Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital
Discovery

#® ROYAL SOCIETY
PPN OF CHEMISTRY

View Article Online

View Journal | View Issue

i '.) Check for updates ‘

Cite this: Digital Discovery, 2025, 4,
1006

Atlas: a brain for self-driving laboratories

Riley J. Hickman, © *2° Malcolm Sim,?® Sergio Pablo-Garcia, 2 Gary Tom, & 2°¢
Ivan Woolhouse,?® Han Hao,?® Zeqing Bao,“® Pauric Bannigan,® Christine Allen,

def

Matteo Aldeghi® +3°° and Alan Aspuru-Guzik [3cefeh

Self-driving laboratories (SDLs) are next-generation research and development platforms for closed-loop,

autonomous experimentation that combine ideas from artificial intelligence, robotics, and high-

performance computing. A critical component of SDLs is the decision-making algorithm used to

prioritize experiments to be performed. This SDL “brain” often relies on optimization strategies that are
guided by machine learning models, such as Bayesian optimization. However, the diversity of hardware
constraints and scientific questions being tackled by SDLs require the availability of a set of flexible

algorithms that have yet to be implemented in a single software tool. Here, we report Atlas, an

application-agnostic Python library for Bayesian optimization that is specifically tailored to the needs of
SDLs. Atlas provides facile access to state-of-the-art, model-based optimization algorithms—including
mixed-parameter, multi-objective, constrained, robust, multi-fidelity, meta-learning, asynchronous, and

molecular optimization—as an all-in-one tool that is expected to suit the majority of specialized SDL

Received 22nd April 2024
Accepted 11th January 2025

needs. After a brief description of its core capabilities, we demonstrate Atlas’ utility by optimizing the

oxidation potential of metal complexes with an autonomous electrochemical experimentation platform.

DOI: 10.1039/d4dd00115j

rsc.li/digitaldiscovery

1. Introduction

Self-driving laboratories (SDLs) are advanced technological
platforms that use artificial intelligence, robotics, and high-
performance computing to perform complex research tasks
autonomously, that is, without human intervention. Such
platforms aim to streamline and enhance the efficiency of
scientific = experimentation, research, and analytical
processes.’® SDLs can accelerate the rate at which advanced
materials, functional molecules, and industrial processes are

“Chemical Physics Theory Group, Department of Chemistry, University of Toronto,
Toronto, ON M5S 3H6, Canada. E-mail: riley.hickman@mail.utoronto.ca; alan@
aspuru.com

*Department of Computer Science, University of Toronto, Toronto, ON M5S 3H6,
Canada

“Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, Canada

“Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2,
Canada

“‘Acceleration Consortium, University of Toronto, Toronto, ON M5S 3E5, Canada
/Department of Chemical Engineering & Applied Chemistry, University of Toronto,
Toronto, ON M5S 3E5, Canada

sDepartment of Materials Science & Engineering, University of Toronto, Toronto, ON
M5S 3E4, Canada

"Lebovic Fellow, Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8,
Canada

T Current address: Bayer Research and Innovation Center, 238 Main St,
Cambridge, MA 02142, USA.

1006 | Digital Discovery, 2025, 4, 1006-1029

We expect Atlas to expand the breadth of design and discovery problems in the natural sciences that are
immediately addressable with SDLs.

designed by enhancing productivity, throughput, accuracy, and
reproducibility. Early-stage SDLs have targeted diverse research
and development goals, including chemical reaction and
process optimization,®™* the design of nanomaterials,**?* and
light-harvesting materials,**” to name a few.>*

The cornerstone of an SDL is its decision-making algorithm
(here informally referred to as its “brain”), which is typically
implemented as a data-driven experiment planning strategy.
Compared to less dynamic strategies such as Design of
Experiment,*** data-driven approaches leverage feedback from
previously completed experiments to inform subsequent
recommendations of experimental parameters, resulting in
superior sample efficiency. Although many such strategies have
been proposed, including gradient-based optimizers,*® evolu-
tionary strategies,*** and reinforcement learning,**** Bayesian
optimization (BO)*™*” has recently emerged as the most popular
choice. BO is a sequential optimization strategy for expensive-
to-evaluate black-box functions based on machine-learned
approximations of the target objective being optimized.

Python libraries for general-purpose BO are plentiful.
Popular examples include scikit-learn,*** GPyOpt,*
HyperOpt,**~** SMAC3,***® Dragonfly,”” HEBO,*® BoTorch,*® Ax,*
and Vizier,*** amongst others. Most of the aforementioned
libraries are primarily scoped toward optimization of machine
learning (ML) model hyperparameters, and often lack specific
functionality requisite for the experimental sciences. For
example, the proposed parameters for hyperparameter tuning

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d4dd00115j&domain=pdf&date_stamp=2025-04-05
http://orcid.org/0000-0002-5762-1006
http://orcid.org/0000-0002-3327-9285
http://orcid.org/0000-0002-8470-6515
http://orcid.org/0000-0003-0019-8806
http://orcid.org/0000-0002-8277-4434
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD004004

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

are generally expected to be executed exactly, while in a SDL it
might be impossible to control experimental conditions to high
levels of precision.®*** Other requirements for broad applica-
bility of BO in experimental sciences include constrained opti-
mization, with a priori known (physical hardware restrictions,
safety concerns)*>*® and unknown (failed/abandoned synthesis,
inadequate conditions for property measurement)®’ ">
constraint functions, as well as the ability for asynchronous
experimental execution (i.e. recommendation of new parame-
ters before a complete batch of corresponding measurements
are available).””* Although several such libraries do contain the
low-level infrastructure necessary to implement more advanced
optimization techniques, it remains an expert-level task to
correctly organize the required building blocks to produce
a working prototype. Software libraries for data-driven decision-
making in SDLs and experimental sciences have also been
reported.*>”>*> While these studies constitute important land-
marks in the burgeoning field of SDLs, most target specific
experimental frameworks and/or narrow problem types and do
not cover the full extent of requirements needed for a truly
general-purpose tool.

In this work, we introduce Atlas, an Object-Oriented Python
library for BO that was designed with the broadest applicability
to SDLs and experimental science in mind. Fig. 1 shows
a summary of the main experiment-planning capabilities of
Atlas along with its place within the closed-loop experimenta-
tion paradigm. Atlas intends to provide practitioners of auton-
omous science with state-of-the-art BO algorithms while
abstracting away all complex implementation details. We
strived to provide researchers with the numerous, application-
agnostic features often required for the successful deployment
of BO in practice. This flexibility is expected to allow researchers
to focus on customizing their experimental or computational
protocols and expand the set of design and discovery problems
that BO and SDLs can tackle. Additionally, Atlas features
a modular architecture, is freely available, and is built on top of
robust deep learning libraries such as BOTorch, GPyTorch, and

The ATLAS

Multi-objective
optimization

Mixed-parameter
Bayesian
optimization

a priori known
constraints

a priori unknown
constraints

“Functional parar
inctional” par:

Multi-fidelity
optimization

Meta-learning
optimization

Molecular
kernel functions

Generalizable
parameters

View Article Online

Digital Discovery

PyTorch. This design not only facilitates advanced users in
modifying the code, customizing algorithms, and integrating
new ones, but also ensures access to the performance and
reliability of established Bayesian optimization libraries. This
paper is organized as follows: Section 2 provides a brief review
of BO and its components. Section 3 lists the notable features of
the Atlas library and gives code snippet examples for each
feature. Finally, Section 4 describes a real-world demonstration
of Atlas used in conjunction with ChemOS 2.0, an SDL
orchestration software, to optimize the oxidation potential of
metal complexes in a cyclic voltammetry experiment.

2. Overview of Bayesian optimization
for experiment planning

In this section, we briefly review the basic principles of Bayesian
optimization as a primer for discussion of the capabilities of
Atlas in Section 3.

2.1. Bayesian optimization

Optimization problems involve identifying parameters, x, that
produce the most desirable outcome for an objective function,
flx). For a minimization problem, the solution is the set of
parameters that minimizes f{x),
+' = arg minf (), (1)
xe X
where X is the parameter space, i.e. a structured input domain
that can be explored during optimization. In a BO setting, the
objective function is considered to be a black-box function,
meaning its structure is a priori unknown, and can only be
sequentially resolved by empirical measurement. Black-box
functions also do not provide access to gradient information,
and measurements are typically expected to be corrupted by
noise.
Measurements are collected sequentially, either in batches
or one-by-one. After collection of a measurement Yy

Self-driving Laboratory

Data-driven
experiment
planning

Robust optimization

Automated I

measurement
and testing

Asynchronous
experimentation

Fig.1 Conceptual figure showing the important capabilities of Atlas, as well as its place in a closed-loop experimentation cycle utilized by an

SDL.

© 2025 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2025, 4,1006-1029 | 1007

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

View Article Online

Paper

5 1.0 == True objective _ Surrogate model
c : Observations
ST
*g o 0.5
=R
o -
2s %0
8
8 -05-
o

obs: 10

-
1

A

Acquisition
function, a(x)

o
1

T T T T
0.0 0.5 1.0 0.0

Parameter, x (e.g. temperature) X

Fig.2 Conceptual figure showing Bayesian optimization of a 1d function. In this example, the surrogate model is a GP with a Matérn 5/2 kernel,

and the acquisition function is the expected improvement criterion.

corresponding to the parameter x, the surrogate model is
trained on the dataset of all available observations,
D = {(x;,y:)};,_,~- An acquisition function is then computed
based on the surrogate model. The maximum of this function
defines the set of parameters expected to provide maximal
utility, and corresponds to the parameter recommended for
subsequent measurement. Typically, this iterative procedure is
repeated until a pre-defined stopping criterion, such as the
exhaustion of an experimental budget, is met. Algorithm 1
shows pseudocode for a BO loop, and Fig. 2 visualizes the
procedure. The first set of parameters is often not recom-
mended by BO, but are rather produced by random sampling,
a low-discrepancy sequence, or an experimental design strategy.
This is known as the initial design phase.

using the surrogate model's prediction. Specifically, maximi-
zation of «(x) reveals the parameters x,.. for subsequent
measurement.

Xpext = arg maxa(x). (2)
xeX

Several acquisition functions are available for use in Atlas,
including the upper and lower confidence bound, expected
improvement, probability of improvement, variance-based
sampling, and greedy sampling. Our library also features
several specialty acquisition functions for more advanced BO
concepts, including general parameter optimization (Section
3.5), multi-fidelity optimization (Section 3.6), and meta-learning
enhanced optimization (Section 3.7).

Algorithm 1: Pseudocode for Bayesian optimization

Data: Parameter space X € R?, objective function f : X — R, surrogate model M, acquisition function o : X — R,

optimization budget b

Result: Dataset of objective measurements D° = {(a;, yi)}o1

D’ —0;

Neval < 0;

while neyq < b do

M « fit M to D"eval

Tnewt — ArgMaxy,cp o () ;

Ynext = f(zn@zf) 5

PDrevartl o (wnemh ynezt) U Dleval ;

Neval ¢ Neval T 1 5

/* train surrogate model on current observations */
/* optimize acqusition function for next parameter sample */
/* measure objective function at next parameter sample location */

/* append newest parameter-measurement pair to dataset */

2.1.1. Acquisition functions. The surrogate model is con-
structed to approximate the objective function f{x) and can be
queried for mean and uncertainty estimates of the objective
across the parameter space. Acquisition functions, «(x), are
used to guide the selection of parameter recommendations

1008 | Digital Discovery, 2025, 4, 1006-1029

2.1.2. Acquisition function optimization. A crucial
subroutine in BO is the optimization of the acquisition func-
tion. Several factors influence the aptitude of optimization
strategies for this task, including the types of parameters
making up the parameter space and its volume. Atlas provides 3

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

distinct acquisition function optimization strategies that are
each suited for specific problem types: (i) a constrained gradient
optimizer based on SLSQP*** or Adam,* (ii) a constrained
genetic algorithm (GA) optimizer based on the PyMOOlibrary,*®
and (iii) a constrained GA based on the DEAPlibrary.?”*
Gradient strategies are well-suited for problems with fully-
continuous parameter spaces, while GA strategies are well-
suited for mixed-parameter problems and fully discrete/
categorical problems with large Cartesian product spaces.

2.2. Gaussian processes

A crucial component of the BO framework is the surrogate
model, an ML model which produces an estimate of the true
objective function given a dataset of observations. Many ML
models have been used as BO surrogates, including Bayesian
neural networks, tree-based models, and kernel smoothing, but
the most prevelant and well-studied choice is the Gaussian
process (GP).* GPs are non-parametric probabilistic ML
models. They are a collection of random variables such that the
joint distribution of each finite set of variables is a multivariate
normal. GPs are characterized by a mean, m(x), and covariance
function, k(x, x'), and are written as

f(x) ~ Q’P(m(x)7k<x7 x)) 3)

For experiment planning applications, inputs x are vectors of
parameters of the experiment. Conveniently, the mean and
variance of a GP can be written in closed form. For query
parameters, X (i.e. those which do not yet have an associated
measurement), the GP returns a predictive mean i and variance
5.

