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1 Introduction

Understanding the language of molecules:
predicting pure component parameters for the PC-
SAFT equation of state from SMILEST

Benedikt Winter, ©2 Philipp Rehner, &2 Timm Esper,® Johannes Schilling @2
and André Bardow & *

A major bottleneck in developing sustainable processes and materials is a lack of property data. Recently,
machine learning approaches have vastly improved previous methods for predicting molecular
properties. However, these machine learning models are often not able to handle thermodynamic
constraints adequately. In this work, we present a machine learning model based on natural language
processing to predict pure-component parameters for the perturbed-chain statistical associating fluid
theory (PC-SAFT) equation of state. The model is based on our previously proposed SMILES-to-
Properties-Transformer (SPT). By incorporating PC-SAFT into the neural network architecture, the
machine learning model is trained directly on experimental vapor pressure and liquid density data.
Combining established physical modeling approaches with state-of-the-art machine learning methods
enables high-accuracy predictions across a wide range of pressures and temperatures, while keeping the
thermodynamic consistency of an equation of state like PC-SAFT. SPTpc_sarr demonstrates exceptional
prediction accuracy even for complex molecules with various functional groups, outperforming
traditional group contribution methods by a factor of four in the mean average percentage deviation.
Moreover, SPTpc_sarr captures the behavior of stereocisomers without any special consideration. To
facilitate the application of our model, we provide predicted PC-SAFT parameters of 13 279 components,
making PC-SAFT accessible to all researchers.

resources. As a recent addition to these approaches, machine
learning methods have emerged as a powerful tool due to their

Developing advanced materials like chemical products, fuels, or
refrigerants is vital for sustainable solutions in various indus-
tries. To achieve this goal, designing new molecules with
tailored properties is crucial. However, exploring all possible
molecules experimentally is impossible, given the vast array of
potential molecular candidates. As a result, models are needed
that can rapidly predict molecular properties to streamline the
molecular discovery and development of sustainable products
and processes.

Over the years, the research on predicting molecular prop-
erties has led to many approaches based on, e.g., quantitative
structure-property relationships (QSPRs),"> group contribution
(GC) methods** and quantum mechanics.””> However, many of
these classical methods either have low accuracy, are limited to
certain functional groups, or require large computational
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ability to learn complex patterns and generalize from data,
overcoming some of the shortcomings of the classical methods.
Some recent examples of machine learning approaches include
methods for the prediction of binary properties such as activity

coefficients’®*® or a large range of pure component
properties.**™”
However, the majority of recent machine learning

approaches focus on singular properties, not a holistic
description of a system. Thermodynamics teaches that equi-
librium properties of fluids are not independent but rather
related through an equation of state. Modern equations of state
are expressed as a thermodynamic potential, usually the
Helmbholtz energy, as a function of its characteristic variables.
All equilibrium properties are then available as partial deriva-
tives of the thermodynamic potential. Equations of state can be
broadly classified into three categories: (1) cubic equations of
state (such as the Peng-Robinson' and the Soave-Redlich-
Kwong" equation of state), (2) highly accurate reference equa-
tions for specific systems (including water,* carbon dioxide,**
nitrogen,? and natural gas components®), and (3) molecular
equations of state (such as the SAFT family>*”). The main
distinction among these categories lies in the data required for

© 2025 The Author(s). Published by the Royal Society of Chemistry
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parameterization, with cubic equations of state necessitating
the fewest parameters and reference equations of state
demanding the most.

Parameterizing equations of state typically relies on experi-
mental data, which is often unavailable for novel molecules or
expensive to obtain from commercial databases or experiments.
In the absence of experimental data, various predictive methods
have been developed for equations of state, primarily focused
on GC methods.?®?® Since group contribution methods rely on
a predefined set of functional groups and their respective
contributions, those methods are limited to certain subsets of
the molecular space and often struggle to predict the properties
of more complex molecules accurately. Furthermore, capturing
effects linked to isomers or more intricate intermolecular forces
requires the definition of higher-order groups, for which
adequate parametrization is more data-demanding,*® or
fundamental improvements to the PC-SAFT-theory.

Recently, machine learning (ML) methods have been devel-
oped to predict pure component parameters for equations of
state. The focus has been on the perturbed-chain statistical
associating fluid theory (PC-SAFT) equation of state developed
by Gross and Sadowski.>> The ML models use as input either
group counts,* molecular fingerprints,* or a variety of molec-
ular descriptors.*® However, these methods are not trained
directly on experimental property data but on previously fitted
pure component parameters of PC-SAFT. This reliance on
previously fitted pure component parameters vastly constraints
the amount of available training data, thus likely limiting the
applicability domain of these models. Moreover, small errors in
predicted pure component parameters can have large effects on
the final predicted fluid properties. Consequently, training
machine learning models directly on experimental property
data is preferred.

In previous work, we demonstrated how explicit physical
equations could be integrated into a machine learning frame-
work, using the NRTL-equation as an example.** However,
integrating PC-SAFT into a machine learning framework pres-
ents two additional challenges: Firstly, PC-SAFT is not explicit in
measurable properties like vapor pressures and liquid densi-
ties. Instead, vapor pressures and liquid densities have to be
determined iteratively from partial derivatives of the Helmholtz
energy, requiring a more sophisticated approach than
a straightforward integration into the neural network. Secondly,
the physical significance of the pure component parameters of
PC-SAFT is the basis of its robust extrapolation, in particular to
mixtures. Therefore, any predictive method should ensure that
parameters related to their physical basis are obtained.

