a specific instruction for
selecting between a fixed range, as pre-configured in the
instrument, and auto-range. This aspect was not initially
managed correctly by ChatGPT due to lack of proper instruc-
tions, so a minor and manual correction was made. The second
modification involved the calculation of sweep points. Specifi-
cally, ChatGPT overlooked the necessity of using the absolute
value for both the difference between the start and stop levels
and the step size, which is crucial for ensuring the linear sweep
operates correctly in both ascending and descending modes.
Although the inclusion of abs(stop —start) was correct in
early iterations of the sweep method, it was inadvertently
omitted following subsequent code refactorization. Detailed
information about the prompts and the generated Python
scripts are accessible via the links in the ESL{

Finally, although we did not specify anything regarding
error handling, it is interesting to note ChatGPT's behavior
when dealing with possible errors. For instance, specifying
anything different from 2 or 4 for the measurement mode will
raise an error since these are the only two allowed parameters,
and ChatGPT properly handled this issue, as shown in Fig. 3.
On the other hand, the connect, identify, and iv_sweep
methods did not handle errors, and also the methods defining
range parameters — which was expected since we did not
provide any information regarding allowed values from the
instrument manual. The final control code was subsequently
applied to the characterization of a heterojunction device, as
detailed in Section 5, and no issues were encountered after
connecting the instrument to the control computer. This
iterative approach to prompt-based software development
with ChatGPT highlights the need for user review of the
generated code, and acts as a safeguard to ensure proper
functionality, while still offering significant time improve-
ments over manual code development.

2.2 Graphical user interface (GUI)

GUISs are especially useful for quick measurements and for most
of materials science researchers that are usually not familiar
with scripting programming languages. Thus, we decided to
instruct ChatGPT to design and implement a minimal graphical
user interface for the instrument control class. For that, we
started a new chat and directed ChatGPT to develop a GUI for
our instrument control module. We focused on outlining the
required functionalities and ensuring ChatGPT comprehended
the project scope, as illustrated in Fig. S4 of the ESL.¥

We copied the control module to the prompt, after which
ChatGPT answered with a design for the required application
and started generating a code snippet, but mentioned that “It
doesn't include detailed implementations of event handlers
and plotting”, as recorded in the prompt log. Given that, we
stopped the answer and asked ChatGPT to provide a detailed
and complete implementation. After this additional instruc-
tion, ChatGPT answered with a step-by-step breakdown of the
code, as shown in the prompt history available in ESL{

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00143e

Open Access Article. Published on 23 October 2024. Downloaded on 12/2/2025 2:57:47 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

¢ Keithley 2400 Controller - o X

Resource Name ASRLS:INSTR

Connect IV Sweep Results

Setup Parameters
SourceType [VOLT
Measure Type ~[CURR

Stat Level

Current (A)

soplevel 5

Steplevel [0

Auto Range » » S v »
Voltage (V)

[tog Scle X 2 Log Scale ¥

Perform IV Sweep SoveData

Fig. 4 ChatGPT-crafted graphical user interface for a Keithley 2400
controller. The user can select the operation panel, measurement
mode, source and measure variables (voltage and current), sweep
parameters (start, stop, step size), compliance, source and measure-
ment ranges, besides NPLC and delay parameters. The data resulting
from the IV sweep is plotted and can be saved through a file dialog.

Our previous attempts to develop this GUI were functional
but visually unappealing, featuring misplaced buttons and
excessive empty spaces. Learning from these experiences, we
provided detailed specifications for layout, frame alignment,
and button placement, which led to an extensive conversation
until the GUI was functional and aesthetically pleasing, as evi-
denced by the chat log in the ESI materials.}

Finally, ChatGPT did not handle error exceptions well for the
GUI, since the IV sweep and save data buttons were still enabled
even if the instrument was not connected and no data had been
collected. Thus, we provided the full GUI code to ChatGPT and
asked for appropriate error handling measures for the connect
button, save data and perform IV sweep buttons, specifying that
these buttons should be disabled if the instrument is not con-
nected, and that the save data button should be disabled if no
data were collected. We also required the same for panel and
measurement mode toggles. All of these additional features
were successfully implemented, as recorded in the prompt
history available in the ESI,t and we updated the GUI code. The
final GUI, shown in Fig. 4, features all necessary control
parameters for acquiring current and voltage data from the
instrument using linear sweeps, including panel selection,
measurement mode (2 or 4-wires), range specifications
(including auto-range), compliance, measurement speed and
source delay. Moreover, the resulting data is displayed on the
screen, and the user can save data as a text file.

3 Discussion
3.1 Protocol for code development

Aided by ChatGPT, we created a prompt template, as shown in
Fig. S6 of the ESI, and a customizable JSON file to streamline
the development of control code for laboratory instruments
using LLMs. The JSON format, with its key-value pair structure,
was chosen for its clarity and ease of use, making it accessible to

non-experts and easily interpretable by ChatGPT. This

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

framework encompasses most aspects of code generation, from
setup to validation, including error handling. It also facilitates
the creation of a Python class for instrument control by
providing all necessary details on how the code should interface
with the instrument. This includes specifying relevant Python
libraries and dependencies, communication interfaces (e.g.,
GPIB, TCP/IP), protocols (e.g., SCPI, Modbus), external config-
uration files, and desired functionalities, all of which ChatGPT
uses to generate the Python code. Additionally, we developed
a prompt template for GUI generation, as shown in Fig. 5, to
guide ChatGPT in mapping the methods and variables of the

\

(I have a Python script that includes a class responsible for controlling
an instrument. This class has several methods and variables that need
to be mapped to a GUI. Please develop a fully functional GUI based
on the following criteria:

1. Class Methods and Variables:
¢ Each method in the class should be represented by a button
or toggle in the GUI.

¢ All class methods and variables should be directly mapped to
appropriate input fields (e.g., text boxes, sliders, dropdown
menus) in the GUI, allowing users to modify their values.