2.2.1. Kernel functions. The choice of covariance or kernel
function k(x, x') is an crucial inductive bias for a GP model, and
should be selected according to the characteristics of the
objective function being modelled. A popular choice for
continuous input domains is the Matérn kernel,

k(x,xl) = W <?d(x,x’)) K, <@d(x,x’>)7 (4)

where d(-,-) is the Euclidian distance, K,(-) is a modified Bessel
function, and I'(-) is the Gamma function. The Matérn kernel
also has an additional parameter, », which controls the
smoothness of the resulting function (fixed at 5/2 in Atlas), and
¢ is a lengthscale hyperparameter. Atlas uses a Matérn 5/2
kernel for continuous and numerical discrete input domains,
but also supports categorical, mixed continuous/discrete-
categorical, and molecular input domains. For categorical
spaces in which inputs are one-hot-encoded, we use a kernel
function based on Hamming distances,

k(x, x') = exp [— diamming (x,x')/é], (5)

where diamming(%,X) = 0 if x = ¥’ and = 1 if x # x’. Automatic
relevance determination (ARD)* is used for this kernel for all
input dimensions. For mixed continuous/discrete-categorical

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

spaces, we use a mixed kernel comprising Matérn 5/2 and
Hamming parts,

’ ’ ’ ’
k X, X = Keat | Xcat, szlt X kcom Xcont s xcont + kcal Xeats szlt
/
+ kcont (xconn xcom>)
(6)

where X.one and x.,. are the continuous/discrete and categorical
portions of the input vector, respectively. The reader is referred
to Section 3.8 for discussion of the kernel used for molecular
input domains.

2.2.2. Gaussian process training. Fitting a GP to a dataset
of observations involes choosing hyperparameters of the kernel
function (collectively referred to as 6) and the likelihood noise
a,’. Hyperparameters are chosen by minimizing the negative
log marginal likelihood,

1 .
log p(y|X,0) = =3y [Ko(X, X) + 0,1 'y

promotes data fit

félog}Ke(X, X)+0,1| — glog(Zw). (7)

penalizes model complexity

y € R"is a vector of n objective measurements, X € R"*? is the
design matrix of n d-dimensional input vectors. Ky(X,X) is
a kernel matrix such that each entry [Kg);; = k(x;X)). 0,’I is the
variance of Gaussian noise on the measurements y. Note that
the first term encourages the model's fit to the training data,
while the second penalizes overly complex models.”® This
inherent regularization is attractive for modelling in a low-data
setting, such as the initial stages of a sequential model-based
optimization campaign.

2.2.3. Variational Gaussian process classifier. Atlas uses
a GP-based binary classifier to learn the feasible-infeasible
boundaries in parameter space for optimization problems
with unknown constraints. This capability is explained in detail
in Section 3.2. Here, we provide details of the GP classifier itself.

For feasibility classification using a GP, exact inference is
intractable. Thus, Atlas approximates the classification poste-
rior using variational inference. Assume a dataset of n binary
constraint function c¢(x) measurements, D, = {(x;,;)},_,",
where y € {0,1} (0 for feasible measurements and 1 for infeasible
measurements). For brevity, we denote the n feasibility
measurements as y = {J;};—," and the design matrix as X =
{x}i—in. GP classification squashes the latent GP output f
through a sigmoidal function,
#(x) = [, N(al0,1)da and a Bernoulli likelihood function
conditions the function values. The joint distribution of the
feasibility measurements and the latent values is

inverse-link

p(5.f) = f[B(ﬁ,-W(ﬁ))p(f% ®

where B(3,]¢(f;)) = d(fiYi(1—¢(f),)"™ is the Bernoulli
distribution, and p(f) = N (f]0, Ky,) is the usual prior for the
values of the GP.

Digital Discovery, 2025, 4,1006-1029 | 1009

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

(cc)

Digital Discovery

Atlas’ classifier adopts an inducing point approach, in which
the latent variables are augmented with additional inducing
points. Our strategy follows closely to the one detailed in
Hensman et al.,*> where a bound on the marginal likelihood for
classification problems in derived. This bound is optimized by
adjusting the hyperparameters of the GP kernel, parameters of
the multivariate normal variational distribution, and the
inducing inputs/points simultaneously using
gradient descent. The classification approach is implemented
using the GpyTorch library,” and has the added benefit of
scaling more favourably with |D,| than does exact GP inference.

stochastic

3. Atlas library overview

Atlas users interact with the package via a high-level “ask-tell”
interface, in which a P1anner instance is iteratively queried for

View Article Online

Paper

using the planner's recommend () method, and informing the
Olympus Campaign instance about the corresponding
measurement using its add_observation() method. We opt
to use a flexible “ask-tell” interface to remain application-
agnostic, as well as allow for analysis and customization of
the optimization loops. Measurement steps usually involve calls
to specialized robotic laboratory equipment or computational
simulation packages, which can be fully customized by the user.
Fig. 3 visualizes the results of this simple example. The
num_init_design argument to the GPPlanner constructor
defines the number of parameters to recommend in the initial
design phase. This value defaults to 5 and will not be listed as
an argument in subsequent examples for brevity.

from olympus import Surface, Campaign

from atlas.planners.gp.planner import GPPlanner

surface = Surface(kind='Branin') # instantiate 2d Branin-Hoo objective function

campaign = Campaign() # define Olympus campatign object

campaign.set_param_space(surface.param_space) # save details of the optimization domain into the campaign object

planner = GPPlanner(goal='minimize', num_init_design=5) # instantiate Atlas planner

planner.set_param_space(surface.param_space) # define the optimization domain for the planner

while campaign.num_obs < 30: # rTun no more than 30 exzperiments

samples = planner.recommend(campaign.observations) # ask planner for batch of parameters

for sample in samples:

measurement = surface.run(sample) # measure Branin-Hoo function

campaign.add_observation(sample, measurement) # tell planner about most recent observation

parameters, some physical or computational measurement is
completed, and the parameter-measurement pairs are added to
a Olympus Campaign instance. Olympus®** is a complementary
experiment-planning framework developed by our research group
that provides an interface to Atlas. For example, Olympus imple-
ments an abstraction for a generic experiment planning strategy,
from which all Atlas strategies inherit. Also, the Olympus
Campaign object is used for storing optimization trajectories and
meta-information. Olympus also provides definitions of parameter
types and spaces, and achievement scalarizing functions for multi-
objective optimization, all of which are used by Atlas.

To demonstrate the usage of our software, we present
a minimal code example in which the GPPlanner (Gaussian
Process Planner) from Atlas is used to minimize the Branin-
Hoo surface,” f:XeR*—R. “Ask-tell” experimentation
proceeds iteratively by generating parameters to be measured

1010 | Digital Discovery, 2025, 4, 1006-1029

Atlas supports parameter spaces consisting of continuous,
discrete, and categorical parameters, and arbitrary combina-
tions thereof, in sequential or batched optimization mode. The
definition of vector-valued descriptors for categorical parameter
options is also supported.” BO strategies in Atlas primarily use
GP surrogate models,* and use the low-level infrastructure of
the PyTorch,” GpyTorch® and BoTorch® libraries. In the
following section, the main capabilities of Atlas (Fig. 1) are
explained. For more information on each concept, please visit
the Atlas GitHub,’® documentation, and tutorial notebook.
Importantly, Atlas allows users to combine its key capabilities to
suit their specialized needs. Barring a few incompatibilities
(described in detail in our documentation), capabilities can be
combined and interchanged freely. For example, the a priori
known and unknown constraints can be used for any parameter
space, with any acquisition function, acquisition optimizer, and

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper
Branin-Hoo surface
1.0 - — 1.0
0.8 0.8
0.6 0.6
< <
0.4 0.4
0.2 0.2
0.0 0.0
00 02 04 06 08 10 00 02
X0

Overlaid observations

View Article Online

Digital Discovery

Optimization trace

10 é @ GPPlanner
10"
=]
o 103
Q =
-
103
1074
L T T T
06 08 1.0 0 10 20 30
Xo # experiments

Fig. 3 Visualization of the minimal code optimization of the 2d Branin-Hoo surface using Atlas. The left-most subplot shows a contour plot of
the Branin-Hoo surface with its triply-degenerate global minimum highlighted with pink stars. The center subplot shows the location of the
parameters recommended by Atlas as gray crosses. The right-most subplot shows the optimization regret trace.

any planner. Multi-objective optimization via ASFs, robust
optimization, and asynchronous optimization can also be used
in this way.

3.1. A priori known constraints

Using a simple interface, users can specify arbitrary known
constraint functions on the parameter space, which results in
portions of the space being omitted from consideration by
planners.®® This would increase the efficiency of the optimiza-
tion, as the model would not make any suggestions that are
known to be infeasible, avoiding costly experimental

evaluations. We also supply convenient ways to specify
commonly occurring known constraint types, including
compositional (simplex),*® permutation (ordering),*® pending
experiments, or process-constrained batches.®”

The following code snippet shows the instantiation of the
GPPlanner with a user-defined constraint function for the
Dejong surface, f: XYe R*— R. Constraint functions are Python
callables which return a boolean value, True (False) for
feasible (infeasible) parameters, and are passed to the
constructor of GPPlanner as a list wusing the
known_constraints argument.

from olympus import Surface, Campaign

from atlas.planners import GPPlanner

define the known constraint function

def known_constraint(params) :

params is a array-like object representing one parameter setting

y = (params[0]-0.5)**2 + (params[1]-0.5)**2
if 0.05 < y < 0.15:
return False

return True

surface =

campaign = Campaign() # define Olympus campaign object

campaign.set_param_space(surface.param_space)

Surface(kind='Dejong') # tinstantiate 2d Branin-Hoo objective function

planner = GPPlanner(goal='minimize', known_constraints=[known_constraint])

planner.set_param_space (surface.param_space)

© 2025 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2025, 4, 1006-1029 | 1011

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

Next, we show an example of a special known constraint case
built into Atlas: compositional or simplex constraints. This
constraint type is useful when parameters (or a subset thereof)
must lie on a standard n-simplex, ie.
A" = {(x, ..., %n)€[0,1]" ixi =1,x;,=0Vi}. Such constraints

i=0
are commonly encountered in SDL applications.®

To demonstrate this constraint type, we use the
oer_plate_a dataset from Olympus, which reports high-
throughput screens for oxygen evolution reaction (OER)
activity by systematically exploring high-dimensional chemical
spaces.”®® The dataset is a discrete library of 2121 catalysts,
comprising all unary, binary, ternary and quaternary composi-
tions from unique 6 element sets at 10% intervals. The
composition system of the oer_plate_a dataset is Mn-Fe-Co-
Ni-La-Ce. Olympus emulates the
a Bayesian neural network (BNN) to produce noisy virtual
measurements.'” Fractional compositions must lie on the

5
A6 = {(an “'7x5)e [07 1]6 in =
i=0

1,x; = 0V i}. The following code snippet shows instantiation of
the GPPlanner for this problem. The
compositional_params argument takes a list of integers
representing the parameter space indices to be treated with the
compositional constraint. In this case, all 6 parameters are
subject to the constraint.

discrete dataset with

standard 6-simplex

View Article Online

Paper

can be called at any time within an optimization campaign to
inform the planner about parameter settings to be avoided. This
method takes as an argument pending_experiments, which is
a list of Olympus ParameterVector objects. Each subsequent
call overwrites the pending parameters from the last iteration. To
remove all the pending experiments, one can use the planner's
remove_pending_experiments () method.

3.2. A priori unknown constraints

The inclusion of NaN (not a number) objective values is sup-
ported, which could occur due to attempted but failed experi-
mental measurements. Several strategies are provided which
learn the unknown constraint function on the fly, using a GP-
based binary feasibility classifier (explained in detail in
Section 2.2.3). These predictions are used in conjunction with
the typical regression surrogate model to parameterize
feasibility-aware acquisition functions, «.(x). All acquisition
function types in Atlas have a feasibility-aware analogue.

We provide an example optimization of the Branin-Hoo
surface with an a priori unknown constraint function c(x),
visualized by the shaded region in Fig. 4. The example uses the
feasibility-interpolated acquisition strategy (fia-1) with the
UCB acquisition function. Two additional arguments to the
GPPlanner constructor are required for optimization with
unknown constraints. feas_strategy indicates the
feasibility-aware acquisition type, and the feas_param

from olympus.emulators import Emulator

from atlas.planners import GPPlanner

instantiate the BNN emulator for the “oer_plate_a” dataset

emulator =

campaign = Campaign() # define Olympus campaign object

campaign.set_param_space (emulator.param_space)

planner =

planner.set_param_space(emulator.param_space)

Emulator(dataset='oer_plate_a', model='BayesNeuralNet')

GPPlanner(goal='minimize', compositional_params=[0,1,2,3,4,5])

Lastly, we show an example using the pending experiment
known constraint type. The interpretation of this constraint is
simple: parameters that have been assigned to measurement, but
for which the experiments have not been completed yet, must be
avoided by the planner to avoid duplicate recommendation. Note
that duplicate parameters are still permitted, as long as the other
axes of the recommendation parameter space are varied. Atlas
provides a simple method for all planners to set pending experi-
ments. The planner's set_pending experiments () method

1012 | Digital Discovery, 2025, 4, 1006-1029

argument indicates the associated parameter. The fia strate-
gies interpolate between the vanilla acquisition function «(x)
and the conditional output of the feasibility classifier,
P(feasible|x) using the following expression:

a(x) = (1 — ") x a(x) + ¢’ x P(feasible|x) 9)

c is the ratio of infeasible measurements to total measurements,
and ¢t € R, is a parameter (specified with the feas_param

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

View Article Online

Digital Discovery

from olympus import Surface, Campaign

from atlas.planners import GPPlanner

surface = Surface(kind='CatCamel') # instantiate 2d categorical Camel surface

campaign = Campaign() # define Olympus campaign object

campaign.set_param_space(surface.param_space)

planner = GPPlanner(goal='minimize') # instantiate Atlas planner

planner.set_param_space (surface.param_space)

while campaign.num_obs < 30:

pending_experiments = get_my_pending_exps() # user defined pending experiments

planner.set_pending_experiments(pending_experiments) # inform planner about pending experiment parameters
samples = planner.recommend(campaign.observations) # ask planner for batch of parameters
for sample in samples:

measurement = surface.run(sample) # measure CatCamel function

campaign.add_observation(sample, measurement) # tell planner about most recent observation

argument) which controls risk when it comes to selecting
infeasible parameters. Here, smaller values of ¢ de-emphasize
the feasibility classifier's contribution (second term in eqn (9))
and thus indicate more risk, while larger values do the opposite
and represent less risk.