In this work, we present a natural language-based machine
learning model for predicting pure component parameters of
PC-SAFT trained directly on experimental data. For this
purpose, the PC-SAFT equation of state is directly integrated
into our previously proposed SMILES-to-Properties-
Transformer (SPT)."*** The resulting SPT-PC-SAFT model
exhibits high prediction performance, accurately predicting
thermophysical properties for complex molecules with various
functional groups. Remarkably, our model is also capable of
correctly predicting the behavior of stereoisomers.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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2 The SPT-PC-SAFT model

The SPTpcsarr Mmodel is designed to allow the inclusion of
explicit systems of equations into machine learning frame-
works to apply physical constraints. This work uses the PC-
SAFT equation of state, though other equations of state or
any other system of equations could be integrated. In partic-
ular, we use PCP-SAFT with dipole-dipole interactions by
Gross and Vrabec® and a 2B association scheme for all mole-
cules that form hydrogen bonds with themselves. SPT is
a natural language processing model that utilizes the SMILES
code of a molecule as input. Conceptually, our SPT model can
be interpreted as an advanced group contribution approach
that uses characters in the SMILES code as atomic groups and
dynamically assembles higher-order groups via natural
language processing.

Fig. 1 illustrates the overall structure of the proposed SPTp¢.
sarr Mmodel: first, molecules are represented as SMILES codes,
which are fed into a natural language processing model that
predicts parameters, which are used within the PC-SAFT equa-
tion of state to compute vapor pressures pg,c and liquid densi-
ties p;, at a given temperature or temperature and pressure,
respectively. To avoid assigning dipole moments and associa-
tion parameters to non-polar or non-associating molecules, the
likelihood that a component is associating (Asssoc) Or polar
(Apotar) is also predicted by SPTpc.sarr and molecules are only
assigned associating or polar parameters if the molecule is
predicted to be associating or polar. During the model training,
the PC-SAFT equation of state is incorporated into the forward
and backward pass, allowing for the calculation of analytical
gradients of the loss (target function) with respect to the model
parameters. This integration enables us to train a machine
learning model end-to-end on experimental data and not only
on previously fitted parameters.

In the following sections, the model and training procedure
of SPTpc.sarr are described in detail: Section 2.1 introduces the
architecture of the machine learning model and the integration
of the PC-SAFT equation. Section 2.2 describes the data sources,
data processing, and the definition of training and validation
sets. In Section 2.3, we describe the selection of hyper-
parameters and the training process of SPTpc sapr-

2.1 Model architecture

The model architecture of SPTpcsapr (Fig- 2) is largely based on
our previous SPT models,'** which are in turn based on the
natural language model GPT-3 (ref. 36) using a decoder-only
transformer architecture implemented by Vaswani et al.*” The
transformer architecture has been shown suitable for under-
standing not only the grammar of natural language but also the
molecular grammar embedded within SMILES codes, a linear
text-based molecular representation introduced by Weininger,*®
leading to many successful applications in the field of
chemistry.**

In the following, we present the SPTpcsapr architecture in
three sections: input embedding (Section 2.1.1), multi-head
attention (Section 2.1.2), and head (Section 2.1.3).

Digital Discovery, 2025, 4, 142-1157 | 1143
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Fig. 1 Overarching structure of the SPTpc_sarr model and training. Molecules are represented as SMILES and passed into a natural language
model to predict PC-SAFT parameters, which are, in turn, used to calculate vapor pressures ps,t and liquid densities p, for a given temperature or
temperature and pressure, respectively. Furthermore, the likelihood of molecules having associating (A.ssoc) OF polar (Apeiar) interactions is
predicted. During training, the loss function, i.e., target function, is calculated based on the natural logarithm of the pressure or density and the

association and polarity likelihoods.

2.1.1 Input embedding. SPTpc.sapr predicts thermodynamic
equilibrium properties as calculated from PC-SAFT and the cor-
responding pure component parameters using the SMILES codes
of a molecule as input. The SMILES code*® has become a widely
adopted molecular representation for machine learning appli-
cations in chemical engineering and has been used in numerous
recent studies.***"* The SMILES code offers a linear string
representation for complex branched and cyclic molecules. In
the SMILES codes, atoms are denoted by their periodic table
symbols, such as the character “N” for nitrogen, while hydrogen
atoms are implicitly assumed. While single bonds are also
implicitly assumed, double and triple bonds are indicated by the
characters “=” and “#*, respectively. Branches are enclosed in
brackets, and connections of ring structures are represented by
numbers. For instance, the molecule 2-ethyl phenol can be
depicted using the following SMILES code: Oclc(CC)ccecl.
Additional symbols are available for special molecules like “/”
and “\” for cis/trans isomers or “@” for enantiomers. Different
SMILES codes that represent the same molecule will generally
lead to slightly different predictions. To increase the robustness
of the model towards different SMILES codes, up to ten varia-
tions of the SMILES codes are generated using the tool by Bjer-
rum,** of which one is randomly selected at train time. For
reproducible evaluations of the model, the SMILES codes are
canonicalized using RDKit* during evaluation.

The input of SPTpcsarr consists of the SMILES codes repre-
senting the molecule of interest with special characters denoting
the start of the sequence <SOS>, and the end of the sequence
<EOS>. The remainder of the input sequence is filled up to
a maximum sequence length rg.q of 128 with padding <PAD>:

<SOS>, SMILES, <EOS>, <PAD>,...

To render the input string suitable for the machine learning
model, the string is tokenized, breaking the sequence into tokens

144 | Digital Discovery, 2025, 4, 142-1157

that can each be represented by a unique number. Generally,
tokens may comprise multiple characters, but in this work, each
token consists of a single character. The tokenization process for
SMILES can be compared to assigning first-order groups in group
contribution methods. The complete vocabulary containing all
tokens can be found in the ESI Section 1.7

The input sequence undergoes one-hot encoding, where each
token is represented by a learned vector of size nem, = 512. An
input matrix of size 7¢mp, X 715eq is generated by concatenating the
vectors representing the tokens of the input sequence. After
encoding the input sequence, an additional vector is appended
to the right of the input matrix, which holds a linear projection of
continuous variables into the embedding space. In the case of
the original SPT model,** temperature information is encoded in
this vector. In SPTpc.sarr, NO continuous variables are supplied
here, as temperature and pressure information is only intro-
duced in the final stage (see Fig. 2), and thus, the continuous
variable vector only contains zeros. After adding the continuous
variables, the resulting input matrix has a size of nemp X Ngeq + 1.
Subsequently, a learned positional encoding, which contains
a learned embedding for each position, of size neyp, X Ngeq + 1 is
added to the input matrix. At this stage, the input matrix
contains information on all atoms and bonds in the molecule
and their positions. However, each token lacks information
about its surroundings, as no information has been exchanged
between tokens yet. This information sharing between tokens is
discussed in the following multi-head attention section.