¢ The GUI must include error-handling for all buttons and tog-

gles to manage invalid inputs or failed operations.

Methods that return values should have corresponding out-

put display elements (e.g., labels or text areas).

* Boolean variables should be represented as checkboxes or
toggle switches.

* Variables with limited options should be represented as drop-
down menus.

2. GUI Layout and Design:

¢ Please determine the most effective way to map these meth-
ods and variables to screen elements, ensuring the layout is
user-friendly and logical.

¢ The GUI should feature a clean and intuitive design, with
sections clearly labeled for different functions and settings.
3. Error Handling:
¢ Implement validation for all input fields to ensure that users
enter valid data.
* The GUI should provide clear and informative error messages
when inputs are invalid or when an operation fails.
4. Additional Features:
¢ Add tooltips to buttons and input fields to provide users with
additional information about their functions.
* If applicable, include a real-time display of instrument status
or data.
5. Final Script Requirements:
* Ensure that the generated GUI script is complete and func-
tional, with no placeholders or incomplete sections.

* The GUI script should directly import the instrument class
from the provided Python file and use its methods to ensure
that the GUI operates as intended.

Once the script is uploaded, please analyze it and generate the corre-
sponding GUI code in Python using an appropriate framework (such
as Tkinter, PyQt, or another suitable library). Ensure that every aspect
of the GUI is fully implemented so that the resulting script is ready to
run without requiring any further modifications.)

Fig. 5 Template for developing a GUI based on a Python class: this
template outlines the key criteria and guidelines for creating a fully
functional GUI that maps methods and variables from a Python class to
appropriate screen elements. The template includes considerations
for error handling, layout design, and additional features to ensure that
the resulting application is operational.

Digital Discovery, 2025, 4, 35-45 | 39

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00143e

Open Access Article. Published on 23 October 2024. Downloaded on 12/2/2025 2:57:47 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

instrument control code to GUI elements such as buttons,
toggles, and text areas.

We validated this framework by developing basic methods
and functional GUIs for the same SMU and for a thin film
deposition instrument (details about this instrument be found
in a previous work®), each using distinct communication
interfaces and protocols: GPIB and SCPI for the SMU, and TCP/
IP with open platform communications unified architecture
(OPC UA) for the deposition instrument, besides an external
configuration file. For the purpose of validating the suitability of
this framework and ChatGPT capabilities to handle external
files, we limited this validation to basic instrument actions and
GUI elements. Functional applications were rapidly developed,
meeting most of the design specifications, including automated
testing, data logging, and error handling. In both cases,
ChatGPT accurately analyzed the JSON files and prompted the
user to upload additional configuration files when needed.
Expanded functionalities can also be developed with this
framework, but we anticipate that further prompt interactions
with ChatGPT will be necessary to refine and review more
complex features. The prompt and JSON templates, along with
the resulting control classes and GUISs, are available in ESI.{

3.2 Lessons learned and pitfalls

In our example of automating a Keithley 2400 SMU, we
instructed ChatGPT to develop all control methods within
a class-based structure, allowing for easy integration of new
methods and enabling the instrument class to be used in more
complex, multi-instrument applications. We recommend start-
ing with basic functionalities and gradually expanding to more
advanced features, ensuring a solid foundation, minimizing
errors, and making the code more maintainable and scalable as
the project grows.

ChatGPT demonstrated a good overall understanding of the
required tasks to automate the SMU. Simple methods, such as
panel selection and measurement mode, were implemented
effectively. However, despite our initial instructions specifying
that the control code should perform IV sweeps and set
instrument ranges, ChatGPT initially overlooked these
requirements and left placeholders for these methods, as
shown in Fig. 3. We also observed redundancy in the code due
to oblivion of functions that were already defined. Conse-
quently, we had to explicitly request the inclusion of these
omitted functionalities and ensure the use of previously devel-
oped functions. For the IV sweep method, once we provided an
example from the instrument manual, ChatGPT successfully
developed a function to replicate the instructions from the
example and mapped variable values to function arguments.
This highlighted that learning through examples is an effective
way for LLMs to quickly achieve desired functionalities.

The GUI development was particularly challenging. Although
ChatGPT correctly mapped the instrument parameters to screen
elements, it was constantly using placeholders for methods that
should be defined, and omitting parts of the code that it
considered to not have changed between prompt iterations,
which can be confusing when only specific sections are

40 | Digital Discovery, 2025, 4, 35-45

View Article Online

Paper

corrected. Furthermore, the oblivion problem resulted in
objects being used without having been defined. The adjust-
ment of screen elements to match a user-defined layout was also
possible, but we found that fine adjustments, such as updating
the plot ticks to scientific notation to prevent overlapping and
dynamic update of scales were difficult to implement with few
prompts.

Error-handling in the generated code was inconsistent and
insufficient. For instance, methods that interface with the
instrument require an active connection to function properly,
yet ChatGPT failed to implement connection checks. Therefore,
we recommend emphasizing the importance of robust error-
handling and additional validation checks when using
ChatGPT for equipment automation. Properly addressing
various potential issues is crucial, not only to prevent damage to
expensive instruments but also to improve code readability and
facilitate debugging. Although our control code did not initially
include validation mechanisms and automated testing, we
strongly advise incorporating comprehensive testing, which can
also be facilitated by ChatGPT.