Fig. 4 shows the results of a larger benchmark of feasibility-
aware acquisition strategies in Atlas on the 2d constrained
Branin-Hoo surface. The legend of the center subplot lists the
unknown constraint strategies and associated parameters
available for use in Atlas. We omit a full discussion and

© 2025 The Author(s). Published by the Royal Society of Chemistry

from olympus import Campaign

from atlas.planners import GPPlanner

instantiate 2d constrained Branin-Hoo objective function (available on GitHub repo)
surface = BraninConstr()
campaign = Campaign() # define Olympus campaign object

campaign.set_param_space(surface.param_space)

planner = GPPlanner(
goal='minimize',
feas_strategy='fia',
feas_param=1.,
acquisition_type='ucb',
) # instantiate Atlas planner

planner.set_param_space (surface.param_space)

while campaign.num_obs < 100:
samples = planner.recommend(campaign.observations) # ask planner for batch of parameters
for sample in samples:
measurement = surface.run(sample) # measure constrained Branin-Hoo function

campaign.add_observation(sample, measurement) # tell planner about most recent observation

Digital Discovery, 2025, 4,1006-1029 | 1013

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

BraninConstr

Optimization performance

View Article Online

Paper

Feasibility performance

% 10
N

N
o
FERRTT IR TTTT AR RTTTIT AT TITTT MACERETI |

naive-0 == fca-0.8 °

fwa fia-0.5
fca-0.2 e fia-1
fca-0.5 e fia-2

10

% infeasible measurements

10”3

0 25

s

T T T T

T T T
5 75 100 Strategy

evaluations

Fig. 4 Visualization of an a priori unknown constraint optimization benchmark on the 2d Branin-Hoo surface using Atlas. The left-most subplot
shows a contour plot of the Branin-Hoo surface with its triply-degenerate global minimum highlighted with pink stars, and the constrained
regions shaded. The plot also shows the locations of the (in)feasible parameters recommended by Atlas as (white)gray crosses (recommended
using the fia-1 strategy). The center subplot shows regret traces for each strategy averaged over 100 independent executions. The right-most
subplot shows distributions of percentages of infeasible measurements (i.e. NaN objective values) produced by each strategy during a run.

benchmark of these strategies, as they will be thoroughly
detailed in an upcoming manuscript. Briefly, the naive-0
strategy is a simple baseline approach which does not use the
feasibility classifier. Instead, the NaN objective value of infea-
sible measurements is replaced by the current worst feasible
measurement in D.”* Although this strategy is effective for
avoiding infeasible measurements (lowest % infeasible
measurements in right-most subplot), optimization perfor-
mance is sacrificed, especially when the optimum of the
problem is located close to an infeasible region. fia-1 is
among the top performers for this example.

3.3. Multi-objective optimization

Atlas supports multi-objective optimization for all planners by
using achievement scalarizing functions (ASFs) defined in
Olympus. Multi-objective problems feature an objective space
YeR" corresponding to a set of n > 1 objective functions
f=A{fi},.": XY to be optimized concurrently. ASF S trans-
forms a vector of objective measurements to a scalar merit
value, S: Y+ [0,1] which is processed by the optimizer. Avail-
able ASF types are Chimera,'”* Hypervolume,'®>% Cheby-
shev,'**'” and Weighted Sum.'*'*

As an illustrative example of multi-objective optimization in
Atlas, we use the dye_lasers dataset from Olympus, which
reports computed photophysical properties for 3458 organic
molecules synthesized from three groups of molecular building
blocks - A, B, and C (resulting in A-B-C-B-A pentamers shown
in Fig. 5a)."*° Each molecule was subjected to a computational
protocol consisting of cheminformatic, semi-empirical and ab
initio quantum chemical steps to compute absorption and
emission spectra, as well as fluorescence rates. The objectives
for this dataset are (i) the peak score, a dimensionless quantity
given by the fraction of the fluorescence power spectral density
that falls within the 400-460 nm region (to be maximized), (ii)
the spectral overlap of the absorption and emission spectra (to
be minimized), and (iii) the fluorescence rate (to be maximized).

The Hypervolume ASF is used for this example. One must
include additional arguments to the GPPlanner constructor,

1014 | Digital Discovery, 2025, 4, 1006-1029

namely, a boolean value for is_moo, the name of the ASF for
scalarizer_kind, the objective space) as an Olympus
ParameterSpace object, and a list of goals representing the
individual optimization goals for each objective (either "max"
or "min"). For parameter spaces with categorical parameters,
note that we can toggle between using a descriptor represen-
tation for the options and one-hot encodings using the
use_descriptors argument.

Fig. 5b shows the results of a larger scale benchmark
experiment where the performance of the GPPlanner is
compared to a random search on the dye_lasers dataset.
Each subplot shows traces of the objective values associated
with the measurement assigned the best hypervolume as
a function of the number of evaluations. While the peak score
and fluorescence rate traces are comparable between strategies,
the GPPlanner is able to identify candidate molecules with
lower spectral overlap between absorption and emission spectra
(a proxy for reduced losses from self-absorption of emitted
light) significantly quicker than random sampling. This indi-
cates better multi-objective optimization performance.

3.4. Robust optimization

For all planners and parameter types, we have integrated the
Golem algorithm,* which allows users to identify optimal
solutions that are robust to input parameter uncertainty. This
helps ensure reproducible performance of optimized experi-
mental protocols and processes.

In order to demonstrate how Golem is integrated into Atlas,
we reproduce the setup of the noisy high-performance liquid
chromatography (HPLC) protocol optimization experiment
from the original publication.®® In this application, an HPLC
protocol is calibrated by adjusting 6 process parameters with
the goal of maximizing the amount of drawn sample reaching
the detector (referred to as the peak area). It is assumed that
input parameters P1 (sample_loop)and P3 (tubing volume)
are subject to significant noise, and that the other four
parameters are noiseless. Normally distributed noise truncated
at zero is used for both parameters, with standard deviations of

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Paper Digital Discovery

HsCN

a) ®_B§: + BrsB?—CI:OLOO — B%Oi\%o
: -y + 2O —= D-O--E-®

b)
Peak score (max) ik Spectral overlap (min) Fluorescence rate (max)
0.7 1 ol 1.2
‘ L ~— RS —_ =

S 0.6 S &
© a 9
= & © 0.8
2 0.5 [2] (V]
S g]
0 = g 0.6
® 0.4 2 @
& 5 g 0.4 1

0.3 === GPPlanner a u_:f 0.2

RandomSearch ' |
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
evaluations # evaluations # evaluations

Fig. 5 (a) Reaction scheme of iterative Suzuki—Miyaura cross-coupling reaction proposed to synthesize symmetric A-B—C—-B—-A pentamers in
the dye_lasers dataset. (b) Individual objective traces corresponding to the experiment with the best hypervolume value as a function of the
number of transpired experiments. Solid lines represent the mean objective values averaged over 50 independent runs and shaded regions
represent the 95% confidence interval.

from olympus import Dataset, Campaign

from atlas.planners.gp.planner import GPPlanner

dataset = Dataset(kind='dye_lasers') # instantiate the “dye_lasers” dataset from Olympus
campaign = Campaign() # define Olympus campaign object

campaign.set_param_space(dataset.param_space)

planner = GPPlanner (
goal='minimize', # overall goal must always be set to “minimize” for moo problems
use_descriptors=False,
is_moo=True,
scalarizer_kind='Hypervolume',
value_space=dataset.value_space,
goals=['max', 'min', 'max'], # individual goals for each objective
) # instantiate Atlas planner

planner.set_param_space(dataset.param_space)

while campaign.num_obs < 200:
samples = planner.recommend(campaign.observations) # ask planner for batch of parameters

for sample in samples:

measurement = dataset.run(sample) # measure objectives of “dye_laser” dataset

3 -5 ——

campaign.add_observation(sample, measurement) # tell planner about most recent observation

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2025, 4, 1006-1029 | 1015

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

0.008 mL and 0.08 mL for P1 and P3, respectively. The HPLC
response is emulated within the Olympus package using BNNs
(hplc dataset).

The problem setup for this example is shown in the following
code snippet. For all planners, the constructor argument
golem_config is available, which expects a dictionary whose
keys are parameter names for which the user would like to
specify an input uncertainty distribution. The corresponding
values are themselves dictionaries, for which the user must
specify the distribution type and its associated parameters.
Golem ships with a diverse set of distribution types, which are
detailed in its documentation. For all parameters not itemized
within the golem_config argument, Atlas automatically
assigns them a Delta distribution, meaning no uncertainty/
noiseless.

View Article Online

Paper

3.5. Optimization for generalizable parameters

Atlas includes a strategy based on BO and variance-based active
learning™* to identify sets of parameters from X that result in
average-best performance over a set of variables S = {s;};—;".
Instead of optimizing objective function f{x), the objective

1L
flx,s) = ~ Zf(agsi) is targeted. Our strategy is inspired by
=1

the approach reported by Angello et al.,"> which was used to
design chemical reaction conditions resulting in high yields
across a range of substrates. Importantly, this approach allevi-
ates one from having to measure the full objective function for
each recommended set of parameters, which can become costly
when the number of general parameter options are large.

from olympus import Emulator, Campaign

from atlas.planners.gp.planner import GPPlanner

instantiate the “hplc™ experiment emulator from Olympus

emulator = (dataset='hplc', model='BayesNeuralNet')
campaign = Campaign() # define Olympus campaign object

campaign.set_param_space (emulator.param_space)

planner = GPPlanner (
goal='maximize',
golem_config={

'sample_loop': {
"dist_type": "TruncatedNormal",

"dist_params": {"std": 0.008, "low_bound":

}, # P1 distribution config

'tubing_volume': {

"dist_type": "TruncatedNormal",

0.0},

"dist_params": {"std": 0.08, "low_bound": 0.0 },

} # P3 distribution config
X
) # instantiate Atlas planner

planner.set_param_space(emulator.param_space)

while campaign.num_obs < 50:
samples = planner.recommend(campaign.observations)
for sample in samples:
measurement, _, __ =
tell planner about most recent observation

campaign.add_observation(sample, measurement)

ask planner for batch of parameters

emulator.run(sample) # measure “hplc™ response

1016 | Digital Discovery, 2025, 4, 1006-1029

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper
B(OR)»
a) precatalyst scaffold/ligand
(8 options)
R
+
residence time (60 - 600 s)
temperature (30 - 110 °C)
X (1.5 equiv) catalyst loading (0.5 - 2.5%)
DBU (2.0 equiv) in THF
5:1 THF:H,0
b) i i i
NS : ~ 0 ~ 0
Ar—X ' | H |
FZ z H z
Br N H N

Ar—B N= /O E N= /o E
r—B(OR), | B) B 1
od % o % :

Fig. 6

View Article Online

Digital Discovery

(1)
-

| X 0.2+ [
z IR
N Cl 0.0+ R
----------------- T T
Boc GPPlanner GPPlanner

(general) (full f(x) evaluation)

Strategy

(a) Scheme for the Suzuki—Miyaura cross-coupling of two heterocycles in the presence of 1,8-diazabicyclo[5.4.0]Jundec-7-ene (DBU) and

THF/water. (b) Structure of the substrates in each of the four Suzuki—Miyaura reaction cases, corresponding to the suzuki_{i ,ii,iii, iv}
datasets and general parameter. (c) Results of the comparative optimization experiment. Boxplots show the normalized average hypervolume
across the four reactions for solutions from 50 independent runs (larger hypervolume is better). The experimental budget for these runs was 30

measurements.

As illustrative ~ example, consider the
suzuki_i-suzuki_iv datasets from Olympus, which report
the yield and catalyst turnover number for flow-based Suzuki-
Miyaura coupling reactions with varying substrates shown in
Fig. 6a and b."™ There are three continuous parameters
(temperature, residence time, and catalyst loading) and one
categorical parameter (Pd catalyst ligand). The objective is to
simultaneously maximize both the yield and catalyst turnover
number across all four substrates with the general parameter
optimization strategy. Since this is also a multi-objective opti-
mization problem, we use the Hypervolume ASF.