2.1.2 Multi-head attention. The multi-head attention
section sequentially stacks multi-head attention blocks.*”
Within each block, the input undergoes layer normalization
before being passed to the multi-head attention mechanism.
This mechanism enables information transfer between tokens.
Although individual tokens possess only self-information after
the input encoding, the multi-head attention mechanism
permits tokens to acquire knowledge about their neighbors or
other relevant atom or structural tokens within their molecule.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.2 Architecture of SPTpc_sarr for predicting PC-SAFT parameters using SMILES codes in an end-to-end training. The model takes the SMILES
code of a molecule as input. In the input encoding section, information about the individual tokens within the SMILES code and their positions are
merged into a single matrix. The multi-head attention section facilitates information exchange between parts of the molecule. In the head
section of SPTpc_sart, the high-dimensional output from the transformer is first reduced to the number of parameters required by the PC-SAFT
head. Subsequently, the output is directed to the PC-SAFT head, which incorporates the PC-SAFT equation of state. The PC-SAFT head receives
the temperature T as additional input for the prediction of vapor pressures and the temperature T and the pressure p for the prediction of liquid
densities. The outputs of the PC-SAFT head are either vapor pressures and liquid densities as well as association and polarity likelihoods.

Consequently, a transformer block could be viewed as a self-
learning nth-order group contribution method, where each
token, or the smallest possible group, learns the significance of
other tokens and self-assembles higher-order groups based on
the molecular structure.

For a more comprehensive and visual explanation, readers
are directed to the blog of Alammar*® or the comprehensive
description in the ESI of our previous work.**

© 2025 The Author(s). Published by the Royal Society of Chemistry

2.1.3 The PC-SAFT head. After the multi-head attention
block, the model obtains a high-dimensional representation of
the molecule (emb X Mgeq), Which needs to be transformed into
a set of pure component parameters to be handled within the
PC-SAFT equation of state. This dimensionality reduction
occurs in the head of the model. We have demonstrated in
previous work on the prediction of activity coefficients that it is

Digital Discovery, 2025, 4, 142-1157 | 1145
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possible to incorporate physical models like the NRTL equation
into the head of our SPT model. However, the PC-SAFT model
introduces additional challenges not present in NRTL:

First, the pure component parameters of PC-SAFT have
inherent physical meaning, and preserving this physical
meaning cannot be guaranteed in a simple regression model.
Second, the target properties used for training the model, i.e.,
vapor pressures and liquid densities, are not direct outputs of
PC-SAFT; instead, these target properties must be iteratively
converged. While software packages are available that provide
robust computations of bulk and phase equilibrium properties
with PC-SAFT,* it is crucial to ensure that the neural network
maintains an intact computational graph to allow the network
to obtain a derivative of the target value with respect to all
model parameters. An intact computational graph can be
ensured when all calculations are conducted within a consistent
framework like PyTorch.

2.1.3.1 Assignment of polarity and association. The PC-SAFT
equation of state is physics-based, and its pure component
parameters are related to properties of the underlying molec-
ular model. For example, the pure component parameter m
denotes the (potentially non-integer) number of segments on
a hypothetical reference fluid, while ¢ and ¢ correspond to
Lennard-Jones interaction parameters that can be expected to
be reasonably transferable between chemically similar mole-
cules. Fortunately, we observe that the pure component
parameters m, o, and ¢ naturally converge to subjectively
reasonable values. However, this natural convergence is not the
case for the pure component parameters that describe polar
interactions (u) and associating interactions (¢*®, x*®). These
pure component parameters should be 0 for non-polar or non-
associating components. This behavior, however, cannot be
guaranteed if the parameters are fitted independently by the
model purely based on experimental data. Therefore, to assign
polar and associating pure component parameters, the SPTpc.
sarr Mmodel must learn if a component has associating and polar

m
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interactions. Here, we predict the polarity and association
likelihood in the head of the SPTpcsapr model. A graphical
description of the PC-SAFT head is given in Fig. 3.

After leaving the multi-head attention section, the model has
an output of size Nemp X Ngeq- TO reduce the dimensionality,
a max function is first applied across the sequence dimensions,
resulting in a vector of size nenp X 1. Afterward, a linear layer
projects this vector to a vector of the auxiliary pure component
parameters of size 8, which contains the auxiliary pure
component parameters of PC-SAFT ¢ = [/ & & &¢*® k*® ] and
auxiliary association and polarity likelihoods (4, P). From the
auxiliary parameters ¢, the pure component parameters of PC-
SAFT ¢ are calculated using the following equation:

¢
¢ = (1 + 10> 'd’mean'A (1)

Here, @mean iS an externally set hyperparameter determined
via a hyperparameter scan. The auxiliary parameters ensure that
reasonable values for the pure component parameters of PC-
SAFT are reached at the beginning of the training when ¢ can
be expected to be small values around 0, effectively serving as
a staring value for the model. Properly setting the ¢mean
parameters ensures quicker convergence. The factor 4 =111
Aassoe Aassoc (1 — ZAassoc)Apolar] 1S Used to activate or deactivate the
association parameters and the dipole moment using the
association and polarity likelihoods Asss0c and Aporar. TO calcu-
late the likelihoods, the auxiliary likelihood parameters A and P
are passed through a sigmoid function that normalizes them
between 0 and 1:

1
Aalsso(: - 2
1+eH 2)

1
Apolar - 1+e7p (3)

Fig.3 Head section of the model. The natural language processing section of the SPT model returns a vector of length 8. This vector contains six

auxiliary pure component parameters of PC-SAFT (m, 4, &, #hB AB

, and ) and the auxiliary association and polarity likelihoods A and P. The

auxiliary likelihood parameters are passed through a sigmoid function that normalizes them, returning the association and polarity likelihood

Aassoc @Nd Ayolar. The associating parameters &8 and k"B

parameter u is calculated by multiplying u with 1 —

are calculated by multiplying the auxiliary parameters e and k with A;ss0c. The polarity
Aassoc @Nd Ayoiar. The resulting pure component parameters are then used in the PC-SAFT

equation of state to calculate either vapor pressure or liquid density using the FeOg framework.#” The results of the FeOg calculation as well as

Aassoc aNd Aolar are passed to the target function.

146 | Digital Discovery, 2025, 4, 142-1157
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For associating molecules, we assume that the association
contribution dominates the polar contribution. Thus, the
dipole moment parameter is set to 0 by multiplying with (1 —

Aassoc);{polar'

The parameters ¢ = [m o ¢ ¢*® k*® u] are then passed into the
PC-SAFT equation of state to compute either saturation pres-
sures pg,e or liquid densities p;. The resulting vapor pressures
and liquid densities are subsequently passed into the target
function along with the associating and polar likelihood A,ss0c
and Apolar, respectively. Including the likelihoods in the target
function helps with distinguishing between different intermo-
lecular interactions. A more comprehensive assessment of the
strength of different intermolecular interactions and more
general association schemes beyond 2B require, in our view, the
integration of mixture data into the parameter prediction (cf:
ref. 48).

2.1.3.2 Preservation of the computational graph. The PC-SAFT
equation of state calculates the Helmholtz energy as a function
of temperature, mole numbers, and volume. Thermodynamic
properties that can be expressed as derivatives of the Helmholtz
energy, such as pressure, chemical potential, and heat capacity,
are also explicit in terms of temperature, volume, and mole
numbers, or, for intensive properties, in temperature 7' and
density p.

However, the pure component vapor pressure is not directly
accessible via a derivative of the Helmholtz energy. Instead, the
pure component vapor pressure is implicitly defined as the
solution of three nonlinear equations,

w(Topy) = w(T,pr) (4)
p(T’pV) = Dsat (5)
p(TapL) = Dsat (6)

which need to be solved for the unknown densities py and py,
and the vapor pressure pg,. Fast and robust solvers for this
system of equations are implemented in the FeOg framework*”
used in this work. However, for the training of the millions of
parameters within SPTpc.sart, it is mandatory to maintain the
full computational graph through the entirety of the neural
network, from the output to the input embeddings. If the
computational graph is interrupted, derivatives cannot be
calculated, rendering learning and thus, training the model
impossible. The call to an external program, such as the FeOq
framework, breaks the computational graph. To address this
issue and ensure a fully connected computational graph, we
implement the Helmholtz energy calculation of PC-SAFT in
PyTorch and conduct the last Newton step of the free energy
minimization using the already converged solution from FeOq
as starting point.

In general, the derivatives of an implicitly defined function
x(¢) that depends on parameters ¢ via fx, ¢) = 0, can be found
by calculating a single step of a Newton iteration starting from
an already converged solution x* as:

S(x* ¢)

X(¢) =x*— m (7)

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

Because f{x*, ¢) is by construction 0, the function value of x does
not change. However, due to the explicit dependence on ¢
automatic differentiation frameworks using both forward
mode, in which case ¢ contains additional dual parts, or
backward mode, in which case all operations are recorded on
a computational graph, can readily determine the first deriva-
tive of x with respect to ¢.

Applying the concept to the calculation of liquid densities
leads to:

p(T.pi.9) —p

T = *77*
D=0 T o9 ©

For the vapor pressures, after solving the system of three
equations shown above, the last Newton step is:

T7 *7 - T7 *a
psal(T7 ¢) = _a( i qlb) al( 2 ¢> (9)

pvoopL

with the molar Helmholtz energy a(T, p, ¢). A derivation of eqn
(8) and (9) is given in the ESL.} It is particularly convenient that
the expression for the vapor pressure only requires an evalua-
tion of the Helmholtz energy in which PC-SAFT and other
equations of state are formulated anyway. For liquid densities,
however, the pressure and its derivative with respect to density
are required. Implementing these derivatives by hand is
cumbersome and error-prone. Therefore, we use an additional
layer of forward automatic differentiation with second-order
dual numbers* in which the real and dual parts are PyTorch
tensors.

Implementing eqn (8) and (9) into the neural network
ensures a fully connected computational graph that can be used
by PyTorch to evaluate derivatives of the loss function while still
allowing the use of efficient external routines to converge states.
While we developed this method to use equations of state, it
could also be applied to a wider range of problems where
parameters for implicit equations have to be determined using
neural networks.

2.2 Data

SPTpcsarr 1S trained using vapor pressure and liquid density
data obtained from, among others, the Dortmund Data Bank
(DDB),* the DIPPR database® and the ThermoML database®
curated by Esper et al.>

From this large data collection, all molecules are removed
that do not contain at least one carbon atom and most metal
complexes except silicon. The remaining data is then split into
two sets depending on their data quality: the clean and the
remaining dataset. The clean dataset contains molecules that
have already been used for the fitting of pure component
parameters of PC-SAFT by Esper et al>® and contains 1103
components, 189 504 vapor pressure data points, and 282 642
liquid density data points. The pressure data in the clean
dataset have undergone a significant effort to eliminate
outliers.” Only data from the clean dataset is used for
validation.

