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With the increasing interest in developing catalytic materials based on atomically dispersed transition

metals on heterogeneous supports, it is necessary to have an atomic-level understanding of the factors

that impact their structural and electronic properties and, ultimately, their reactivity. In this contribution, we

address and elucidate with electronic structure calculations open questions related to the ethane

dehydrogenation mechanism on silica-supported mononuclear Fe(II) and Fe(III) sites. Contrary to prior

hypotheses, we determine that the σ-metathesis on Fe(II) sites is an unlikely dehydrogenation mechanism.

On tricoordinate and tetracoordinate Fe(II)@SiO2, the reaction proceeds via heterolytic C–H bond activation

and β-hydride elimination facilitated by spin-crossing. Atomically dispersed Fe(III) grafted on SiO2 exhibits a

more complex behavior as it seems to be undergoing autoreduction and we propose a new redox ethane

dehydrogenation mechanism which, remarkably, is energetically competitive with the heterolytic C–H

activation mechanism previously identified for other transition metals.

1. Introduction

Transforming hydrocarbons through C–H bond activation is a
pivotal challenge in chemistry as it offers us access to
molecules of economic importance. Dehydrogenation of
ethane to ethylene is garnering renewed interest on account
of the abundant shale gas.1,2 In tandem, sustainability efforts
are driving the need for catalytic materials utilizing earth-
abundant metals.3 Operating at the single atom limit further
allows us to leverage atom efficiency and ease of separation.4

Amorphous silica-supported mononuclear first row 3d-
metals M@SiO2 (M = Fe(II),5 Co(II)6–8 and Zn(II)9) have shown
promising catalytic activity for ethane dehydrogenation, with
Co(II) demonstrating high selectivity. The mechanism on
Co(II)@SiO2 has been elucidated by Srinivas et al.,10 who
showed that high-spin (quartet) Co d7 catalyzes the C–H
activation heterolytically and that the ensuing β-H
elimination is facilitated by spin-crossing to the doublet
state. By microkinetics simulations, Srinivas et al.10 further
showed that the β-H elimination is rate-controlling.

Isolated Fe species grafted on silica or incorporated in the
framework of silicates also exhibit interesting catalytic
properties. Hu et al.5 synthesized isolated 3-coordinate Fe(II)
@SiO2 and demonstrated that it was selective and stable for
propane dehydrogenation. The mechanism in this case has
not been elucidated, although it has been suggested that the
reaction could proceed either via the heterolytic pathway
described above or via σ-bond metathesis between the Fe-
hydride and an alkane molecule, to form H2 and an Fe-alkyl
as in the case of late transition metal complexes.11,12 Isolated
Fe(III) species have been incorporated in the matrix of SBA-15
by Nozaki et al.13 and by Cheng et al.14 Site stability of Fe(III)
on amorphous silica is challenging due to mobile Fe centers
that form FeOx agglomerates, which can be mitigated by
deploying bulky ligands as precursors.13,15 Grosso-Giordano
et al.15 have further hypothesized that the crystalline spatial
arrangement of hydroxyls in siliceous zeolites provides a
more favorable environment for enhanced Fe(III) uptake
compared to amorphous silica in grafting experiments.15

Interestingly, Lobo and co-workers have suggested a redox
mechanism for the dehydrogenation of propane over
isomorphously substituted H–[Fe(III)]-ZSM5 (ref. 16 and 17)
but to the best of our knowledge the mechanism has not
been confirmed. Notably, d4 to d8 metal centers can cleave
C–H bonds through various pathways.18

Tuning the coordination environment of surface-bound,
well-defined transition metals is critical to the development
of new catalysts for C–H activation on heterogeneous
supports with well-defined catalyst species. In the case of
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amorphous silica supports, the challenge is compounded by
the absence of structural uniformity.19,20 Characterization
methods, such as EXAFS and XANES, provide space-averaged
information rather than the local structural features of the
grafted site that catalyze the reaction. Not all
spectroscopically relevant sites, or the most abundant sites,
are necessarily catalytically active. For instance, in the
Phillips catalyst (Cr@SiO2), only 10% of the sites are active.21

Co@SiO2 presents a similar case, where small but detectable
amounts of Co(III) are present in the as-synthesized Co@SiO2

catalyst.22 This necessitates consideration of other possible
sites to explore possible local geometries in mechanistic
investigations that may or may not have been picked up in
experiments. To make progress, we first need to eliminate
ambiguities related to the reaction mechanisms and how
they are influenced by the structural properties of the active
site.