We also noticed that if the prompt history becomes long or if
the user focus on specific sections of the code for further
corrections, ChatGPT-4 may forget about previous methods and
variables, which can lead to execution errors or redundancy.
Moreover, several code revisions by ChatGPT may inadvertently
lead to the loss of some essential methods and functionalities,
which requires detailed review.

Using the prompt template and JSON file significantly
streamlined code development compared to specifying details
on-the-fly in a purely dialogue-based approach. The user can
provide all specifications upfront, guiding ChatGPT with clear
constraints and desired capabilities in an organized manner
that is easily comprehensible. While the template aided in GUI
development, some critical control code functionalities were
initially overlooked. By prompting ChatGPT to reassess the code
and identify these gaps, it engaged in a self-reflection process*
essential to refining the final application. This iterative
approach—reviewing the JSON-defined features, comparing
them with the code, and resolving issues through conversa-
tional feedback—proved crucial for successful development.

However, the efficacy of this approach heavily depends on
the details provided in the JSON file and the structure of the
instrument control class. For instance, creating a GUI from an
unstructured Python file with no classes, methods, or error
handling mechanisms makes it challenging to map instrument
functionalities to screen elements. During control class devel-
opment, ChatGPT will implement only the methods specified in
the JSON file, making it imperative to clearly define methods
and functionalities to achieve accurate results.

Although it is certainly possible for researchers with no
previous code experience to learn from ChatGPT how to start
developing an application from scratch, including installing
a proper integrated development environment (IDE) and
language packages, we found that code review by a researcher
with programming background was an important part of the
process. Although ChatGPT developed all the code, human
review detected flaws that could otherwise go unnoticed. In the

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00143e

Open Access Article. Published on 23 October 2024. Downloaded on 12/2/2025 2:57:47 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

dialogue-based approach, ChatGPT-crafted code must be
copied to another environment for code execution. Thus, we
recommend using IDEs with extensions with code assistance
features, such as highlighting undefined variables, improperly
imported libraries and syntax issues, or using IDEs with LLM
integration, such as Cursor,”® to mitigate these issues.

To ensure a more robust code review, this step could be
coupled to a version control tool, where an expert would review
the code before deployment. For maintainability and scalability,
particularly as the complexity of laboratory equipment and
experiments increases, leveraging IDEs with LLM integration or
tools like LangChain® for automating code generation, testing,
and human-aided review would be beneficial. Additionally,
semi-autonomous software engineer agents, such as Devin** and
Amazon Q,” can further automate many parts of the code
development lifecycle. However, for small laboratory applica-
tions such as automation of single instruments with straight-
forward processes, the interactive dialogue-based approach—
with prompt templates and JSON specification file—is a fast
solution if human-review is readily available.

In this work, both the Keithley SMU and the thin film depo-
sition instrument, for which ChatGPT developed code, rely on
well-documented communication protocols that are supported by
Python libraries, making it feasible to create effective applica-
tions. This is because the relevant data is likely included in the
LLM's training corpus. However, the use of proprietary proto-
cols—particularly those without Python library support or limited
public documentation—can lead to code hallucinations. In these
scenarios, ChatGPT might attempt to call nonexistent methods or
import unavailable libraries. Moreover, graphical programming
languages like LabView present challenges for ChatGPT-driven
automation; it cannot execute LabView code or accurately
render data flow and block diagrams, complicating the process of
reporting results back to ChatGPT for debugging.

The field of LLM-assisted software development is evolving
rapidly, with significant advancements occurring even during
the brief review period of our work. Recent publications from
August and September 2024 (ref. 17-19) and the release of
OpenAI's 01 models in September have enhanced capabilities in
this domain. Innovations such as LLMs optimized for code
generation, extended context windows to prevent omissions,
and automated iterative reasoning—introduced in the new
ChatGPT ol models—are improving the accuracy, complete-
ness, and efficiency of the code generation process.

4 |V Parameter extraction

4.1 Streamlining the parameter extraction process through
an open-source tool

To automate and speed up the parameter extraction from IV
curves, we developed an open-source optimization tool that
leverages the self-adaptive differential evolution (DE) algo-
rithm**—benchmarked on the photovoltaics (PV) parameter
extraction problem and proven robust against noise*’—and
Numba, a high-performance Python compiler that allows easy
code parallelization across multiple CPUs.*®

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

The DE parameter extraction tool, which was not developed by
ChatGPT, can be applied to single-objective optimization problems
by simply defining an objective function and a search space that
are then passed to the algorithm. Although other techniques, such
as Newton-Raphson, gradient-based techniques, or random
sampling could be applied to this problem, they either rely on
initial points or derivatives, or do not balance exploration/
exploitation as well as the DE algorithm implemented here.'>**3
Despite many implementations of the standard differential
evolution algorithm are available, such as in scipy and Mathema-
tica, we have not found any open-source Python implementation of
the self-adaptive DE algorithm—only a C++ implementation
(pagmo®) was found. In principle, it should be possible to trans-
late the C++ implementation of this code into a Python imple-
mentation using LMMs. While an interesting application, this
translation was not attempted in this work and will be explored in
future studies. Extensive discussions and an application of self-
adaptive DE algorithm to the PV parameter extraction problem,
including convergence curves, can be found elsewhere.**”*