Digital Discovery, 2025, 4, 142-1157 | 1147
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The remaining dataset includes the data of the aforemen-
tioned databases that is not suitable to directly fit pure
component PC-SAFT parameters, as not sufficiently many vapor
pressures and liquid densities are available for a given compo-
nent. However, this data can still be used in SPTpg.gapr due to
the end-to-end training approach. The remaining dataset has
a lower data quality than the clean dataset but contains a larger
variety of molecules. Several steps were conducted to clean the
remaining dataset: first, all data points at a vapor pressure of 1.0
+ 0.1 bar at 298.15 + 1.00 K are excluded, as these seem to be
data points entered erroneously. Then, we removed data points
that could not be fitted using PC-SAFT. To remove the data
points, we trained eight SPTpcsapr models on the clean and
remaining data for 15 epochs using a SmoothL1 loss, thus
giving less weight to outliers than using an MSE loss. Eight
models were used for convenience since eight GPUs were
available to us while providing a good compromise between
robustness and performance. Afterward, we removed all data
points from the remaining dataset that have a training loss
larger than 0.5. In total, 21456 of 233 988 data points were
removed from the remaining data. Fig. S3 in the ESIT illustrates
typical examples of errors identified using our data-cleaning
method. Manual review of the removed data points showed
that mostly unreasonable-looking data points were removed
from the remaining data. The large deviations can either be
attributed to scattering of the experimental data, especially at
low pressures, or to systematic deviations, either due to limi-
tations of PC-SAFT or erroneously reported experimental
results. Overall, 160 186 data points for vapor pressure and 52
343 data points for liquid densities remain in the data set with
12 019 and 2067 molecules, respectively.

As our model was employed to clean the remaining data, it is
important to note that the remaining dataset is solely used for
training the model and not for any form of model validation.
For model validation, only the clean dataset is used.>® Thereby,
we ensure that our model's performance evaluation is based on
reliable and high-quality data and unbiased by our data clean-
ing steps.

Some of the molecules in the training data are structural
isomers such as cis-2-butane and trans-2-butane. SPT uses
isomeric SMILES codes and can thus distinguish between the
cis and trans versions of molecules. However, for some isomeric
molecules, our training data also contains data only labeled
with the non-isomeric SMILES. In these cases, the data is either
one unknown isomer, a mixture of isomers with very similar
properties, or mislabeled data of two differently behaving
isomers. To avoid ambiguities, we dropped any data related to
non-isomeric SMILES codes for components of which isomeric
SMILES are present.

To train the model to recognize if a component is associating
or polar, the training data is labeled. To label molecules as
associating or polar, we use the following approaches: for
associating components, we use RDKit to identify molecules
with at least one hydrogen bond donor site and one hydrogen
bond acceptor site.*> Components that meet this criterion are
labeled as associating. To label molecules as polar, a consistent
database of dipole information is needed. Here, we use the
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Fig. 4 Distribution of dipole moments in the COSMO-Therm data-
base and the threshold of 0.35 D set to assign polarity. To give a better
sense of molecules around the threshold, some molecules with dipole
moments close to 0.35 D are shown. The x-axis represents the range
of dipole moments, while the y-axis shows the frequency of molecules
in each range.

COSMO-Therm database 2020, where the dipole moment is
available for 12 182 molecules in the energy files. If the dipole
moment is above 0.35 D, the molecule is labeled as polar. The
limit is set semi-arbitrary by looking at molecules close to the
limit and judging if they are polar. Examples of molecules
around this polarity threshold are shown in Fig. 4. If a compo-
nent in the training data is unavailable in the COSMO-Therm
database, its polarity likelihood is masked in the loss function
and thus ignored during training. We thus only train the
polarity classifier on the subset of molecules with known
polarity. Polarity information is available for around 95% of all
molecules in the clean dataset and 50% of the molecules in the
remaining dataset.

2.2.1 Validation splits. In this study, we employ an n-fold
cross-validation approach for validating our model using 8
training/validation splits. The data splits are conducted along
molecules, ensuring that all data points of a given molecule are
either in the training or validation set. This data splitting allows
the validation sets to test the model's ability to predict proper-
ties of entirely unknown molecules. While we randomly select
our test set, other approaches include manually constructing
test sets to avoid overlap between similar molecules.**

However, we impose certain restrictions on the data used for
validation. Only components with at least three carbon atoms
are included in the validation set, as extrapolation from larger
molecules towards very small molecules, such as methane and
carbon dioxide, works poorly and the space of small molecules
is already well-explored experimentally. Thus, pure component
parameters of PC-SAFT are generally available for small mole-
cules.”® Additionally, structural isomers are treated as one
component with respect to training/validation splits. Therefore,
if the trans version of a molecule is in the validation set, the cis
version is also included in the validation set, and vice versa. The
same workflow is applied for enantiomers.

In previous work, it was demonstrated that the prediction
error of molecular properties tends to exhibit a roughly log-
linear relationship with the amount of training data for the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Final mean parameter values @mean Of the parameter scan.
Final values are determined by training a model on a range of
parameters and selecting the set of parameters leading to the lowest
loss

Parameter m alA elk/K w/D KB AB/k/K

Crmean 2 5 300 3 0.005 1500

prediction of activity coefficients.'* Although it would be inter-
esting to explore similar data scaling for PC-SAFT, the signifi-
cant computational resources required are beyond the scope of
this paper.

2.3 Hyperparameters and training

The base model architecture for SPTpc sarr is adopted from our
previous SPT-NRTL model** with no further modifications to the
architectural hyperparameters such as embedding size, number
of layers, and hidden factor. For training SPTpc sarr, We USe an
initial model pretrained on concentration-dependent activity
coefficients using a regression head described in Winter et al.**

To identify good values for ¢mean, We generated a synthetic
training dataset with 1494 pure component parameters of PC-
SAFT from the work of Esper et al.>® and used these parame-
ters to calculate 100 pressure and density values. To validate our
model's performance, we reserved 5% of the components as
a separate validation set. Over this set, a scan was conducted
using the parameter values listed in Table 1, and the set of
parameters leading to the lowest loss on the test set was chosen.