The following code snippet describes the setup for this
example. We add an additional categorical parameter named
"s", which comprises the general parameter options (in our
case these are the different possible substrates for the Suzuki-
Miyaura reaction encoded as Roman numerals). For general
parameter problems, the acquisition_type argument of the
planner must be set to "general". Similar to the known
constraints problems outlined in Section 3.1, the constructor
takes an argument called general_parameters, which must
be a list of integers representing the parameter space indices of
those parameters to be treated as general parameters. In our
case, only the first parameter, "s", is a general parameter.

Fig. 6¢c shows the results of a larger scale benchmark exper-
iment on this problem. We compare the performance of the
general parameter optimization strategy in Atlas to a strategy in
which, for each set of recommended parameters, we measure

an we

1
the full objective, ie. f(x,s) = ZZ f(x,s;). Effectively, the
=1

latter strategy must make 4 objective measurements for each set
of recommended parameters, while the general parameter
strategy must only make 1. The box plots in Fig. 6¢ show the
hypervolume of solutions identified by each strategy averaged
over the 4 reaction types. On average, the general parameter

© 2025 The Author(s). Published by the Royal Society of Chemistry

strategy produces larger hypervolumes, indicating superior
multi-objective optimization performance.

3.6. Multi-fidelity optimization

Multi-fidelity BO targets problems where two or more “infor-
mation sources” are available to the researcher. Typically, the
information sources generate measurements of the same
property at different levels of fidelity, precision, or accuracy, and
are available at varying cost. For instance, a chemical property
could be estimated using a crude but inexpensive simulation
(low-fidelity) as a proxy for an accurate but expensive experi-
mental determination (high-fidelity). Multi-fidelity strategies
are quickly becoming a popular approach for resource-intensive
problems in chemistry and materials science.'™** Atlas
provides a MultiFidelityPlanner based on the trace-aware
knowledge gradient’"'** and augmented-EI (aEI) acquisition
functions® which allows for the inclusion of an arbitrary
number of information sources with discrete fidelity levels.

To illustrate multi-fidelity BO with Atlas, we use a dataset of
simulated band gaps for 192 hybrid organic-inorganic perov-
skite (HOIP) materials reported by Kim et al.*** HOIP candidates
are designed from a set of 4 halide anions, 3 group-IV cations
and 16 organic anions. Electronic and geometric descriptors of
the HOIP components are available through Olympus. Two
density functional theory (DFT) information sources are avail-
able for all 192 HOIP candidates.

e Low-fidelity: band gaps computed using the generalized
gradient approximation (GGA), Eg“*.'*

e High-fidelity: band gaps computed using the Heyd-Scu-

seria-Ernzerhof (HSEO06)
EHSE06 126,127
e -

exchange-correlation functional,

The GGA level of theory is computationally feasible for these
systems but is known to underestimate E, by 30%.'** The HSE06
level of theory is expected to be on par with experimentally
determined band gaps but is computationally restrictive. We

Digital Discovery, 2025, 4,1006-1029 | 1017

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

1018 | Digital Discovery, 2025, 4, 1006-1029

Digital Discovery

View Article Online

Paper

from olympus import Emulator, Campaign

from atlas.planners.gp.planner import GPPlanner

instantiate the “suzuki_i - suzuki_iv~ BNN emulators from Olympus

emulators = {

'i': Emulator(dataset='suzuki_i', model='BayesNeuralNet'),

ii': Emulator(dataset='suzuki_ii', model='BayesNeuralNet'),

iii': Emulator(dataset='suzuki_iii', model='BayesNeuralNet'),

iv': Emulator(dataset='suzuki_iv', model='BayesNeuralNet'),

define measurement function
def measure(func_params, s):
measurement = emulators[s].run(func_params)

5 = ——

return measurement

create parameter space with general parameter

param_space = ParameterSpace()

param_space.add(ParameterCategorical (name='s',options=['i', 'ii

for param in emulator_i.param_space: # functional parameters

param_space.add (param)

campaign = Campaign() # define Olympus campaign object

campaign.set_param_space (param_space)

planner = GPPlanner(

iii

'iv'])) # general parameter

goal='minimize', # overall goal must always be set to “minimize” for moo problems

is_moo=True,
scalarizer_kind='Hypervolume',
value_space=emulator_i.value_space,

goals=['max', 'max'],

acquisition_type='general', # acquisition function type must be 'general'

general_parameters=[0], # list of indices of gemeral parameters in parameter space

) # instantiate Atlas planner

planner.set_param_space (param_space)

while campaign.num_obs < 50:
samples = planner.recommend(campaign.observations)
for sample in samples:
measurement, _, __ = measure(sample, sample.s)

tell planner about most recent observation

campaign.add_observation(sample, measurement)

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

omit a detailed comparison of the computational methods and
estimate the HSEO06 level of theory to be an order of magnitude
more expensive than the GGA level.

The following code snippet sets up this multi-fidelity opti-
mization problem using Atlas’ MultiFidelityPlanner.
We've defined helper functions to measure the objective at each
fidelity level (lookup table provided on GitHub repo), and
a function to compute the cumulative experimental cost. The
ParameterSpace is constructed with an additional fidelity
parameter, "s", which is a ParameterDiscrete instance
with options corresponding to the expense of low-fidelity
information sources relative to the high- or target fidelity
source organized in increasing order. By convention, Atlas
expects the target fidelity to have a value of 1.0, while the lower
fidelity levels have values 0.0 < s < 1.0. Here, the choice of 0.1 for
the Eg®* determinations reflects our estimate that GGA is an
order of magnitude cheaper than HSE06. The constructor of the
MultiFidelityPlanner must receive one additional argu-
ment, fidelity_params, which is the parameter space index
of the fidelity parameter "s".

View Article Online

Digital Discovery

Note that for this example, we define the BO stopping
criterion to be a cumulative experimental cost budget rather
than the number of transpired objective evaluations. By default,
the MultiFidelityPlanner automatically determines
which fidelity level to measure the objective at each iteration.
However, an SDL researcher may want to further customize
their multi-fidelity optimization campaign such that, for
example, they can alternate between batches of low- and high-
fidelity measurements. Atlas enables such customized
campaigns by allowing the user to specify the fidelity level they
wish for the parameters to be measured for the upcoming batch
of recommendations. One may set the
MultiFidelityPlanner's current_ask_fidelity attri-
bute by calling the set_ask_fidelity method and specifying
the desired level. Atlas employs constrained acquisition func-
tion optimization to deliver the desired parameter recommen-
dations. The following code snippet revisits the HOIP example
and assumes the researcher desires to alternate between low-
and high-fidelity measurements.

from olympus import Dataset, Campaign

from atlas.planners import MultiFidelityPlanner

dataset = Dataset(kind='perovskites') # instantiate “perovskites’ dataset from Olympus

build parameter space with fidelity parameter

param_space = ParameterSpace()

param_space.add(ParameterDiscrete(name='s"',options=[0.1, 1.0]1)) # fidelity parameter

for param in dataset.param_space: # add perouvskite component parameters ('organic’,

param_space.add (param)

campaign = Campaign() # define Olympus campaign object

campaign.set_param_space (param_space)

instantiate Atlas planner

'cation', and 'anion')

planner = MultiFidelityPlanner(goal='minimize', use_descriptors=True, fidelity_params=0)

planner.set_param_space (param_space)

cumul_cost = 0.
while cumul_cost < 50.:
samples = planner.recommend(campaign.observations)

for sample in samples:

ask planner for batch of parameters

measure the HOIP band gap at ome of two fidelity levels (user defined)

measurement =

measure (sample, fidelity=sample.s)

campaign.add_observation(sample, measurement) # tell planner about most recent observation

compute cumulative exzperiment cost (user defined)

cumul_cost =

compute_cost (campaign.observations.get_params())

© 2025 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2025, 4,1006-1029 | 1019

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

View Article Online

Paper

cumul_cost = 0.
iter_ = 0
while cumul_cost < 50:

if iter_ % 2 ==

planner.set_ask_fidelity(1.0) # measure target fidelity on even iterations

else:

planner.set_ask_fidelity(0.1) # measure low-fidelity on odd iterations

samples = planner.recommend(campaign.observations) # ask planner for batch of parameters

for sample in samples:

measurement = measure(sample) # measure the HOIP bandgap at one of two fidelity levels

campaign.add_observation(sample, measurement) # tell planner about most recent observation

cumul_cost =

iter_+=1

compute_cost (campaign.observations.get_params()) # compute cumulative experiment cost

Fig. 7 shows the results of a larger-scale benchmark comparison
between Atlas' MultiFidelityPlanner and GPPlanner on
the perovskites problem. Boxplots show the cumulative simu-
lation cost taken to identify the perovskite with the lowest
HSEO06 bandgap, Eg°"°° in the dataset over 100 independently
seeded runs for each strategy. The MultiFidelityPlanner
also has access to bandgap measurements at the GGA level (with
an Eg°* to Ey"*° measurement ratio of 8:1), while the
GPPlanner has access to Ey °"°° measurements only. The ratio
of low-to high-fidelity measurements is set to 8:1 for the
MultiFidelityPlanner, ie., the planner is provided with 8
low-fidelity measurements followed by 1 high-fidelity measure-
ment. We note that this is completely user-controlled, and can

30+

254

20+

154

10

Cumulative cost [a.u.]

BN

T
GPPlanner
(single fidelity)

T
MultiFidelityPlanner
Strategy

Fig. 7 Results of multi-fidelity optimization benchmark using the
HOIP dataset from Kim et al.*** Boxplots show the cumulative simu-
lation cost incurred before identification of the perovskite material
with the smallest HSEO6 bandgap in the dataset. Each strategy is run
100 independent times. The MultiFidelityPlanner also has
access to bandgap measurements at the GGA level (with an £5°* to
E4°E% measurement ratio of 8 : 1), while the GPPlanner has access to
EGSE9® measurements only.

1020 | Digital Discovery, 2025, 4, 1006-1029

be changed per iteration using the set_ask_fidelity
method. On average, the GPPlanner achieves the lowest high-
fidelity bandgap with a cost of 13.9 £ 0.56 a.u., while the
MultiFidelityPlanner achives this with a cost of only 9.6 +
0.35 a.u. These results demonstrate the ability of multi-fidelity
BO strategies to leverage inexpensive measurements to
augment cost-effective optimization of resource-intensive
objectives in SDLs.

3.7. Meta-/few-shot learning enhanced optimization

With Atlas, users may easily incorporate data from historical
optimization campaigns. These source tasks can be leveraged to
accelerate the optimization rate on a novel campaign by using
one of two meta-/few-shot learning planners: the Ranking-
Weighted Gaussian Process Ensemble planner
(RGPEPlanner) (ref. 128 and 129) and the Deep Kernel
Transfer planner (DKTPlanner).”****' Importantly, these
strategies can each transcend the innate design restrictions of
typical BO by inferring an inductive bias implicitly from data. In
SDLs, this amounts to learning inductive biases that closely
resemble particular concepts in chemistry or materials science,
and then applying them to related optimization problems. Such
approaches have been used to optimize chemical reactions in
SDL applications.™>'%?

We use the buchwald {a,b,c,d,e} datasets from
Olympus to showcase the aptitude of meta-/few-shot learning
planners to accelerate optimization given historical optimiza-
tion campaign data. The buchwald datasets comprise 5 data-
sets which each report the yield of Pd-catalyzed Buchwald-
Hartwig amination reactions of aryl halides (3 options) with 4-
methylaniline in the presence of varying isoxazole additives (22
options), Pd catalyst ligands (4 options), and bases (3
options)."** Each dataset consists of 792 yield measurements.
The reaction scheme is shown in Fig. 8a. We compare the ability
of the RGPEPlanner to maximize reaction yield on a particular
target dataset after meta-training on yield measurements from

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Paper Digital Discovery
R
a) Pd precatalyst
(10 mol%, 4 options) / \ pa Reaction Y Z R
4
Additive =Y
NH3 X A (1 equiv, 22 options) buchwald_a CH CH CF3
+ | HN buchwald b CH CH OMe
Yo_z
Me ~ pa R Bans buchwald_c CH CH Et
(1.5 equiv, 3 options) buchwald d N CH H
X=Cl,Br,1 DMSO (0.1 M), 60 °C, 16h buchwalde CH N H
Me
b)
Target: buchwald_c Target: buchwald_d 36 Target: buchwald_e
100
95
95
- - 90
3 85 854
2
80 801
== GPPlanner 75 4 75
| RGPEPIlanner
50 T T T T 70 ‘ T T T T 70 T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
evaluations # evaluations # evaluations
Fig. 8 (a) Reaction scheme for the Buchwald—Hartwig datasets. (b) Optimization traces comparing the performance of Atlas' RGPEPlanner and

GPlanner on 3 target reaction datasets. Solid traces show the mean taken over 50 independently seeded runs. Shaded regions show the 95%
confidence interval. Horizontal dotted lines indicate the maximum possible yield reported by Ahneman et al.*** for each reaction product.

the other 4 datasets. For instance, if the target dataset is
buchwald_c, the RGPEPlanner has access to measurements
from the buchwald_{a,b,d,e} datasets. As a baseline, we
optimize each target reaction using Atlas' GPPlanner, which
has no access to historical reaction data.