Our optimization tool leverages the easy parallelization
enabled by Numba: the parameter runs controls the number of
parallel optimization processes, each starting with a different
seed parameter, so that each evolution of parameters starts at
different points, to enhance the likelihood of finding the global
optimum. We measured the optimization performance of our
tool on the 2-dimensional domain Ackley function, which is
discussed in the ESIf as an application to a general optimiza-
tion problem, on a laptop equipped with a 11th Gen Intel Core
i7-11850H (2.50 GHz) and 16 GB of RAM, running a 64-bit
Windows 10 OS: it took on average 3.9 seconds to run 10 parallel
optimization routines (across 100 code executions), each with
a population size of 100 individuals evolving until a maximum
number of 10 000 generations is reached. The results available
in the Git repository (ackley_results.py) demonstrate that
the algorithm successfully found the minimum of the 2D Ackley
function, which is 0 at (x, y) = (0, 0), by consistently finding x
values between —3.6 x 10 '® and 3.6 x 10 '°, and y values
between —3.6 x 10~ '° and 3.6 x 10 '¢, with the minimum of
the Ackley function always converging to —4.4 x 10~ %, indi-
cating that the errors were negligible.

4.2 Parameter extraction methods

The transport properties in the fabricated devices can be
studied through diode parameters extracted from IV measure-
ments, usually through the single-diode model, defined by eqn
(1) with a shunt term:

I=1 [exp(VHT:RS) - 1} +%, (1)
where I, n, Ry and Ry, represent the diode reverse saturation
current, ideality factor, series and shunt resistance, respectively,
and Vr = kgT/q is the thermal voltage. Hence, from each set of IV
measurements at a given temperature, the goal is to extract the
four diode parameters from eqn (1). The optimization tool
described in the previous sections can be applied to this
problem by converting it into an optimization problem, where

Digital Discovery, 2025, 4, 35-45 | 41

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00143e

Open Access Article. Published on 23 October 2024. Downloaded on 12/2/2025 2:57:47 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

the goal is now to minimize an error metric between experi-
mental and simulated IV curves, which depend on the diode
parameters: I = f{V, Vi, Iy, n, Rs, Ry,). Thus, the set of diode
parameters providing the lowest error metric is considered to
better describe the experimental data.

To simulate IV curves and extract diode parameters, we first

rearrange eqn (1) as a function of voltage and single-diode
33-35

parameters only, through the Lambert W function, as
defined by eqn (2):
1—%W{ R.I, o RI,+V]}
TR+ R/R) [P V(1 + Ro/Ra)
Iy — V /Ry
R 2)

where W, is the main branch of the Lambert W function.
Additionally, we considered a voltage offset V = V + Vyger tO
account for additional voltage inaccuracies from the measure-
ment setup. To compare how close simulated curves are to the
experimental ones, we define an objective function, which will
be minimized by the optimization algorithm. In this case, we
used the root mean squared error, but taking the relative devi-
ation to account for the orders of magnitude variation in
current, as defined by eqn (3):

1 Y Iiex _Ii.sim ?
¥ Z (Pi) , (3)

i—1 I, eXp

RMSE =

where I, i, is the i-th simulated current point obtained from
eqn (2), I;exp are the experimentally measured current points
and N is the number of experimental IV pairs.

Therefore, the goal of the optimization algorithm is to find
single-diode parameters that minimize the RMSE. However, since
we used Numba to compile the DE algorithm, we can only use
Numba-compatible functions when defining an objective func-
tion. Since off-the-shelf implementations such as
scipy.special.lambertw are not Numba-compatible,
approximated the main branch of the Lambert W function, w =
Wo(x), through the Newton-Raphson method* as given by eqn (4):

we

. wi(x) _
wip1(x) = wi(x) — %7 (4)
where a rough initial guess is given by w,(x) = In(x + 1). In this
case, we found that 10 iterations were sufficient to approximate
W, within an absolute error lower than 107'° in the interval
[107"°, 10°]. An implementation to extract single-diode param-
eters from IV data using the applications reported here is
provided in our remote repository (ESIt), as well as the
measured IV data and the results of the Newton-Raphson

approximation of the Lambert W function.

5 Application: modeling Pt/
Cr,05:Mg/B-Ga,0O3 heterojunction
diodes

We present here an application of the developed control code
and streamlined optimization tool: the modeling of Pt/

42 | Digital Discovery, 2025, 4, 35-45

View Article Online

Paper

Cr,0;:Mg/B-Ga,03; heterojunction devices. Since the most
important parameters regarding the electrical performance of
these devices are obtained from IV curves, and diode parame-
ters can be extracted from the experimental IV curves using
metaheuristic algorithms, both tools developed in this work are
readily applicable.

5.1 Device fabrication and IV measurements

A Pt/Cr,03:Mg/B-Ga,O; vertical heterojunction diode was
fabricated using an 7 pm lightly Si-doped (8 x 10™*° cm %) n-
type B-Ga,O; drift layer grown on a conductive bulk (001) B-
Ga,03 substrate (NCT). The schematic of the device cross-
section is shown in inset of Fig. 6. Before device fabrication,
photoresist was removed from the as-delivered substrates via an
organic wash followed by a piranha rinse. Large area ohmic
contact of Ti/Au (5 nm/100 nm)*” was deposited on the backside
of the substrate via e-beam evaporation, followed by a rapid
thermal annealing (RTA) in N, ambient at 550 °C for 1 min.
Next, the Cr,0;:Mg layer was grown by pulsed laser deposition
(PLD), a ceramic target of 8 at% Mg-doped Cr,O; was ablated
using a pulsed KrF excimer laser at a frequency of 10 Hz and
energy of 300 m]. Growth was performed at a substrate
temperature setpoint of 600 °C and O, partial pressure of 3 x
10~* torr. Details of the electrical properties of the Cr,0;:Mg
layer have been described elsewhere.*® To make the top contact
shadow masks were used to define an array of 1 mm diameter
pads and e-beam evaporation was used to deposit a 30 nm Pt
layer on the Cr,0;:Mg.