View Article Online
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During the hyperparameter scan, we found that values for
¢mean that overestimate the critical point help with the
convergence. The overestimation ensures that most calcula-
tions return valid results in the initial stages of the model
training, speeding up the training and avoiding divergence of
the model. Vapor pressure data for temperatures above the
predicted critical point are excluded from the calculation of the
loss function to avoid poisoning the gradients with NaN values.
This treatment is particularly relevant at the beginning of the
training, where deviations are large. For highly converged
models, failures in the calculation of vapor pressures are
unlikely due to PC-SAFT's inherent tendency to overestimate
critical points.

The training was performed on 4 RTX-3090s using a learning
rate of 10~* and 50 epochs. Training takes about 10 h for 8
training/validation splits running two models per GPU in
parallel.

3 Predictive capabilities of
SPT-PC-SAFT

In our analysis of predictive performance, we utilize APD as our
primary metric. To start, we determine the APD for individual
molecules:

y,,/ Vij ‘
APD,; =

MZ

where M; is the number of datapoints for component i, y; ; is the
experimental value and y; ; is the predicted value for component

(10)
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Fig.5 Cumulative deviation curve of vapor pressure prediction of the average percentage deviation for each molecule in our validation set. The
fit line represents the average training loss for the same molecules from other splits and serves as a lower bound on tl]e achievable accuracy of
our predictive model. To provide a better sense of the APD values, we have included the plot of vapor pressure over — for four molecules with

APD values of 2%, 9%, 19%, and 45%, respectively.
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i and datapointj. Subsequently, we evaluate either the mean or
median of these deviations across the entire dataset. This
approach ensures that molecules with numerous data points,
such as propane, do not disproportionately influence the
prediction discussion. Deviations for vapor pressure pg,: and
liquid density p;, are calculated independently of each other.

100 0.5
10°
ot 0.4 :
® %
3
e 1 0.3%
0
g 102 2
; 0.2%
0 1 .
& 10 §
10° z
013
10-!
10-2 0.0

10 20 30

Number of heavy atoms

Fig. 6 Average percentage deviation in vapor pressure as a function of
experimental vapor pressure and the number of heavy atoms in the
molecules. Deviations larger than 0.5 are truncated at 0.5.

View Article Online

Paper

Unless explicitly stated, we focus on the deviation in the vali-
dation set, representing the model's prediction, rather than the
deviation in the training set.

3.1 Prediction of vapor pressures and liquid densities

The SPTpcsarr Model exhibits a mean APD of 13.5% and
a median APD of 8.7% for predicting vapor pressures in our
validation set, consisting of 870 components. Fig. 5 presents
a cumulative deviation curve of the APD for the validation set
and the training set. The training set is comparable to a fitted
model and should thus provide an upper bound for the accu-
racy of PC-SAFT on our training dataset. The results highlight
the robustness of SPTpcsapr- Only a minor portion of the
molecules in the validation set exhibited a notably high APD:
3% had an APD exceeding 50%, while only 0.4% surpassed an
APD of 100%. This indicates accurate predictions of the vapor
pressure for the vast majority of the validation set's molecules.

Fig. 5 illustrates additionally how the APD translates into
pressure-temperature (p/T) plots and demonstrates the diverse set
of molecules for which SPTpcgarr can account. These examples
are cyclohexylamine with an APD of 2%, ethyl cyanoacetate with
an APD of 9%, octamethyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane
with an APD of 19%, and triacetin with an APD of 51%.

The relationship between APD, molecule size, and vapor
pressure range is further illustrated in Fig. 6, which displays the
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Fig. 7 Average percentage deviation in vapor pressure as a function of the molecular family. Molecular families are assigned according to the
DIPPR database.’* Of the 870 components in the validation set, 609 components could be assigned a molecular family. Green boxes show
families with a median APD of 2.5% below the overall mean APD of 13.5%, red boxes show families with an APD of 2.5% above the overall mean

APD.
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APD in vapor pressure prediction as a function of the number of
heavy atoms and pressure. A region of relatively low APD is
achieved for molecules containing between 4 and 20 heavy
atoms within a vapor pressure range of 1 kPa to 100 MPa. In
contrast, high deviation predominantly occurs at the edges of
the data space, particularly for large molecules at low pressures.
This behavior might be due to a lower density of data and
higher uncertainty when measuring low-pressure systems.

In Fig. 7, the relationship between APD (Average Percentage
Deviation) and molecular families is explored. The classifica-
tion of the molecular families is based on the DIPPR database,**
which contains families for 609 out of the 870 components in
the validation set. Molecules not assigned to a family are
excluded from this analysis. A noticeable correlation is obtained
between the expected prediction error and the molecular
families. Notably, molecular families composed solely of oxygen
and carbon exhibit above-average prediction accuracy. In
contrast, fluorinated, halogenated (bromide and iodine), and
particularly nitrogen-containing compounds present challenges
in prediction. A comprehensive list of the validation set, cate-
gorized by molecular group, can be found in the ESL{ Overall
SPTpc-sarr, performs well for the majority of molecular families.

The APD in liquid density is generally lower than the devia-
tion in vapor pressure. A comparison of the numerical values for
the two quantities is difficult due to the different range and
quality of the data. The trend is in line with the general behavior
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of PC-SAFT, as demonstrated by the large-scale parameteriza-
tion of Esper et al.>® For densities, our SPTpc.sapr model ach-
ieves a mean APD of 3.1%. Predicted liquid densities at 1 bar are
shown for a range of alkanes and alcohols in Fig. 8, generally
demonstrating a good agreement with the measured data.