In this contribution, we focus on ethane-to-ethylene
dehydrogenation on various structural models of the active
site of silica-supported mononuclear Fe(II) and Fe(III). With
the aid of electronic structure calculations, we elucidate open
questions related to the dehydrogenation mechanism. We
consider tricoordinate and tetracoordinate Fe(II) sites and
determine that σ-metathesis is an unlikely dehydrogenation
mechanism on Fe(II)@SiO2, regardless of the coordination
geometry. On Fe(II)@SiO2, the kinetically favored pathway
involves heterolytic C–H activation by a siloxide pair Fe–OSi–,
followed by β-hydride elimination facilitated by spin-crossing,
akin to Co(II)@SiO2. However, the energetics and dynamics of
the spin crossover phenomena during the rate-limiting β-H
elimination of supported Fe(II) and Co(II) are different, in
contrast to the corresponding alkyl complexes in
organometallic chemistry.23,24 We show that Fe(III)@SiO2

exhibits a more complex behavior and present a new redox
dehydrogenation mechanism which, energetically, is on a par
with the heterolytic mechanism on Co(II)/SiO2.

2. Methods

Electronic structure calculations were performed in Gaussian
09 version d01 (ref. 25) using the long-range-corrected hybrid
functional CAM-B3LYP26 and the triple-ζ (def2TZVP) basis set
for all atoms. CAM-B3LYP has been benchmarked for systems
exhibiting charge transfer and against experimental spin-
crossover enthalpies of organometallic Fe(II) and Fe(III)
complexes.27 We performed vibrational frequency analysis to
confirm the character of all stationary points. To corroborate
the correct link between the transition states and
corresponding minima, we performed intrinsic reaction
coordinate (IRC) calculations. Thermal corrections to the
electronic energies were computed at 898.15 K. We followed
the protocol established by Srinivas et al.10 to compute the
tunneling factor at the minimum energy crossing point
(MECP). We used the formalism of Harvey28 to obtain an
estimate of the MECP, followed by vibration frequency
analysis using GLOWfreqs29 to confirm the nature of MECP.

Spin–orbit coupling constants were estimated using the
methodology by Bellows et al.23

3. Results and discussion

First, we discuss catalytic pathways on structural models of
the Fe(II) active site. We considered the siloxane cluster30

shown in Fig. 1a and created tetrahedrally coordinated Fe(II)
sites by deprotonating two silanol (–SiOH) groups.
Tetrahedral Fe(II) silicates are reported in organometallics31,32

and in oxides such as Fe2SiO4 (ref. 33 and 34) and synthetic
glasses.35 With a formal charge of −2 on the cluster model,
the formal charge on the Fe atom was +2 (d6 configuration),
making the system electroneutral. In the model shown in
Fig. 1a, the tetrahedral Fe atom is coordinated by two
silanolate groups (–SiO−), one siloxane (–Si–O–Si–) oxygen
and one silanol group. The 3-coordinate Fe(II) active site
model (Fig. 1b) was hewn out of the 4-coordinate model and
the Fe(II) center was coordinated to two –SiO− ligands and
one –Si–O–Si– group. All dangling bonds in the siloxane
clusters were capped with H atoms which were held fixed
throughout the subsequent geometry optimization and
transition state calculations. Fluorine and hydroxyl (OH) have
been investigated as alternate capping agents on the siloxane
cluster model for the Cr/SiO2 catalyst to study ethylene
polymerization reaction, and were shown to have minimal
effect on the activation barriers.36 In general, –OH group
introduces spurious hydrogen bonds and is thus avoided.19

Our choice of H atom termination is in line with prior
works.37,38 We further cleaved the tetrahedral cluster to
generate the tricoordinate Fe(II) structure, in accordance with
the EXAFS results of Hu et al.5 shown in Fig. 1b. Although
Guo et al.39 have identified and Toraman et al.40 have
confirmed carburized Fe species, we did not model such
active sites as they become relevant only at temperatures
much higher than those for dehydrogenation. Small cluster
models have been previously used to investigate atomically
dispersed 3d metals on the silica surface such as Cr/
SiO2,

41–43 V/SiO2,
44 Co/SiO2 (ref. 8 and 10) and Zn/SiO2 (ref. 9)

with the implicit assumption that the electronic effects are
localized, making small cluster models reasonably accurate.
Minimal cluster models are typically preferred as they make
no structural assumptions about the support,19 with a
growing body of evidence that larger models show
comparable results as the smaller ones.45 The ground

Fig. 1 Structural models of the Fe(II)@SiO2 active sites. (a)
4-Coordinate geometry. (b) 3-Coordinate geometry (purple: Fe; red:
O; white: H; teal: Si.).
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electronic state of the Fe d6 bare active site is the quintet, as
expected in the weak-field ligand environment of silica.
Hereafter, the spin state of an intermediate or transition state
will be indicated by a superscript, and the coordination
geometry of Fe is indicated by a subscript, “t” for
3-coordinate and “tet” for 4-coordinate.