Current-voltage data from a Pt/Cr,03;:Mg/B-Ga,O; hetero-
junction diode were obtained in a high temperature and highly-
automated probe station capable of controlling a reducing
atmosphere for temperature-dependent performance and time-

1 ~120 nm Cr,0,:Mg
10 ~ 7 pm HVPE B-Ga,0;
100 Ga, Oésr:r:lfr?strate ';
100 nm Au '3
-~ 10_1 Increasin%temperature i
) j
-2)
510 \/
<
1073 7 !
c Fl 5
o 10_4 ’%‘ i . 77777 Thermionic —— 550° C
S IE s emission 500° C
O G -
-5 - e, ¢=1llev
107 <72 450° C
10—6 ': —-26 400° C
3 0 T 350° C
10774° "1z 16 18 20 —— 300°C
1/keT (eV-?)
-10.0 -75 =50 =25 0.0 2.5 5.0
Voltage (V)

Fig. 6 Architecture of a Pt/Cr,0s:Mg/B-Ga,O3-based heterojunction
diode and corresponding current—voltage data measured at several
temperatures. Points represent experimental data and the solid lines
represent the fits with the best set of single diode parameters that
models the data. MAPEs for ranged between 4.7% and 7.8%. The inset
shows that Jyo can be modelled by the thermionic emission model,
yielding a barrier height of 1.1 eV.

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00143e

Open Access Article. Published on 23 October 2024. Downloaded on 12/2/2025 2:57:47 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

dependent reliability electrical device measurements. All IV
data were obtained with the ChatGPT-developed control
module for the Keithley 2400 SMU. In this application, we
sourced voltage between —5 V to 10 V and measured the
resulting current in a 2-wire measurement mode, under normal
measurement speed (NPLC = 1). Futhermore, we set current
compliance to 200 mA and used auto-range for both source and
measure functions. A single heterojunction diode was
measured at various temperatures without H, reducing condi-
tions, and at 500 °C under different gas flow conditions. Two
Alicat mass flow controllers (MFCs) were used to control the
flow of N, and forming gas (2% H,), which were directed into
the test chamber from two separate gas lines that mixed before
the chamber feedthrough. The total gas flow was always 100
sccm, with the forming gas flow set at 0 sccm, 2 sccm, and 5
sccm. JV curves were recorded at 1 min intervals without any
initial device equilibration time and were subsequently
analyzed using a parameter extraction procedure, as detailed in
the following section.

5.2 Results

The developed tool described in this work makes it straight-
forward to extract diode parameters from IV curves by just
defining search bounds and eqn (3) as a custom objective
function through a function closure, as shown in Fig. S5bt, and
in the parameter extraction script available in our Git reposi-
tory. Thus, IV data obtained with the ChatGPT-crafted control
module is piped to the parameter extraction tool, and in a few
seconds all relevant diode parameters are available.

For this application case, Fig. 6 shows the IV data measured
at several temperatures and the resulting fitting from —10 V to
5 V for a Pt/Cr,05;:Mg/B-Ga,05-based heterojunction diode in
the 300 °C —550 °C temperature range under trace H, concen-
tration, using the ChatGPT-crafted control module for Keithley
2400 SMUs. Mean absolute percentage errors (MAPE) ranged
between 4.7% and 7.8%, demonstrating that the parameter
extraction tool was able to successfully extract diode parameters
from the IV curves.

As shown in the inset of Fig. 6, the extracted reverse satu-
ration current J, can be modelled by the thermionic emission
model, defined by eqn (5):

Jo = A*T?e™ T, (5)

where A* is the effective Richardson constant and ¢ is the
barrier height, found to be 1.1 eV for this device, which is
similar to what has been reported for B-Ga,O; Schottky
devices**** and lower than NiO/B-Ga,O; heterojunction
devices.** Poole-Frenkel emission was found to account for the
electric field dependence of J, in Pt/Cr,03:Mg/B-Ga,0; devices,
with unintentional Mg-rich layer at the heterojunction inter-
face.*® Since both thermionic emission and trap-assisted
transport can explain the temperature- and field-dependence
of current, it appears that both transport mechanisms are
present, ie., activation from the conduction band over the
barrier at the junction, and activated transport through trap
states in the Mg-rich interfacial layer.

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

Moreover, we investigated the device's response to H,
atmosphere conditions, by extracting the diode parameters at
several H, concentrations over time, as shown in Fig. 7. Fig. 7a
shows the reverse saturation current extracted from IV curves
measured at different H, concentrations as a function of time.
The increase in J, with H, can be attributed to a decrease of the
potential barrier for thermionic emission.*” On the other hand,
the steady rise in J, over time stems from the device's inability to
attain an equilibrium state within the observed time frame for
the applied hydrogen concentrations, likely due to the large
volume of the measurement chamber. Moreover, a departure
from ideal diode behavior as H, concentration increases
(Fig. 7b), with a corresponding increase in lumped series
resistance (Fig. 7c), and a decrease in shunt resistance (Fig. 7d)
show that, due to the catalytic nature of the Pt contact, the
device responds to exposure to H,, resulting in a corresponding
change in electrical parameters.