3.2 Plausibility of predicted PC-SAFT pure component
parameters

One major advantage of the PC-SAFT model is the physical basis
of its parameters. Thus, any predictive model should only assign
polar and associating interactions when they are reasonable. We
achieve this by introducing the polarity and association likeli-
hood (see Section 2.1.3). Table 2 provides an overview of selected
pure component parameters of PC-SAFT predicted by SPTpc sapr-
The pure component parameters m, g, and ¢ are predicted within
anticipated ranges. The chain length parameter m increases
along the homologous series, while the segment diameter ¢ and
interaction energy e are similar for molecules in the same
chemical family. The association is accurately identified for
alcohols, and polarity is properly assigned to ethers. On the one
hand, 1-ethoxypentane gets assigned a dipole moment of 2.5 D
with a polarity likelihood of nearly 1. On the other hand, 1,2-
diethoxymethane exhibits no dipole moment due to its higher
symmetry, as correctly recognized by SPTpc.sarr- Consequently,
the assignment of polarity and association. However, in some
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Fig. 8 Prediction of molar density of C4 to C10 alkanes (a) and alcohols (b) at 1 bar over a range of temperatures using SPTpc_sarr (lines).

Experimental data (crosses) are taken from the DDB.

Table 2 Examples of pure component PC-SAFT parameters predicted by SPTpc-sart

Name SMILES m alA elk/K w/D KAB eBlk/K
Butane CCCC 2.3 3.7 224

Hexane ccccce 2.9 3.9 244

Octane CCCCCccCC 3.6 3.9 248

1-Butanol CCCCO 3.2 3.5 247 0.006 2409
1-Hexanol CCCCCCO 3.7 3.6 258 0.005 2498
1-Ethoxypentane CCCCCOCC 3.9 3.7 236 2.5

1,2-Diethoxymethane CCOCOCC 3.6 3.5 231
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cases the assignment of polarity failed, and non-polar or weakly
polar components are assigned a dipole-moment. This current
limitation of our model can, in particular, be apparent for small
molecules, for which extrapolation from a dataset of larger
molecules is difficult, e.g., for methane. Thus, we have published
predicted parameter only for molecules with more than 3 heavy
atoms, because highly accurate fitted parameter sets for small
molecules are likely available from other sources, e.g.,*.
Furthermore, while the assignment of polarity is physics based,
the absolute value of the predicted dipole moment u is not and
shows divination from dipole moments predicted using COSMO-
RS (see ESI 57).

The ESIt presents the receiver operating characteristic (ROC)
curves of the association and polarity likelihood parameters,
illustrating the trade-off between true positives and false posi-
tives. SPTpc sarr achieves a 100% true positive rate for associating
molecules and approximately a 90% true positive rate for polarity.
Given that we use classification in the normally continuous
spectrum for polarity, a 100% true positive rate is not expected.
Therefore, our model architecture enables SPTpcgapr tO accu-
rately learn when molecules exhibit associating or polar interac-
tions and assign appropriate pure component parameters.

3.3 Comparison to homosegmented GC method and recent
ML models

To assess the predictive capabilities of our method, we compare
it to the homo-segmented group contribution method proposed
by Sauer et al.,® in the following called GC-Sauer. The group
contribution method by Sauer et al® calculates the PC-SAFT
parameters from the contributions of individual functional
groups. We define two sets of molecules that differ in the breadth
of the molecular space: The interpolation set contains molecules
that belong to the chemical families that Sauer et al® used to
parameterize the GC method (branched alkanes, alkenes, 1-
alkynes, alkylbenzenes, alkylcyclohexanes, alkylcyclopentanes,
ethers, aldehydes, formates, esters, ketones, 1-alcohols, and 1-
amines) but only containing a maximum of one functional group
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as in Sauer et al.® The interpolation set likely contains many of
the molecules on which the GC method was originally fitted.
Thus, the GC-Sauer method enjoys a maximum advantage in the
comparison. The extrapolation set contains molecules outside of
these chemical families that can still be fragmented into the
groups defined by Sauer et al.® but that do not contain more than
one polar or associating group to not extrapolate from the GC-
Sauer method to far. The extrapolation set contains important
molecules like cyclohexylamine or phenyl acetate that are diffi-
cult to describe accurately for GC methods. In total, the inter-
polation set contains 256 molecules and the extrapolation set
contains 67 molecules.

The comparison between SPTpcsapr and GC-Sauer on the
two sets of molecules indicates a substantial difference between
the performance of the GC-Sauer and SPTpc.sarr methods when
extrapolating beyond the interpolation set (Fig. 9): while the GC
method performs decently within the interpolation set, with
a mean APD of 12.8% compared to 7.3% of SPTpcsapr for the
vapor pressure, it falls short when extrapolating to more
complex molecules, resulting in a much larger mean APD of
48.0% compared to 11.1% for SPTpc.sarr- Similar performance
benefits are observed for SPTpc.sapr in predicting liquid densi-
ties. Here, for the interpolation set, SPTpc.sarr has an mean APD
of 4.0% compared to 6.4% of GC-Sauer and, for the extrapola-
tion set, 3.5% compared to 11.9% of GC-Sauer.

Our results demonstrate that the much simpler GC method
of Sauer et al.® performs reasonably well for molecules similar or
equal to those to which it was parameterized, but extrapolating
capabilities are limited for more complex molecules. To cover
a more comprehensive molecular space without manually
defining an extensive set of (potentially higher order) groups, an
approach that captures the complexities of molecules, like
SPTpcsarr, 1S required. Moreover, even compared to more
complex and recent machine learning approaches SPTpc.sarr
compares favorably.