The following code snippet shows the problem setup. The
RGPEPlanner or DKTPlanner takes an argument called
train_tasks, which must be a list of dictionaries containing
the source task data (source_tasks are provided for this
example in the GitHub repo).

from olympus import Dataset, Campaign

from atlas.planners import RGPEPlanner

target_dataset = Dataset(kind='buchwald_c') # instantiate the target dataset from Olympus

source_tasks =

campaign = Campaign() # define Olympus campaign object

campaign.set_param_space(target_dataset.param_space)

planner =

planner.set_param_space(target_dataset.param_space)

while campaign.num_obs < 50:

load_my_source_tasks() # load the source task data (provided on GitHub repo)

RGPEPlanner (goal='maximize', train_tasks=source_tasks) # instantiate Atlas planner

samples = planner.recommend(campaign.observations) # ask planner for batch of parameters

for sample in samples:

measurement = target_dataset.run(sample) # measure objective of the target dataset

campaign.add_observation(sample, measurement) # tell planner about most recent observation

© 2025 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2025, 4,1006-1029 | 1021

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

Fig. 8b shows the results of this comparative experiment for
3 target reaction products: buchwald_{c ,d, e}. In each case,
the RGPEPlanner is able to identify higher yields with fewer
objective evaluations compared to the GPlanner by using
intuition gleaned from meta-training on related reaction data.

3.8. Optimization over molecular domains

For optimization over molecular spaces, we provide a special-
ized GP kernel function that is compatible with all planners and
is based on the Tanimoto distance kernel.**** The Tanimoto
kernel is a general similarity metric*>**® defined for binary
vectors x, X' € {0,1}" for d = 1 as

(e5)

2 2 ’
[l + [[I° = (x, x7)

kTanimolo (xa x,> = Ufz : (10)
where (-,-) is the Euclidean inner product, ||| is the Euclidean
norm, and ¢/ is the kernel's signal variance hyperparameter.
Several binary vector representations of molecules are available,
but perhaps the most well known are extended-connectivity
fingerprints (ECFPs).**”

Atlas allows for use of any molecular representation based on
binary vectors. Users must only specify, to the constructor of the
planner, the indices that identify molecular parameters with the
parameter space using the molecular_params argument.
Molecular parameters must be of type categorical, with options
corresponding to unique molecules. Users may then define
their descriptors as the corresponding binary vectors. We show
a simple example in which we intend to minimize the aqueous
solubility of molecules in the ESOL dataset.'*®

View Article Online

Paper

While it has been shown that using physicochemical
descriptor-based representations of molecules in a BO setting
can accelerate optimization rate,”**® other studies have found
that expert-crafted descriptors did not out-perform simpler
representations like fingerprints or even one-hot-encodings.'*®
Given the apparent dependence of optimal molecular repre-
sentation on the characteristics of the optimization problem at
hand, Atlas provides users with the flexibility to represent
molecular parameters in several ways: either with binary vectors
or continuous vectors containing properties extracted from
other methods, such as DFT or experimental data.

3.9. Asynchronous experimental execution

In many SDL applications, researchers have access to multiple
robotic or computational workers and may parallelize
measurements. When performing batched BO in a setting
where there is variability in measurement times for each indi-
vidual experiment, it is important to operate an SDL asynchro-
nously, where a worker starts a new experiment immediately
after completion of the previous experiment.*** This approach
has been shown to be overall more efficient than waiting for an
entire batch of experiments to complete before commencing
the next batch.”7*

We provide template scripts for an asynchronous SDL setup
on our GitHub repo. In this example, we optimize a surface from
Olympus using 3 workers, each of which can perform
a measurement for a single set of parameters. Workers can be
assigned parameters to measure in parallel using multipro-
cessing, and measurement duration is set to be variable. Upon
receiving a measurement, Atlas re-trains its surrogate model,

from olympus import Campaign, ParameterSpace, ParameterCategorical

from atlas.planners.gp.planner import GPPlanner

smiles =

ecfps =

create parameter space with one molecular parameter

param_space = ParameterSpace()

load_esol_smiles() # load list of smiles for molecules in ESOL (provided on GitHub repo)

load_esol_ecfp() # load descriptors ECFP wectors for molecules in ESOL (provided on GitHub repo)

param_space.add(ParameterCategorical (name="'esol', options=smiles, descriptors=ecfps))

campaign = Campaign() # define Olympus campaign object

campaign.set_param_space (param_space)

instantiate planner with list of parameter space indices of molecular parameter(s)

planner = GPPlanner(goal='minimize', molecular_params=[0])

planner.set_param_space (param_space)

1022 | Digital Discovery, 2025, 4, 1006-1029

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

but also conditions its recommendations on pending experi-
ments, Z.e. those that have been assigned to a worker but whose
measurement has not completed (the reader is referred to
Section 3.1 for additional information on setting pending
parameter constraints in Atlas). This is achieved with a built-in
mechanism to generate fictitious measurements, y’ for pending
parameters, x’. Specifically, we adopt the hallucination or
kriging believer strategy first reported by Ginsbourger et al.,”>”*
which imputes the expected value of each pending parameter,

y = E{y’x’,D], (11)

where D is the current dataset of observations. The fictitious
measurement)’ is then used to augment the dataset of obser-
vations, ie. D =DU{(x,y)}. Unlike other strategies that
merely block recommendations based on pending experiments,
hallucinations incorporate this information by updating the
model's variance while keeping the mean constant. Atlas
maintains a “priority queue” of recommended parameters that
is immediately updated in light of new measurements, such
that parameter proposals are always informed by the most
recent observations. Proposals in the priority queue are then
delegated to measurement workers as they become available.

4. Experimental demonstration

In this section, we outline an experimental demonstration
highlighting the use of Atlas in a simple SDL. Specifically, we

View Article Online

Digital Discovery

show how Atlas is combined with ChemOS 2.0,* an SDL
orchestration software, to optimize the oxidation potential of
a set of metal complexes in a cyclic voltammetry (CV) experi-
ment. Fig. 9a depicts the experimental setup. The electro-
chemical SDL consists of two hardware parts: the automatic
complexation robot module and the E-chem analyzer module,
both of which are controlled remotely from ChemOS 2.0. Che-
mOS 2.0 hosts Atlas, and iteratively sends jobs to the E-chem
setup for each evaluation step of the optimization campaign.
In turn, it receives the raw data and the treated oxidation
potential from the instrument after execution of the CV exper-
iment. ChemOS 2.0 saves the raw CV data in its internal
experimental database and also saves the results of the opti-
mization campaign. Data for the experiment reported in this
work has all been stored on ChemOS 2.0.

The automatic complexation robot is a flow-based system
based on a syringe pump and selection valves driven by a Python
controller developed in-house. Upon receiving instructions, it
runs automatic complexation by transferring designated
amounts of stock solutions (metal, ligand, electrolyte, buffer
and water) to the reactor, conducts a reactor mixing step,
transfers the sample to the flow cell of the E-chem module, and
invokes the electrochemistry measurements. A standard clean-
up step is executed after the electrochemistry is finished. The
E-chem analyzer consists of a flow cell equipped with a printed
electrode and a low-cost potentiostat controlled by Python
software. The electrochemistry measurement is invoked by
ChemOS 2.0 to measure the sample in the flow cell. In the

a) b)) D
Experimental data '
6- -
x
—_— 44 7
ChemOS 2.0 Eo % |
€
g
7 5 07 T
@)
4 ' g Metals 2.]
* Pump =
- -1.0 -0.5 00 05 1.0 -1.0 -05 00 05 1.0
Ligands Voltage [V] Voltage [V]
C)
. Raactor Experiment Planner
| 0.4
=
0 e
[X] ot ©
TTLER "
L 0.0
=== GPPlanner
Potentiostat Echem Cell

Fig. 9

T T T T T

10 15 20
experiments

25 30

(a) Schematic diagram of automated electrochemical SDL setup. (b) Two examples of cyclic voltammograms measured during the

campaign. The oxidation peak is identified using in-house software and is marked with a red cross and vertical dotted line. (c) Optimization trace
showing the maximum oxidation peak voltage identified by Atlas' GPPlanner as a function of the number of completed experiments.

© 2025 The Author(s). Published by the Royal Society of Chemistry

Digital Discovery, 2025, 4,1006-1029 | 1023

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Digital Discovery Paper
Table 1 Parameter space for the electrochemical SDL demonstration with Atlas
Parameter Type Range/num options Description Descriptors
Ligand Categorical 3 Ligand identity No
Metal Categorical 2 Metal identity No
Mixings Discrete [1-10]* Number of pump mixing N/A
steps
Ratio Continuous [1.0-9.0] Ligand/metal ratio N/A

“ Discrete parameter has a stride of 1.

context of this demonstration, a fixed parameter CV experiment
is conducted for all samples. The raw data collected from the
potentiostat is streamed to ChemOS 2.0 for further processing,
and cleaning instructions are sent to the complexation robot.

The parameter space for this experiment consists of 4
parameters, which are summarized in Table 1. The ligand
options are H,0O, pyridine, and ethylenediamine. The metal
options are silver(i) and copper(u). The objective of the optimi-
zation is to maximize the voltage of the oxidation peak. The
GPPlanner of Atlas is run for 40 iterations, the first 5 of which
are randomly selected initial design points. Results of the
optimization experiment are shown in Fig. 9b and c. Fig. 9b
shows two cyclic voltammograms collected during the optimi-
zation. The voltage peak is selected using in-house software and
is identified on the figure with a red cross and red vertical
dotted line. Fig. 9c shows the maximum voltage peak identified
by the GPPlanner as a function of the number of transpired
experiments.

5. Conclusion

In summary, we introduce Atlas, a Bayesian optimization
package with a comprehensive set of features designed to suit
most experimental settings and enable model-guided optimi-
zation in SDLs. Among the capabilities currently available are
optimizations over mixed-parameter, constrained, and molec-
ular domains, in addition to supporting multi-objective and
multi-fidelity optimizations, as well as robust optimization and
the incorporation of past knowledge via meta-learning. Atlas
uses Gaussian process surrogate models, and is built upon
PyTorch,” GpyTorch,” and BoTorch.* It exposes its broad set of
capabilities via the Olympus® interface, and it integrates with
ChemOS 2.0 (ref. 83) for SDL deployment. Atlas is an open-
source software, it is distributed under the MIT permissive
license, and comes with a documentation that includes exam-
ples for all case scenarios discussed in this manuscript. We
expect Atlas to be able to cover a much broader set of SDL setups
and research challenges than the Bayesian optimization pack-
ages developed to date.

Data availability

Atlas is available on GitHub at https://github.com/aspuru-guzik-
group/atlas under an MIT license. The measurements generated
in the electrochemical SDL demonstration have been added to
the Olympus package as an emulated Dataset -called

1024 | Digital Discovery, 2025, 4, 1006-1029

electrochem, on which users may benchmark experiment
planning strategies (https://github.com/aspuru-guzik-group/
olympus/tree/dev/src/olympus/datasets/dataset_electrochem)
ChemOS 2.0 is available on GitHub at https://github.com/
malcolmsimgithub/Chem0S2.0 under an MIT license.

Conflicts of interest

A. A.-G. is a founding member of Kebotix, Inc. R. J. H., Z. B., P.
B., C. A. and A. A.-G. are founding members of Intrepid Labs,
15073383 Canada Inc.

Acknowledgements

The authors thank Dr Felix Strieth-Kalthoff, Dr Martin Seifrid,
Dr Shengyang Sun, Dr Roger Grosse, Dr Robert Black, Guodong
Zhang, and Erfan Fathei for contribution to valuable discus-
sion. R. J. H. gratefully acknowledges the Natural Sciences and
Engineering Research Council of Canada (NSERC) for provision
of the Postgraduate Scholarships-Doctoral Program (PGSD3-
534584-2019), as well as support from the Vector Institute. G.
T. is supported by NSERC and the Vector Institute. C. A.
acknowledges an NSERC Discovery grant (RGPIN-2022-04910).
A. A.-G. acknowledges support from the Canada 150 Research
Chairs program and CIFAR, as well as the generous support of
Dr Anders G. Frgseth. This research was undertaken thanks in
part to funding provided to the University of Toronto's Accel-
eration Consortium from the Canada First Research Excellence
Fund (CFREF). Computations reported in this work were per-
formed on the computing clusters of the Vector Institute and on
the Niagara supercomputer at the SciNet HPC Consortium.">'*
Resources used in preparing this research were provided, in
part, by the Province of Ontario, the Government of Canada
through CIFAR, and companies sponsoring the Vector Institute.
SciNet is funded by the Canada Foundation for Innovation, the
Government of Ontario, Ontario Research Fund - Research
Excellence, and by the University of Toronto.

References

1 F. Hise, L. M. Roch and A. Aspuru-Guzik, Next-Generation
Experimentation with Self-Driving Laboratories, Trends
Chem., 2019, 1(3), 282-291.