We measured the performance of our software package for
this parameter extraction problem with the same laptop used to
minimize the Ackley function, and it took on average 58.7
seconds to run 10 parallel optimization routines with external
data reading (single IV curve), each with a population size of 100
individuals evolving until a maximum number of 10000
generations is reached. We note that the computing time will
change according to the calculations required to compute the
objective function. Here, eqn (4) is used to approximate the
Lambert W function for every voltage point for each individual,
which considerably increases the computational burden — as
a comparison, it took less than 10 seconds to minimize the
Ackley function for the same optimization parameters. Still, 10
parallel evolutionary optimization processes can be completed
in under 1 min.

Finally, the amount of data can quickly increase for reli-
ability analysis, when IV curves are measured over extended
periods of time under several gas concentrations. For these

1.6
1.00 a) @ Trace Hz/N:2 b)
: O 2% HaN 15
T o g AAAAAAAAAAAA
£0.75 A 5% Hz/N2 o 14 A
b aannasddi S5%aa
< A ooo
050 AAA =13 oogppPOoooeE0o
= Al 9 eecc0000000000°
T0.25| gggpooooooooodl <12
Beeecc0c0ccccce
0.00 1.1
0 10 20 0 10 20
Time Elapsed (minutes) Time Elapsed (minutes)
0.4) 400)
c)
AAAAAAAAA ep0®0®00®
— akas ~395/000000°®°
“wE0.3 . E o
5] A pmooooooood| Sagg PoogP08%g momng
] ooooo °®] AA
202 0000®® 5 AR AAA,
ee000000 & 385 Aag
AAA,
0.1 380
0 10 20 0 10 20

Time Elapsed (minutes) Time Elapsed (minutes)

Fig. 7 Single-diode parameters as a function of time and forming gas
percentage in the N, + Hy/N, mixture for the tested Cr,O3/3-Ga,O3-
based heterojunction diode. Device degradation was observed upon
exposure to Hp/N, while enduring a temperature soak at 500 °C.

Digital Discovery, 2025, 4, 35-45 | 43

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00143e

Open Access Article. Published on 23 October 2024. Downloaded on 12/2/2025 2:57:47 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

cases, a manual parameter extraction based on curve fitting
becomes impractical. Hence, having a tool that can quickly
extract diode parameters with minimal user effort can consid-
erably help speed up the characterization process, and take the
human out of the loop for fully autonomous accelerated
degradation studies of electronic devices. Finally, we mention
that complete implementation examples and the code used to
generate the figures shown in this work can be found in
the ESLT

6 Conclusions

In this study, we demonstrated how to develop control software
for materials science instruments using LMMs. As an example,
we automated a Keithley 2400 Source Measure Unit (SMU)
through an interactive dialogue with ChatGPT-4, that required
just a few hours of time and no human-developed code besides
few minor corrections. This software development method
significantly streamlined the instrumental setup and testing
phases, allowing researchers to focus on getting and analyzing
materials science and device engineering results, rather than
grappling with programming tasks. Furthermore, the develop-
ment of a graphical user interface (GUI) as part of this auto-
mation process, which is notorious for having a tedious
software development process, enhanced the user experience
with the measurement instrument, making it more intuitive
and accessible than the programming language, which is
especially beneficial for materials science researchers with little
scripting practice. To facilitate the automation of laboratory
instruments, while preventing the shortcomings observed
during on-the-fly requirements in a purely conversational
approach, we developed prompt templates and a JSON file to
provide detailed specifications to guide ChatGPT in the devel-
opment process, and observed that it resulted in accurate code
matching user-defined features.

Furthermore, we developed a Python-based implementation
of the self-adaptive differential evolution algorithm for param-
eter extraction analysis of IV electrical measurement results,
considering the widespread use of this data analysis approach.
This analysis software implementation is enhanced by Numba,
a just-in-time compiler that transforms Python code into
machine code, significantly accelerating the parameter extrac-
tion process from IV curves. By showing a real-world application
of this software platform to parameter extraction from IV
measurements of Pt/Cr,0;:Mg/B-Ga,O; devices, we demon-
strate that Al-driven laboratory automation can quickly yield
insights into semiconductor device physics.

The Al-engineered control module, along with the user-
friendly graphical user interface and the parameter extraction
algorithm described in this paper, are made open-source
through GitHub, so that the whole community can benefit
from and contribute to the further development of these tools.
Looking ahead, this LMM-based software development method
holds the potential to revolutionize research automation by
enabling the control of a diverse spectrum of laboratory
instruments. Potential future applications include but are not

limited to multimeters, temperature controllers, power

44 | Digital Discovery, 2025, 4, 35-45

View Article Online

Paper

supplies, mass flow controllers, programmable logic control-
lers, or any other equipment that features standard communi-
cation and command protocols such as Modbus, OPC UA, SCPI.
The resulting increased laboratory automation would pave the
way for a more interconnected and efficient research environ-
ment through the use of large language models.

Data availability

Source code for the ChatGPT-crafted control module and GUI is
available at: https://github.com/NREL/Keithley_GPT. The
differential evolution algorithm source code and Jupyter
notebooks used to analyze the results and generate the figures
in this paper are available at: https://github.com/NREL/DE.
The prompt templates, JSON file, and the resulting Python
files created using these templates are available in the ESIL.{

Author contributions

D. Febba and Andriy Zakutayev conceptualized the system
described in this work. D. Febba drafted the manuscript with
input from all the co-authors, and operated the characterization
system. K. Egbo fabricated the heterojunction devices. D. Febba
and W. Callahan tested the probe station atmosphere control
and scripting routines. ChatGPT (GPT-4 version) was used to
craft Python code and to refine the text. The final version of this
manuscript was approved by all authors.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was authored by the National Renewable Energy
Laboratory, operated by Alliance for Sustainable Energy, LLC,
for the U.S. Department of Energy (DOE) under Contract No.
DE-AC36-08G028308. Funding is provided by the Office of
Energy Efficiency and Renewable Energy (EERE) Advanced
Materials & Manufacturing Technologies Office (AMMTO) (IV
parameter extraction and semiconductor device measure-
ments); and by a Laboratory Directed Research and Develop-
ment (LDRD) program at NREL (Al-enhanced development of
instrument control and graphical user interface). The views
expressed in the article do not necessarily represent the views of
the DOE or the U.S. Government.