Compared to the recently published methods by Felton
et al®® and Habicht et al,*® SPTpcsapr compares favorably.
However, since there is no consistent validation set used across
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Fig. 9 Cumulative deviation plot of the average percentage deviations of the molecules in the extrapolation and interpolation sets for
predictions of (a) vapor pressures p,,, and (b) liquid densities p . The predictive performance of both models is lower on the extrapolation dataset,

where SPT outperforms GC-Sauer significantly.
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the studies, there is some uncertainty in this discussion. The
reported average relative percentage errors in vapor pressures
by Felton et al.*® are 39% based on a similar dataset as our clean
dataset, compared to SPTpcsarr mean APD of 13.5%. Habicht
et al.* report average relative percentage deviations below 20%
for many molecular families, however, limited to non-polar,
non-associating molecules for which SPTpcsapr has a mean
deviation of 10%. Overall, the better performance of SPTpc.sarr
might lie in the direct training on experimental data and not on
previously fitted PC-SAFT parameters. Thus, SPTpc.sapr iS able
to use a larger amount of data points and avoids error accu-
mulation via the additional regression step.

3.4 Differentiation of stereoisomers

Stereoisomers are molecules that have the same molecular
formula and constitution but different structural arrangements
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due to differently arranged bonds. Although these subtle
structural differences might appear insignificant, they can
impact the properties of isomers substantially in some cases.
GC methods often struggle to capture these differences in
stereoisomers as they require large higher-order groups to
differentiate between them. However, SPTpcgapr utilizes
isomeric SMILES as input, enabling the model to distinguish
between stereoisomers. Unfortunately, our validation data
contains only 35 pairs of stereoisomers, the majority of which
exhibit no significant difference in vapor pressure. Therefore,
we assess the prediction of stereoisomers based on individual
examples and a comprehensive statistical analysis has to be
performed as soon as more data on stereoisomers is available.

For four example isomere pairs, i.e., the cis and trans isomers
of 1,1,1,4,4,4-hexafluorobutene, stilbene, 2-hexene, and 2-hex-
anedinitril, the predicted vapor pressure is shown in Fig. 10.
Due to the different polarity, the isomers of 1,1,1,4,4,4-
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Pressure—temperature plots of the isomer pairs (a) 1,1,1,4,4,4-hexafluorobutene, (b) stilbene, (c) 2-hexene and (d) 2-hexenedinitril.
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hexafluorobutene and stilbene have measurably different vapor
pressures. SPTpcgapr iS able to predict the trend in vapor
pressures, which is remarkable considering that the majority of
isomers in the training data is similar to 2-hexene which shows
no significant difference between the two isomers. However, 2-
hexenedinitrile presents a challenge for the model, as it fails to
distinguish between isomers even though there is a difference
in vapor pressure between the cis and trans versions. When and
why SPTpcsarr fails in distinguishing specific isomers should
be subject to further research. We observed some instances
within our training data of likely mislabeling between isomers,
which may impede the model's performance. Overall, the
results concerning stereoisomer differentiation are encour-
aging, but more and better data on stereoisomers is required to
unlock the full capability of the model.

3.5 Publication of predicted pure component parameters

While the current SPTpcsarr model is efficient and straightfor-
ward to set up, executing machine learning models can still
present a barrier to entry when only single components are of
interest. To enhance the accessibility of our model, we have pre-
dicted pure component parameters of PC-SAFT for millions of
components, as we have previously with a set of 100 million NRTL
parameters.® Predicted pure component parameters of PC-SAFT
are available for all 13 645 molecules contained in our training set.

By making these pre-computed pure component parameters
available, we aim to facilitate broader adoption and utilization
of the PC-SAFT equation of state across various applications and
allow for exploring vast molecular spaces.

4 Conclusion

In this study, we introduce the machine-learning model SPTpc.
sart, Which can predict thermodynamic equilibrium properties
using the PC-SAFT equation of state and the corresponding pure
component parameters of PC-SAFT from the SMILES code of
a molecule. SPTpcgapr IS @ modification of the SMILES-to-
Properties-Transformer (SPT)" and overcomes challenges
posed by the complexity of integrating the PC-SAFT equation of
state into machine-learning models.

Our model demonstrates excellent predictive performance
on a validation set of 870 components, achieving a mean APD of
13.5% for vapor pressures and 3% for liquid densities.
Remarkably, 99.6% of the predictions fall within a factor of 2,
indicating a minimal presence of outliers.

Compared to the homo-segmented group contribution
method of PC-SAFT by Sauer et al.,’ our SPTpcsapr model
provides significantly higher quality predictions for both vapor
pressures and liquid densities and compares favorably to more
recent ML models. In particular, for more complex molecules,
the prediction accuracy of SPTpc.sarr is four times higher than
the group contribution method. Moreover, our model can
differentiate between stereoisomers, highlighting its potential
for improved accuracy in predicting the properties of subtle
molecular effects. We believe that SPTpc.sapr Offers a versatile
and robust approach for predicting equilibrium
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thermodynamic properties and the corresponding pure
component parameters of PC-SAFT, allowing for applications in
thermodynamics, process engineering, and material science.

However, the current formulation for the prediction of
dipole moments only allows for the assignment of dipole
moments on a physical basis, but not the prediction of its
magnitude. Furthermore, a more in-depth study of the rela-
tionship between amount and quality of the training data and
the final-prediction quality as well as the uncertainty of
predictions towards the data are still lacking and will be part of
future research.

To make our model more accessible to researchers and
industry professionals, we have precomputed pure component
parameters of PC-SAFT for a large number of components.

The SPTpc sarr model presents a significant advancement in
the prediction of equilibrium properties and corresponding
pure component parameters of PC-SAFT. By leveraging machine
learning techniques, our model offers improved accuracy in
predicting the properties of various molecules while being
capable of handling complex molecular structures and subtle
differences in isomers. The availability of precomputed pure
component parameters of PC-SAFT will further facilitate the
adoption of our model and enable its use in a broad range of
research and industry applications.

Data availabilty

The training data is licensed from a third party, and we have no
permission to publish it. https://www.ddbst.com/. All code was
made available for the review process. We publish around 13
000 PC-SAFT parameters predicted by our model in the ESIT of
this publication https://arxiv.org/abs/2309.12404.
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