2 E. Stach, B. DeCost, A. G. Kusne, J. Hattrick-Simpers,
K. A. Brown, K. G. Reyes, et al, Autonomous
experimentation systems for materials development: A

© 2025 The Author(s). Published by the Royal Society of Chemistry

https://github.com/aspuru-guzik-group/atlas
https://github.com/aspuru-guzik-group/atlas
https://github.com/aspuru-guzik-group/olympus/tree/dev/src/olympus/datasets/dataset_electrochem
https://github.com/aspuru-guzik-group/olympus/tree/dev/src/olympus/datasets/dataset_electrochem
https://github.com/malcolmsimgithub/ChemOS2.0
https://github.com/malcolmsimgithub/ChemOS2.0
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

community perspective, Matter, 2021, 4(9), 2702-2726.
https://www.sciencedirect.com/science/article/pii/
$2590238521003064.

3 C. W. Coley, N. S. Eyke and K. F. Jensen, Autonomous
Discovery in the Chemical Sciences Part I: Progress,
Angew. Chem., Int. Ed., 2020, 59(51), 22858-22893.

4 C. W. Coley, N. S. Eyke and K. F. Jensen, Autonomous
Discovery in the Chemical Sciences Part II: Outlook,
Angew. Chem., Int. Ed., 2020, 59(52), 23414-23436.

5 M. M. Flores-Leonar, L. M. Mejia-Mendoza, A. Aguilar-
Granda, B. Sanchez-Lengeling, H. Tribukait, C. Amador-
Bedolla, et al., Materials Acceleration Platforms: On the
way to autonomous experimentation, Curr. Opin. Green
Sustainable Chem., 2020, 25, 100370.

6 H. S. Stein and J. M. Gregoire, Progress and prospects for
accelerating materials science with automated and
autonomous workflows, Chem. Sci., 2019, 10(42), 9640-
9649.

7 J. Yano, K. J. Gaffney, J. Gregoire, L. Hung, A. Ourmazd,
J. Schrier, et al., The case for data science in experimental
chemistry: examples and recommendations, Nat. Rev.
Chem., 2022, 6, 357-370. https://www.nature.com/articles/
$41570-022-00382-w.

8 G. Tom, S. P. Schmid, S. G. Baird, Y. Cao, K. Darvish,
H. Hao, et al, Self-driving laboratories for chemistry and
materials science, Chem. Rev., 2024, 124(16), 9633-9732.

9 J. P. McMullen and K. F. Jensen, An automated microfluidic
system for online optimization in chemical synthesis, Org.
Process Res. Dev., 2010, 14(5), 1169-1176.

10 D. E. Fitzpatrick, C. Battilocchio and S. V. Ley, A novel
internet-based reaction monitoring, control and
autonomous self-optimization platform for chemical
synthesis, Org. Process Res. Dev., 2016, 20(2), 386-394.

11 D. Cortés-Borda, E. Wimmer, B. Gouilleux, E. Barré,
N. Oger, L. Goulamaly, et al, An Autonomous Self-
Optimizing Flow Reactor for the Synthesis of Natural
Product Carpanone, J. Org. Chem., 2018, 83(23), 14286-
14299.

12 B. E. Walker, J. H. Bannock, A. M. Nightingale and
J. C. deMello, Tuning reaction products by constrained
optimisation, React. Chem. Eng., 2017, 2(5), 785-798.

13 S. Krishnadasan, R. Brown, A. Demello and]J. Demello,
Intelligent routes to the controlled synthesis of
nanoparticles, Lab Chip, 2007, 7(11), 1434-1441.

14 L. M. Baumgartner, C. W. Coley, B. J. Reizman, K. W. Gao
and K. F. Jensen, Optimum catalyst selection over
continuous and discrete process variables with a single
droplet microfluidic reaction platform, React. Chem. Eng.,
2018, 3(3), 301-311.

15 A. M. Schweidtmann, A. D. Clayton, N. Holmes, E. Bradford,
R. A. Bourne and A. A. Lapkin, Machine learning meets
continuous flow chemistry: Automated optimization
towards the Pareto front of multiple objectives, Chem.
Eng. J., 2018, 177-282.

16 A. C. Bédard, A. Adamo, K. C. Aroh, M. G. Russell,
A. A. Bedermann,]. Torosian, et al., Reconfigurable

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

system for automated optimization of diverse chemical
reactions, Science, 2018, 361(6408), 1220-1225.

17 M. Christensen, L. P. E. Yunker, F. Adedeji, F. Hése,
L. M. Roch, T. Gensch, et al., Data-science driven
autonomous process optimization, Commun. Chem., 2021,
4(1), 1-12.

18 A. M. K. Nambiar, C. P. Breen, T. Hart, T. Kulesza,
T. F. Jamison and K. F. Jensen, Bayesian Optimization of
Computer-Proposed Multistep Synthetic Routes on an
Automated Robotic Flow Platform, ACS Cent. Sci., 2022,
8(6), 825-836.

19 J. M. Granda, L. Donina, V. Dragone, D. L. Long and
L. Cronin, Controlling an organic synthesis robot with
machine learning to search for new reactivity, Nature,
2018, 559(7714), 377-381.

20 P. Nikolaev, D. Hooper, F. Webber, R. Rao, K. Decker,
M. Krein, et al., Autonomy in materials research: a case
study in carbon nanotube growth, npj Comput. Mater.,
2016, 2(1), 1-6.

21 K. Vaddi, H. T. Chiang and L. D. Pozzo, Autonomous
retrosynthesis of gold nanoparticles via spectral shape
matching, Digit. Discov., 2022, 1(4), 502-510.

22 R. J. Hickman, P. Bannigan, Z. Bao, A. Aspuru-Guzik and
C. Allen, Self-driving laboratories: A paradigm shift in
nanomedicine development, Matter, 2023, 6(4), 1071-1081.

23 A. Deshwal, C. M Simon and J. Rao Doppa, Bayesian
optimization of nanoporous materials, Mol. Syst. Des.
Eng., 2021, 6(12), 1066-1086.

24 B. P. MacLeod, F. G. L. Parlane, T. D. Morrissey, F. Hise,
L. M. Roch, K. E. Dettelbach, et al., Self-driving laboratory
for accelerated discovery of thin-film materials, Sci. Adv.,
2020, 6(20), eaaz8867. https://advances.sciencemag.org/
content/6/20/eaaz8867.

25 B. P. MacLeod, F. G. L. Parlane, C. C. Rupnow,
K. E. Dettelbach, M. S. Elliott, T. D. Morrissey, et al, A
self-driving laboratory advances the Pareto front for
material properties, Nat. Commun., 2022, 13(1), 995.
https://www.nature.com/articles/s41467-022-28580-6.

26 N. T. P. Hartono, M. Ani Najeeb, Z. Li, P. W. Nega,
C. A. Fleming, X. Sun, et al, Principled Exploration of
Bipyridine and Terpyridine Additives to Promote
Methylammonium Lead Iodide Perovskite Crystallization,
Cryst. Growth Des., 2022, 22(9), 5424-5431.

27 S. Sun, A. Tiihonen, F. Oviedo, Z. Liu, J. Thapa, Y. Zhao,
et al., A data fusion approach to optimize compositional
stability of halide perovskites, Matter, 2021, 4(4), 1305-
1322.

28 B. Burger, P. M. Maffettone, V. V. Gusev, C. M. Aitchison,
Y. Bai, X. Wang, et al., A mobile robotic chemist, Nature,
2020, 583(7815), 237-241.

29 M.]. Tamasi, R. A. Patel, C. H. Borca, S. Kosuri, H. Mugnier,
R. Upadhya, et al., Machine Learning on a Robotic Platform
for the Design of Polymer-Protein Hybrids, Adv. Mater.,
2022, 34(30), 2201809.

30 M. J. Tamasi and A.]J. Gormley, Biologic formulation in
a self-driving biomaterials lab, Cell Rep. Phys. Sci., 2022,

Digital Discovery, 2025, 4,1006-1029 | 1025

https://www.sciencedirect.com/science/article/pii/S2590238521003064
https://www.sciencedirect.com/science/article/pii/S2590238521003064
https://www.nature.com/articles/s41570-022-00382-w
https://www.nature.com/articles/s41570-022-00382-w
https://advances.sciencemag.org/content/6/20/eaaz8867
https://advances.sciencemag.org/content/6/20/eaaz8867
https://www.nature.com/articles/s41467-022-28580-6
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

3(9), 101041. https://www.sciencedirect.com/science/
article/pii/S2666386422003356.

31 M. M. Noack, K. G. Yager, M. Fukuto, G. S. Doerk, R. Li and
J. A. Sethian, A kriging-based approach to autonomous
experimentation with applications to X-ray scattering, Sci.
Rep., 2019, 9(1), 1-19.

32 B. Rohr, H. S. Stein, D. Guevarra, Y. Wang, J. A. Haber,
M. Aykol, et al, Benchmarking the acceleration of
materials discovery by sequential learning, Chem. Sci.,
2020, 11(10), 2696-2706.

33 R. A. Fisher, The design of experiments, Oliver and Boyd,
Edinburgh; London, 1937.

34 G. E. P. Box, J. S. Hunter and W. G. Hunter, Statistics for
experimenters: design, innovation and discovery, 2005, vol. 2.

35 M.]J. Anderson and P. J. Whitcomb, DOE simplified: practical
tools for effective experimentation, CRC Press, 2016.

36 A. Lucia and J. Xu, Chemical process optimization using
Newton-like methods, Comput. Chem. Eng., 1990, 14(2),
119-138.

37 L Rechenberg, Evolutionsstrategien, in
Simulationsmethoden in der Medizin und Biologie, Springer,
1978, pp. 83-114.

38 H. P. Schwefel, Evolutionsstrategien fiir die numerische
optimierung, in Numerische Optimierung von Computer-
Modellen mittels der Evolutionsstrategie, Springer, 1977, pp.
123-176.

39 G. Zames, N. Ajlouni, N. Ajlouni, N. Ajlouni, J. Holland,
W. Hills, et al, Genetic algorithms in search,
optimization and machine learning, Inf. Technol. J., 1981,
3(1), 301-302.

40 J. R. Koza and J. R. Koza, Genetic programming: on the
programming of computers by means of natural selection,
MIT press, 1992, vol. 1.

41 M. Srinivas and L. M. Patnaik, Genetic algorithms: A survey,
Computer, 1994, 27(6), 17-26.

42 D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters and
J. Schmidhuber, Natural evolution strategies, J. Mach.
Learn. Res., 2014, 15(1), 949-980.

43 Z. Zhou, X. Li and R. N. Zare, Optimizing Chemical
Reactions with Deep Reinforcement Learning, ACS Cent.
Sci., 2017, 3(12), 1337-1344, DOL 10.1021/
acscentsci.7b00492.

44 C. Beeler, S. G. Subramanian, K. Sprague, N. Chatti,
C. Bellinger, M. Shahen, et al., ChemGymRL: An Interactive
Framework for Reinforcement Learning for Digital Chemistry,
2023.

45 J. Mockus, On Bayesian methods for seeking the extremum,
in Optimization techniques IFIP technical conference,
Springer, 1975, pp. 400-404.

46 J. Mockus, V. Tiesis and A. Zilinskas, The application of
Bayesian methods for seeking the extremum, J. Glob.
optim., 1978, 2, 117-129.

47]J. Mockus, Bayesian approach to global optimization: theory
and applications, Springer Science & Business Media,
2012, vol. 37.

1026 | Digital Discovery, 2025, 4, 1006-1029

View Article Online

Paper

48 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, et al., Scikit-learn: Machine Learning
in Python, J. Mach. Learn. Res., 2011, 12, 2825-2830.

49 L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa,
A. Mueller, O. Grisel, et al, API design for machine
learning software: experiences from the scikit-learn
project, in ECML PKDD Workshop: Languages for Data
Mining and Machine Learning, 2013, pp. 108-122.

50 The GPyOpt authors, GPyOpt: A Bayesian Optimization
framework in python, 2016, http://github.com/SheffieldML/
GPyOpt.

51J. S. Bergstra, R. Bardenet, Y. Bengio and B. Kégl,
Algorithms for hyper-parameter optimization, in Advances
in neural information processing systems, 2011, pp. 2546-
2554.

52 J. S. Bergstra and Y. Bengio, Random search for hyper-
parameter optimization, J. Mach. Learn. Res., 2012,
13(Feb), 281-305.

53 J. S. Bergstra, D. Yamins and D. D. Cox, Making a science of
model search: Hyperparameter optimization in hundreds of
dimensions for vision architectures, JMLR, 2013.

54 J. Bergstra, B. Komer, C. Eliasmith, D. Yamins and
D. D. Cox, Hyperopt: a Python library for model selection
and hyperparameter optimization, Comput. Sci. Discov.,
2015, 8(1), 014008. http://stacks.iop.org/1749-4699/8/i=1/
a=014008.

55 M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp,
D. Deng, C. Benjamins, et al., SMAC3: A Versatile Bayesian
Optimization Package for Hyperparameter Optimization, 2021.

56 M. Lindauer, K. Eggensperger, M. Feurer, S. Falkner,
A. Biedenkapp, F. Hutter, SMAC v3: Algorithm
Configuration in Python, GitHub, 2017, https://github.com/
automl/SMAC3.

57 K. Kandasamy, K. R. Vysyaraju, W. Neiswanger, B. Paria,
C. R. Collins, J. Schneider, et al., Tuning Hyperparameters
without Grad Students: Scalable and Robust Bayesian
Optimisation with Dragonfly, /. Mach. Learn. Res., 2020,
21(81), 1-27.