Notes and references

1 A. D. White, G. M. Hocky, H. A. Gandhi, M. Ansari, S. Cox,
G. P. Wellawatte, S. Sasmal, Z. Yang, K. Liu, Y. Singh and
W. J. Pefia Ccoa, Digital Discovery, 2023, 2, 368-376.

2 C. M. Castro Nascimento and A. S. Pimentel, J. Chem. Inf.
Model., 2023, 63, 1649-1655.

3 M. Thway, A. K. Y. Low, S. Khetan, H. Dai, J. Recatala-Gomez,
A. P. Chen and K. Hippalgaonkar, Digital Discovery, 2024, 3,
328-336.

© 2025 The Author(s). Published by the Royal Society of Chemistry

https://github.com/NREL/Keithley_GPT
https://github.com/NREL/DE
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00143e

Open Access Article. Published on 23 October 2024. Downloaded on 12/2/2025 2:57:47 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

4 K. G. Yager, Digital Discovery, 2023, 2, 1850-1861.

5 D. A. Boiko, R. MacKnight, B. Kline and G. Gomes, Nature,
2023, 624, 570-578.

6 R.S. Aal E Alj, J. Meng, M. E. I. Khan and X. Jiang, Artif. Intell.
Chem., 2024, 2, 100049.

7 R. Van Noorden and R. Webb, Nature, 2023, 624, 509.

8 K. M. Jablonka, Q. Ai, A. Al-Feghali, S. Badhwar,
J. D. Bocarsly, A. M. Bran, S. Bringuier, L. C. Brinson,
K. Choudhary, D. Circi, S. Cox, W. A. de Jong, M. L. Evans,
N. Gastelly, J. Genzling, M. V. Gil, A. K. Gupta, Z. Hong,
A. Imran, S. Kruschwitz, A. Labarre, J. Lala, T. Liu, S. Ma,
S. Majumdar, G. W. Merz, N. Moitessier, E. Moubarak,
B. Mourino, B. Pelkie, M. Pieler, M. C. Ramos, B. Rankovi¢,
S. G. Rodriques, J. N. Sanders, P. Schwaller, M. Schwarting,
J. Shi, B. Smit, B. E. Smith, J. Van Herck, C. Volker,
L. Ward, S. Warren, B. Weiser, S. Zhang, X. Zhang,
G. A. Zia, A. Scourtas, K. J. Schmidt, I. Foster, A. D. White
and B. Blaiszik, Digital Discovery, 2023, 2(5), 1233-1250.

9 K. Emery, in Measurement and Characterization of Solar Cells
and Modules, John Wiley & Sons, Ltd, 2010, ch. 18, pp. 797-
840.

10 R. C. Kurchin, J. R. Poindexter, V. Vihanissi, H. Savin, C. del
Canizo and T. Buonassisi, IEEE J. Photovoltaics, 2020, 10,
1532-1537.

11 R. O. Ocaya, A. A. Akinyelu, A. G. Al-Sehemi, A. Dere, A. A. Al-
Ghamdi and F. Yakuphanoglu, Sci. Rep., 2023, 13, 13990.

12 D. M. Fébba, R. M. Rubinger, A. F. Oliveira and E. C. Bortoni,
Sol. Energy, 2018, 174, 628-639.

13 C. Valdivieso, R. Rodriguez, A. Crespo-Yepes,]J. Martin-
Martinez and M. Nafria, Solid-State Electron., 2023, 209,
108759.

14 H. Zhai, Z. Wu and Z. Fang, Ceram. Int., 2022, 48, 24213~
24233.

15 H. Y. Wong, M. Xiao, B. Wang, Y. K. Chiu, X. Yan, J. Ma,
K. Sasaki, H. Wang and Y. Zhang, IEEE]. Electron Devices
Soc., 2020, 8, 992-1000.

16 S. Li, W. Gong and Q. Gu, Renewable Sustainable Energy Rev.,
2021, 141, 110828.

17 H. Jin, L. Huang, H. Cai, J. Yan, B. Li and H. Chen, From LLMs
to LLM-based Agents for Software Engineering: A Survey of
Current, Challenges and Future, arXiv, 2024, preprint,
arXiv:2408.02479, DOIL: 10.48550/arXiv.2408.02479, https://
arxiv.org/abs/2408.02479.

18 J. Liu, K. Wang, Y. Chen, X. Peng, Z. Chen, L. Zhang and
Y. Lou, Large Language Model-Based Agents for Software
Engineering: A Survey, arXi, 2024, preprint,
arXiv:2409.02977, DOI: 10.48550/arXiv.2409.02977, https://
arxiv.org/abs/2409.02977.

19 Y. Wang, W. Zhong, Y. Huang, E. Shi, M. Yang, J. Chen, H. Li,
Y. Ma, Q. Wang and Z. Zheng, Agents in Software
Engineering: Survey, Landscape, and Vision, arXiv, 2024,

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

preprint, arXiv:2409.09030, DOI: 10.48550/
arXiv.2409.09030, https://arxiv.org/abs/2409.09030.

20 D. M. Fébba, K. R. Talley, K. Johnson, S. Schaefer,
S. R. Bauers,]J. S. Mangum, R. W. Smaha and A. Zakutayev,
APL Mater., 2023, 11, 071119.

21 M. Renze and E. Guven, Self-Reflection in LLM Agents: Effects
on Problem-Solving Performance, arXiv, 2024, preprint,
arXiv:2405.06682, DOI: 10.48550/arXiv.2405.06682, https://
arxiv.org/abs/2405.06682.

22 Cursor, https://www.cursor.com/, accessed October 2024.

23 LangChain, https://www.langchain.com/, accessed October
2024.

24 Devin, https://www.devin.com/, accessed October 2024.

25 Amazon Q, https://aws.amazon.com/q/, accessed October
2024.

26 J. Brest, S. Greiner, B. Boskovic, M. Mernik and V. Zumer,
IEEE Trans. Evol. Comput., 2006, 10, 646-657.

27 D. M. Fébba, E. C. Bortoni, A. F. Oliveira and R. M. Rubinger,
Sol. Energy, 2020, 201, 420-436.

28 S. K. Lam, A. Pitrou and S. Seibert, Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC, New
York, NY, USA, 2015.

29 C. Chellaswamy and R. Ramesh, Renewable Energy, 2016, 97,
823-837.

30 P. Lin, S. Cheng, W. Yeh, Z. Chen and L. Wu, Sol. Energy,
2017, 144, 594-603.

31 F. Biscani and D. Izzo, J. Open Source Softw., 2020, 5, 2338.

32 D. Fébba, V. Paratte, L. Antognini, J. Dréon, J. Hurni,
J. Thomet, R. Rubinger, E. Bortoni, C. Ballif and
M. Boccard, IEEE J. Photovoltaics, 2021, 11, 1350-1357.

33 W. Jung and M. Guziewicz, Mater. Sci. Eng., B, 2009, 165, 57—
59.

34 M. Calasan, S. H. Abdel Aleem and A. F. Zobaa, Energy
Convers. Manage., 2020, 210, 112716.

35 S. Aazou, M. S. White, M. Kaltenbrunner, Z. Sekkat,
D. A. M. Egbe and E. M. Assaid, Energies, 2022, 15, 1667.

36 L. Loczi, Appl. Math. Comput., 2022, 433, 127406.

37 W. A. Callahan, E. Supple, D. Ginley, M. Sanders,
B. P. Gorman, R. O'Hayre and A. Zakutayev, J. Vac. Sci.
Technol., A, 2023, 41, 043211.

38 W. A. Callahan, K. Egbo, C.-W. Lee, D. Ginley, R. O'Hayre and
A. Zakutayev, Appl. Phys. Lett., 2024, 124, 153504.

39 Y. Yao, R. Gangireddy, J. Kim, K. K. Das, R. F. Davis and
L. M. Porter, J. Vac. Sci. Technol. B, 2017, 35, 03D113.

40 K. Heinselman, P. Walker, A. Norman, P. Parilla, D. Ginley
and A. Zakutayev, J. Vac. Sci. Technol., A, 2021, 39, 040402.

41 S. H. Sohel, R. Kotecha, I. S. Khan, K. N. Heinselman,
S. Narumanchi, M. B. Tellekamp and A. Zakutayev, Phys.
Status Solidi A, 2023, 2300535.

42 C.-T. Lee and J.-T. Yan, Sens. Actuators, B, 2010, 147,723-729.

Digital Discovery, 2025, 4, 35-45 | 45

https://doi.org/10.48550/arXiv.2408.02479
https://arxiv.org/abs/2408.02479
https://arxiv.org/abs/2408.02479
https://doi.org/10.48550/arXiv.2409.02977
https://arxiv.org/abs/2409.02977
https://arxiv.org/abs/2409.02977
https://doi.org/10.48550/arXiv.2409.09030
https://doi.org/10.48550/arXiv.2409.09030
https://arxiv.org/abs/2409.09030
https://doi.org/10.48550/arXiv.2405.06682
https://arxiv.org/abs/2405.06682
https://arxiv.org/abs/2405.06682
https://www.cursor.com/
https://www.langchain.com/
https://www.devin.com/
https://aws.amazon.com/q/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4dd00143e

	From text to test: AI-generated control software for materials science instrumentsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00143e
	From text to test: AI-generated control software for materials science instrumentsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00143e
	From text to test: AI-generated control software for materials science instrumentsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00143e
	From text to test: AI-generated control software for materials science instrumentsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00143e
	From text to test: AI-generated control software for materials science instrumentsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00143e

	From text to test: AI-generated control software for materials science instrumentsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00143e
	From text to test: AI-generated control software for materials science instrumentsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00143e
	From text to test: AI-generated control software for materials science instrumentsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00143e

	From text to test: AI-generated control software for materials science instrumentsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00143e
	From text to test: AI-generated control software for materials science instrumentsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00143e
	From text to test: AI-generated control software for materials science instrumentsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00143e

	From text to test: AI-generated control software for materials science instrumentsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00143e
	From text to test: AI-generated control software for materials science instrumentsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00143e
	From text to test: AI-generated control software for materials science instrumentsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00143e

	From text to test: AI-generated control software for materials science instrumentsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00143e
	From text to test: AI-generated control software for materials science instrumentsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00143e
	From text to test: AI-generated control software for materials science instrumentsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00143e
	From text to test: AI-generated control software for materials science instrumentsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00143e
	From text to test: AI-generated control software for materials science instrumentsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4dd00143e