58 A.1. Cowen-Rivers, W. Lyu, R. Tutunov, Z. Wang, A. Grosnit,
R. R. Griffiths, A. M. Maraval, H. Jianye, J. Wang, J. Peters
and H. Bou-Ammar, HEBO: Pushing The Limits of
Sample-Efficient Hyper-parameter Optimisation, J. Artif.
Int. Res., 2022, 74, DOI: 10.1613/jair.1.13643.

59 M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham,
A. G. Wilson, et al.,, BoTorch: A Framework for Efficient
Monte-Carlo Bayesian Optimization, in Advances in Neural
Information Processing Systems, 2020, vol. 33, http://
arxiv.org/abs/1910.06403.

60 The Ax authors, Ax: Adaptive Experimentation Platform,
GitHub, 2023, https://github.com/facebook/Ax.

61 X. Song, S. Perel, C. Lee, G. Kochanski and D. Golovin, Open
Source Vizier: Distributed Infrastructure and API for
Reliable and Flexible Black-box Optimization, in
Automated Machine Learning Conference, Systems Track
(AutoML-Conf Systems), 2022.

62 D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro and
D. Sculley, Google Vizier: A Service for Black-Box

© 2025 The Author(s). Published by the Royal Society of Chemistry

https://www.sciencedirect.com/science/article/pii/S2666386422003356
https://www.sciencedirect.com/science/article/pii/S2666386422003356
https://doi.org/10.1021/acscentsci.7b00492
https://doi.org/10.1021/acscentsci.7b00492
http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt
http://stacks.iop.org/1749-4699/8/i=1/a=014008
http://stacks.iop.org/1749-4699/8/i=1/a=014008
https://github.com/automl/SMAC3
https://github.com/automl/SMAC3
https://doi.org/10.1613/jair.1.13643
http://arxiv.org/abs/1910.06403
http://arxiv.org/abs/1910.06403
https://github.com/facebook/Ax
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

Optimization, in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, ACM, Halifax, NS, Canada, 2017, pp. 1487-1495,
DOI: 10.1145/3097983.3098043.

63 M. Aldeghi, F. Hise, R. J. Hickman, I. Tamblyn and
A. Aspuru-Guzik, Golem: an algorithm for robust
experiment and process optimization, Chem. Sci., 2021,
12, 14792-14807.

64 S. Daulton, S. Cakmak, M. Balandat, M. A. Osborne, E. Zhou
and E. Bakshy, Robust Multi-Objective Bayesian
Optimization Under Input Noise, in K. Chaudhuri, S.
Jegelka, L. Song, C. Szepesvari, G. Niu and S. Sabato, ed.
Proceedings of the 39th International Conference on Machine
Learning. vol. 162 of Proceedings of Machine Learning
Research, PMLR, 2022, pp. 4831-4866.

65 R. J. Hickman, M. Aldeghi, F. Hase and A. Aspuru-Guzik,
Bayesian optimization with known experimental and
design constraints for chemistry applications, Digit.
Discov., 2022, 1, 732-744.

66 S. G. Baird, J. R. Hall and T. D. Sparks, Compactness
matters: Improving Bayesian optimization efficiency of
materials formulations through invariant search spaces,
Comput. Mater. Sci., 2023, 224, 112134.

67 J. Snoek, H. Larochelle and R. P. Adams, Practical Bayesian
Optimization of Machine Learning Algorithms, arXiv, 2012,
preprint, arXiv:1206.2944, DOI: 10.48550/arXiv.1206.2944,
http://arxiv.org/abs/1206.2944.

68 M. A. Gelbart, J. Snoek and R. P. Adams, Bayesian
optimization with unknown constraints, in Proceedings of
the Thirtieth Conference on Uncertainty in Artificial
Intelligence (UAI'14), AUAI Press, Arlington, Virginia, USA,
2014, pp. 250-259, DOI: 10.5555/3020751.3020778.

69 R. B. Gramacy and H. K. H. Lee, Optimization Under
Unknown Constraints, arXiv, 2010, preprint,
arXiv:1004.4027, DOI: 10.48550/arXiv.1004.4027, http://
arxiv.org/abs/1004.4027.

70 C. Antonio, Sequential model based optimization of
partially defined functions under unknown constraints, J.
Global Optim., 2021, 79(2), 281-303, DOIL: 10.1007/s10898-
019-00860-4.

71 Y. K. Wakabayashi, T. Otsuka, Y. Krockenberger,
H. Sawada, Y. Taniyasu and H. Yamamoto, Bayesian
Optimization with Experimental Failure for High-
Throughput Materials Growth, npj Comput. Mater., 2022,
8, 180.

72 D. Khatamsaz, B. Vela, P. Singh, et al, Bayesian
optimization with active learning of design constraints
using an entropy-based approach, npj Comput. Mater.,
2023, 9, 49.

73 D. Ginsbourger, J. Janusevskis and R. L. Riche, Dealing with
asynchronicity in parallel Gaussian Process based global
optimization, 2011.

74 T. Desautels, A. Krause and J. W. Burdick, Parallelizing
Exploration-Exploitation Tradeoffs in Gaussian Process
Bandit Optimization, J. Mach. Learn. Res., 2014, 15(119),
4053-4103.

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

75 B. J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani,
J. I. M. Alvarado, et al., Bayesian reaction optimization as
a tool for chemical synthesis, Nature, 2021, 590(7844), 89—
96.

76 J. Torres, S. Lau, P. Anchuri, J. Stevens, J. Tabora, J. Li,
A. Borovika, R. Adams and A. Doyle, A Multi-Objective
Active Learning Platform and Web App for Reaction
Optimization, J. Am. Chem. Soc., 2022, 144(43), 19999-
20007.

77 K. C. Felton, J. G. Rittig and A. A. Lapkin, Summit:
Benchmarking Machine Learning Methods for Reaction
Optimisation, Chem. Methods, 2021, 1(2), 116-122.

78 F. Hise, L. M. Roch, C. Kreisbeck and A. Aspuru-Guzik,
Phoenics: A Bayesian Optimizer for Chemistry, ACS Cent.
Sci., 2018, 4(9), 1134-1145.

79 F. Hase, M. Aldeghi, R. J. Hickman, L. M. Roch and
A. Aspuru-Guzik, Gryffin: An algorithm for Bayesian
optimization of categorical variables informed by expert
knowledge, Applied Physics Reviews, 2021, 8(3), 031406,
DOI: 10.1063/5.0048164.

80 F. Hise, M. Aldeghi, R. J. Hickman, L. M. Roch,
M. Christensen, E. Liles, et al., Olympus: a benchmarking
framework for noisy optimization and experiment
planning, Mach. Learn.: Sci. Technol., 2021, 2(3), 035021,
DOI: 10.1088/2632-2153/abedc8.

81 R. Hickman, P. Parakh, A. Cheng, Q. Ai, J. Schrier and
M. Aldeghi, et al, Olympus, enhanced: benchmarking
mixed-parameter and multi-objective optimization in
chemistry and materials science, ChemRxiv, 2023,
preprint, DOI: 10.26434/chemrxiv-2023-74w8d.

82 R. R. Griffiths, L. Klarner, H. B. Moss, A. Ravuri, S. Truong,
B. Rankovic, et al., GAUCHE: A Library for Gaussian Processes
in Chemistry, 2022.

83 M. Sim, M. G. Vakili, F. Strieth-Kalthoff, H. Hao,
R. J. Hickman, S. Miret, S. Pablo-Garcia and A. Aspuru-
Guzik, ChemOS 2.0: An orchestration architecture for
chemical self-driving laboratories, Matter, 2024, 7(9),
2959-2977.

84 D. Kraft, et al., A software package for sequential quadratic
programming, 1988.

85 D. P. Kingma and J. Ba, Adam: A Method for Stochastic
Optimization, arXiv, 2017, preprint, arXiv:1412.6980, DOI:
10.48550/arXiv.1412.6980, http://arxiv.org/abs/1412.6980.

86 J. Blank and K. Deb, pymoo: Multi-Objective Optimization
in Python, IEEE Access, 2020, 8, 89497-89509.

87 F. A. Fortin, F. M. De Rainville, M. A. Gardner, M. Parizeau
and C. Gagné, DEAP: Evolutionary Algorithms Made Easy, J.
Mach. Learn. Res., 2012, 13, 2171-2175.

88 F. M. De Rainville, F. A. Fortin, M. A. Gardner, M. Parizeau
and C. Gagné, Deap: A python framework for evolutionary
algorithms, in Proceedings of the 14th annual conference
companion on Genetic and evolutionary computation, 2012,
pp. 85-92.

89 C. E. Rasmussen and C. K. I. Williams, Gaussian processes
for machine learning, Adaptive computation and machine
learning, MIT Press, 2006.

Digital Discovery, 2025, 4,1006-1029 | 1027

https://doi.org/10.1145/3097983.3098043
https://doi.org/10.48550/arXiv.1206.2944
http://arxiv.org/abs/1206.2944
https://doi.org/10.5555/3020751.3020778
https://doi.org/10.48550/arXiv.1004.4027
http://arxiv.org/abs/1004.4027
http://arxiv.org/abs/1004.4027
https://doi.org/10.1007/s10898-019-00860-4
https://doi.org/10.1007/s10898-019-00860-4
https://doi.org/10.1063/5.0048164
https://doi.org/10.1088/2632-2153/abedc8
https://doi.org/10.26434/chemrxiv-2023-74w8d
https://doi.org/10.48550/arXiv.1412.6980
http://arxiv.org/abs/1412.6980
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

90 R. M. Neal, Bayesian Learning for Neural Networks. vol. 118 of
Lecture Notes in Statistics, ed. P. Bickel, P. Diggle, S.
Fienberg, K. Krickeberg, I. Olkin, N. Wermuth, et al.,
Springer, New York, NY, 1996, DOI: 10.1007/978-1-4612-
0745-0.

91 C. Rasmussen and Z. Ghahramani, Occam’ s Razor, in
Advances in Neural Information Processing Systems, vol. 13,
MIT Press, 2000.

92 J. Hensman, A. G. de G Matthews and Z. Ghahramani,
Scalable Variational Gaussian Process Classification, in
International Conference on Artificial Intelligence and
Statistics, 2014.

93 J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger and
A. G. Wilson, GPyTorch: Blackbox Matrix-Matrix Gaussian
Process Inference with GPU Acceleration, in Advances in
Neural Information Processing Systems, 2018.

94 Towards global optimisation 2, ed. G. P. Szego and L. C. W.
Dixon, Amsterdam; New York: New York: North-Holland
Pub. Co.; sole distributors for the U.S.A. and Canada,
Elsevier, North-Holland, 1978.

95 A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, et al, PyTorch: An Imperative Style, High-
Performance Deep Learning Library, in Advances in Neural
Information Processing Systems 32, Curran Associates, Inc.,
2019, pp. 8024-8035.

96 The Atlas authors, Atlas: A Brain for Self-driving Laboratories,
GitHub, 2023, https://github.com/aspuru-guzik-group/
atlas.

97 P. Vellanki, S. Rana, S. Gupta, D. Rubin, A. Sutti, T. Dorin,
et al., Process-constrained batch Bayesian optimisation, in
Advances in Neural Information Processing Systems, vol. 30,
Curran Associates, Inc., 2017.

98 E. Soedarmadji, H. S. Stein, S. K. Suram, D. Guevarra and
J. M. Gregoire, Tracking materials science data lineage to
manage millions of materials experiments and analyses,
npj Comput. Mater., 2019, 5(1), 1-9.

99 H. S. Stein, D. Guevarra, A. Shinde, R.]J. R. Jones,
J. M. Gregoire and J. A. Haber, Functional mapping
reveals mechanistic clusters for OER catalysis across (Cu-
Mn-Ta-Co-Sn-Fe)Ox composition and pH space, Mater.
Horiz., 2019, 6(6), 1251-1258.

100 C. Blundell, J. Cornebise, K. Kavukcuoglu and D. Wierstra,
Weight Uncertainty in Neural Network, Proceedings of the
32nd International Conference on Machine Learning,
Proceedings of Machine Learning Research, 2015, vol. 37,
pp- 1613-1622, Available from https://
proceedings.mlr.press/v37/blundell15.html.

101 F. Hase, L. M. Roch and A. Aspuru-Guzik, Chimera:
enabling hierarchy based multi-objective optimization for
self-driving laboratories, Chem. Sci., 2018, 9(39), 7642-
7655. http://xlink.rsc.org/?DOI=C8SC02239A.

102 E. Zitzler and L. Thiele, Multiobjective optimization using
evolutionary algorithms — A comparative case study, in
Parallel Problem Solving from Nature — PPSN V, Lecture
Notes in Computer Science, ed. A. E. Eiben, T. Bick, M.
Schoenauer and H. P. Schwefel, Springer, Berlin,
Heidelberg, 1998, pp. 292-301.

1028 | Digital Discovery, 2025, 4, 1006-1029

View Article Online

Paper

103 J. D. Knowles, D. W. Corne and M. Fleischer, Bounded
archiving using the lebesgue measure, in The 2003
Congress on Evolutionary Computation, 2003, CEC ’03,
2003, vol. 4, pp. 2490-2497.

104 M. Li and X. Yao, Quality Evaluation of Solution Sets in
Multiobjective Optimisation: A Survey, ACM Comput.
Surv., 2019, 52(2), 1-38.

105 A. P. Guerreiro, C. M. Fonseca and L. Paquete, The
Hypervolume Indicator: Problems and Algorithms, ACM
Comput. Surv., 2021, 54(6), 1-42. ArXiv:2005.00515 [cs].
Available from: http://arxiv.org/abs/2005.00515.

106 J. Knowles and E. J. Hughes, Multiobjective optimization
on a budget of 250 evaluations, in Evolutionary Multi-
Criterion Optimization (EMO-2005), ed. C. Coello, et al,
Springer-Verlag, 2005, vol. 3410 of LNCS.

107 J. Knowles, ParEGO: a hybrid algorithm with on-line
landscape approximation for expensive multiobjective
optimization problems, IEEE Trans. Evol. Comput., 2006,
10(1), 50-66.

108 I. Y. Kim and O. L. de Weck, Adaptive weighted sum
method for multiobjective optimization: a new method
for Pareto front generation, Struct. Multidiscip. Optim.,
2006, 31(2), 105-116.

109 C. A. C. Coello, S. Gonzá, L. Brambila,
G. F. Josué, M. G. C. Tapia, et al., Evolutionary
multiobjective optimization: open research areas and
some challenges lying ahead, Complex Intell. Syst., 2020,
6(2), 221-237.

110 M. Seifrid, R. J. Hickman, A. Aguilar-Granda, C. Lavigne,
J. Vestfrid, T. C. Wu, et al., Routescore: Punching the Ticket
to More Efficient Materials Development, 2021, https://
chemrxiv.org/engage/chemrxiv/article-details/
60f085e88ae3a7499b78400f.

111 B. Settles, Active Learning, Synthesis Lectures on Artificial
Intelligence and Machine Learning, Morgan & Claypool
Publishers, 2012, vol. 6, 1, pp. 1-114.

112 N. H. Angello, V. Rathore, W. Beker, A. Wolos, E. R. Jira,
R. Roszak, et al, Closed-loop optimization of general
reaction conditions for heteroaryl Suzuki-Miyaura
coupling, Science, 2022, 378(6618), 399-405.

113 B.]. Reizman, Y. M. Wang, S. L. Buchwald and K. F. Jensen,
Suzuki-Miyaura cross-coupling optimization enabled by
automated feedback, React. Chem. Eng., 2016, 1(6), 658
666.

114 C. Fare, P. Fenner, M. Benatan, A. Varsi and E. O. Pyzer-
Knapp, A multi-fidelity machine learning approach to
high throughput materials screening, npj Comput. Mater.,
2022, 8(1), 1-9. https://www.nature.com/articles/s41524-
022-00947-9.

115 D. Bash, Y. Cai, V. Chellappan, S. L. Wong, X. Yang,
P. Kumar, et al, Multi-Fidelity High-Throughput
Optimization of Electrical Conductivity in P3HT-CNT
Composites, Adv. Funct. Mater., 2021, 2102606.

116 A. Patra, R. Batra, A. Chandrasekaran, C. Kim, T. D. Huan
and R. Ramprasad, A multi-fidelity information-fusion
approach to machine learn and predict polymer bandgap,
Comput. Mater. Sci., 2020, 172, 109286.

© 2025 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.1007/978-1-4612-0745-0
https://doi.org/10.1007/978-1-4612-0745-0
https://github.com/aspuru-guzik-group/atlas
https://github.com/aspuru-guzik-group/atlas
https://proceedings.mlr.press/v37/blundell15.html
https://proceedings.mlr.press/v37/blundell15.html
http://xlink.rsc.org/?DOI=C8SC02239A
http://arxiv.org/abs/2005.00515
https://chemrxiv.org/engage/chemrxiv/article-details/60f085e88ae3a7499b78400f
https://chemrxiv.org/engage/chemrxiv/article-details/60f085e88ae3a7499b78400f
https://chemrxiv.org/engage/chemrxiv/article-details/60f085e88ae3a7499b78400f
https://www.nature.com/articles/s41524-022-00947-9
https://www.nature.com/articles/s41524-022-00947-9
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

Open Access Article. Published on 26 February 2025. Downloaded on 2/12/2026 7:01:04 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

117 A. Tran, J. Tranchida, T. Wildey and A. P. Thompson, Multi-
fidelity machine-learning with uncertainty quantification
and Bayesian optimization for materials design:
Application to ternary random alloys, J. Chem. Phys., 2020,
153(7), 074705. https://aip.scitation.org/doi/10.1063/
5.0015672.

118 A. Tran, T. Wildey and S. McCann, sMF-BO-2CoGP: A
Sequential Multi-Fidelity Constrained Bayesian
Optimization Framework for Design Applications, J.
Comput. Inf. Sci. Eng., 2020, 20(3), 031007.

119 N. Gantzler, A. Deshwal, J. R. Doppa and C. Simon, Multi-
fidelity Bayesian Optimization of Covalent Organic
Frameworks for Xenon/Krypton Separations, ChemRxiv,
2023, DOI: 10.26434/chemrxiv-2023-jfzrf-v2, https://
chemrxiv.org/engage/chemrxiv/article-details/
64970d6a4821a835f355c8b9.

120 A. E. Gongora, K. L. Snapp, E. Whiting, P. Riley, K. G. Reyes,
E. F. Morgan, et al, Using simulation to accelerate
autonomous experimentation: A case study using
mechanics, iScience, 2021, 24(4), 102262.

121 M. Poloczek, J. Wang and P. Frazier, Multi-Information
Source Optimization, in Advances in Neural Information
Processing Systems, Curran Associates, Inc., 2017, vol. 30.

122 J. Wu, S. Toscano-Palmerin, P. I. Frazier and A. G. Wilson,
Practical Multi-fidelity Bayesian Optimization for
Hyperparameter Tuning, arXiv, 2019, preprint,
arXiv:1903.04703, DOI: 10.48550/arXiv.1903.04703, http://
arxiv.org/abs/1903.04703.

123 D. Huang, T. T. Allen, W. I. Notz and R. A. Miller, Sequential
kriging optimization using multiple-fidelity evaluations,
Struct. Multidiscip. Optim., 2006, 32(5), 369-382.

124 C. Kim, T. Doan Huan, S. Krishnan and R. Ramprasad, A
hybrid organic-inorganic perovskite dataset, Sci. Data,
2017, 4(170057), 1-11.

125 J. P. Perdew, Density functional theory and the band gap
problem, Int. J. Quantum Chem., 1985, 28(S19), 497-523.

126 J. Heyd, G. E. Scuseria and M. Ernzerhof, Hybrid
functionals based on a screened Coulomb potential, J.
Chem. Phys., 2003, 118(18), 8207-8215.

127 A.V.Krukau, O. A. Vydrov, A. F. Izmaylov and G. E. Scuseria,
Influence of the exchange screening parameter on the
performance of screened hybrid functionals, J. Chem.
Phys., 2006, 125(22), 224106.

128 M. Feurer, B. Letham and E. Bakshy, Scalable Meta-Learning
for Bayesian Optimization using Ranking-Weighted Gaussian
Process Ensembles, ICML 2018 AutoML Workshop, 2018.

129 M. Feurer, B. Letham, F. Hutter and E. Bakshy, Practical
Transfer Learning for Bayesian Optimization, arXiv, 2021,
preprint, arXiv:1802.02219, DOI: 10.48550/
arXiv.1802.02219.

130 M. Patacchiola, J. Turner, E. J. Crowley, M. O’ Boyle and
A. J. Storkey, Bayesian Meta-Learning for the Few-Shot
Setting via Deep Kernels, in Advances in Neural
Information Processing Systems, Curran Associates, Inc.,
2020, vol. 33, pp. 16108-16118.

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

131 M. Wistuba, N. Schilling and L. Schmidt-Thieme, Scalable
Gaussian process-based transfer surrogates for
hyperparameter optimization, Mach. Learn., 2018, 107(1),
43-78, DOI: 10.1007/s10994-017-5684-y.

132 C.]. Taylor, K. C. Felton, D. Wigh, M. L. Jeraal, R. Grainger,
G. Chessari, et al, Accelerated Chemical Reaction
Optimization Using Multi-Task Learning, ACS Cent. Sci.,
2023, 9(5), 957-968.

133 R. J. Hickman, J. Ruza, H. Tribukait, L. M. Roch and
A. Garcia-Duran, Equipping data-driven experiment
planning for Self-driving Laboratories with semantic
memory: case studies of transfer learning in chemical
reaction optimization, React. Chem. Eng., 2023, 8, 2284-
2296.

134 D. T. Ahneman, J. G. Estrada, S. Lin, S. D. Dreher and
A. G. Doyle, Predicting reaction performance in C-N
cross-coupling using machine learning, Science, 2018,
360(6385), 186-190, DOI: 10.1126/science.aar5169.

135 J. C. Gower, A General Coefficient of Similarity and Some of
Its Properties, Biometrics, 1971, 27(4), 857-871. https://
www.jstor.org/stable/2528823.

136 L. Ralaivola, S. J. Swamidass, H. Saigo and P. Baldi, Graph
kernels for chemical informatics, Neural Network., 2005,
18(8), 1093-1110.

137 D. Rogers and M. Hahn, Extended-Connectivity
Fingerprints, J. Chem. Inf. Model., 2010, 50(5), 742-754,
DOI: 10.1021/ci100050t.

138 J. S. Delaney, ESOL: Estimating Aqueous Solubility Directly
from Molecular Structure, J. Chem. Inf. Comput. Sci., 2004,
44(3), 1000-1005, DOI: 10.1021/ci034243x.

139 G. Tom, R. J. Hickman, A. Zinzuwadia, A. Mohajeri,
B. Sanchez-Lengeling and A. Aspuru-Guzik, Calibration
and generalizability of probabilistic models on low-data
chemical datasets with DIONYSUS, Digit. Discov., 2023,
2(3), 759-774.

140 A. Pomberger, A. A. Pedrina McCarthy, A. Khan, S. Sung,
C. J. Taylor, M. J. Gaunt, et al, The effect of chemical
representation on active machine learning towards
closed-loop optimization, React. Chem. Eng., 2022, 7,
1368-1379.

141 K. Kandasamy, A. Krishnamurthy, J. Schneider and
B. Poczos, Parallelised Bayesian Optimisation via
Thompson Sampling, in Proceedings of the Twenty-First
International Conference on Artificial Intelligence and
Statistics, PMLR, 2018, pp. 133-142, ISSN: 2640-3498.

142 M. Ponce, R. van Zon, S. Northrup, D. Gruner, J. Chen,
F. Ertinaz, et al., Deploying a top-100 supercomputer for
large parallel workloads: The niagara supercomputer, in
Proceedings of the Practice and Experience in Advanced
Research Computing on Rise of the Machines (learning),
2019, pp. 1-8.

143 C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig,
et al., SciNet: lessons learned from building a power-
efficient top-20 system and data centre, J. Phys. Conf.,
2010, 256, 012026.

Digital Discovery, 2025, 4,1006-1029 | 1029

https://aip.scitation.org/doi/10.1063/5.0015672
https://aip.scitation.org/doi/10.1063/5.0015672
https://doi.org/10.26434/chemrxiv-2023-jfzrf-v2
https://chemrxiv.org/engage/chemrxiv/article-details/64970d6a4821a835f355c8b9
https://chemrxiv.org/engage/chemrxiv/article-details/64970d6a4821a835f355c8b9
https://chemrxiv.org/engage/chemrxiv/article-details/64970d6a4821a835f355c8b9
https://doi.org/10.48550/arXiv.1903.04703
http://arxiv.org/abs/1903.04703
http://arxiv.org/abs/1903.04703
https://doi.org/10.48550/arXiv.1802.02219
https://doi.org/10.48550/arXiv.1802.02219
https://doi.org/10.1007/s10994-017-5684-y
https://doi.org/10.1126/science.aar5169
https://www.jstor.org/stable/2528823
https://www.jstor.org/stable/2528823
https://doi.org/10.1021/ci100050t
https://doi.org/10.1021/ci034243x
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4dd00115j

	Atlas: a brain for self-driving laboratories
	Atlas: a brain for self-driving laboratories
	Atlas: a brain for self-driving laboratories
	Atlas: a brain for self-driving laboratories
	Atlas: a brain for self-driving laboratories
	Atlas: a brain for self-driving laboratories
	Atlas: a brain for self-driving laboratories
	Atlas: a brain for self-driving laboratories
	Atlas: a brain for self-driving laboratories
	Atlas: a brain for self-driving laboratories

	Atlas: a brain for self-driving laboratories
	Atlas: a brain for self-driving laboratories
	Atlas: a brain for self-driving laboratories
	Atlas: a brain for self-driving laboratories
	Atlas: a brain for self-driving laboratories
	Atlas: a brain for self-driving laboratories
	Atlas: a brain for self-driving laboratories
	Atlas: a brain for self-driving laboratories
	Atlas: a brain for self-driving laboratories
	Atlas: a brain for self-driving laboratories

	Atlas: a brain for self-driving laboratories
	Atlas: a brain for self-driving laboratories
	Atlas: a brain for self-driving laboratories
	Atlas: a brain for self-driving laboratories
	Atlas: a brain for self-driving laboratories