On both the tricoordinate and tetracoordinate Fe d6

structural models, we tested the dehydrogenation mechanism
shown in Fig. 2. The corresponding potential energy profiles
and transition states are shown in Fig. 3(a) and (b),
respectively. Following the ethane coordination to Fe (2), the
C–H bond is activated by the metal center and a –SiO− ligand
that abstracts the hydrogen, forming the metal ethyl
intermediate 3 and a –SiOH. The ground electronic state
remains a quintet, regardless of the Fe′s coordination

geometry. However, the 3-coordinate site presents a slightly
lower intrinsic C–H activation barrier than the 4-coordinate
model by about 0.14 eV (1.68 eV on the 3-coordinate vs. 1.82
eV on the 4-coordinate). The C–H activation is indeed
heterolytic as analysis of the Mulliken spin densities ruled
out a proton-coupled electron transfer (PCET) mechanism
(ESI† Table S1). In a PCET mechanism, the abstracted
hydrogen atom would still have ended up on the oxygen atom
as a proton, but its electron would have been transferred to
the metal center. The Mulliken analysis showed 4 unpaired
electrons on Fe d6, indicating no reduction, and zero spin
density on the abstracted H and on the carbon atom of 3.
The spins on the oxygen ligands remained quenched. The
Fe–C bond distance in 53 is 2.0 Å in the 3-coordinate site and
2.06 Å in the 4-coordinate, both in good agreement with the
distance of 1.96 Å reported in Hu et al.'s5 EXAFS studies of
the as-prepared and H2 pretreated Fe(II)@SiO2 catalyst at 400
°C.

TSag in Fig. 3 refers to the agostic transition state in the
tetra-coordinate site preceding the β-hydride elimination
step, and it involves the H2 atom (atom labelling in Fig. 4)
coordinated to both the C2H5 moiety and the Fe (see Fig. S1
in the ESI†). Unlike the tetracoordinate site, which is
sterically hindered, the tricoordinate site did not present any
agostic transition state and intermediate 3 in Fig. 3(a) is
already an agostic product. We arrive at this conclusion due
to geometric similarities between intermediates 3ag and 3
and evidence from literature.23 However, the agostic
intermediate is mechanistically inconsequential as it
precedes the spin-crossing event.

As can be seen from the electronic energy profiles in
Fig. 3 during the ensuing β-H elimination from the Fe-ethyl
intermediate (53), the Fe d6 atom undergoes a spin flip into
the triplet state, which lies lower in energy than the quintet.
Spin pairing is induced by spin–orbit coupling and empties a
metal d-orbital to accommodate the formation of the metal-

Fig. 2 Ethane dehydrogenation on Fe(II)@SiO2. Heterolytic C–H
activation and β-H elimination.

Fig. 3 Electronic energy profiles for the mechanism shown in Fig. 2 on Fe(II)@SiO2 sites. (a) 3-Coordinate Fe(II) geometry. (b) 4-Coordinate Fe(II)
geometry. The profiles correspond to the two lowest-lying spin states, the quintet and the triplet. Relevant intermediates and transition states (in
bold) are indicated in the energy profile with spin states in superscripts. Quintet to triplet spin-crossing takes place prior to the β-H elimination
transition state. In (b), note the agostic intermediate (and associated transition state 3TSag) preceding the β-H elimination transition state (3TS2) in
the triplet spin state. Intermediate 1 is the reference state, with energy equal to the sum of energies of the bare active site and C2H6(g).
Intermediates 2–4 are surface bound species. C2H4(g) + H2(g) are the gaseous products of the reaction pathway, and the energy level is obtained
by subtracting the DFT energy of C2H4(g) + H2(g) from C2H6(g). Full mechanism including the hydrogen recombination step is presented in Fig. S2†
of the accompanying ESI.†
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hydride. It is typical in high-spin complexes and has been
reported for the Fe(C2H5)

+ cation,46 diketiminate-supported
Fe(C2H5) complexes23 and several other systems.47 Because of
the spin-crossing, the repulsive three-electron two-orbital
interaction in the high-spin state becomes an attractive two-
electron two-orbital interaction in the low-spin state, which
lowers the β-H elimination barrier (see Fig. 5). Regardless of
the coordination geometry of the active site Fe (3-coordinate
or 4-coordinate), the triplet transition state assumes square
planar geometry, typical of low-spin complexes. As can been
seen from Fig. 2, past the β-H elimination transition state,
the complex crosses over back to the quintet state, which is
the ground electronic state of the metal-hydride (see
Fig. 4b and d for β-H elimination transition state on
tricoordinate and tetracoordinate site, respectively). Similar
spin-crossing events have been reported by Srinivas et al.10

for atomically dispersed Co d7 on silica. Unlike Co, however,
spin–orbit coupling in Fe is not strong and this has a couple
of implications. First, the low-spin β-H elimination transition
state is not significantly lower than the high-spin one
compared to the corresponding states in Co(II)@SiO2,
explaining the lower activity for small alkane
dehydrogenation observed in experiments.5 It must be noted,

however, that the quintet-triplet gap is noticeably smaller for
the 3-coordinate than the 4-coordinate geometry, presumably
because the former affords the system greater flexibility.
Second, the dynamics of the β-H elimination is non-adiabatic
with a tunneling constant of 0.86, lower than that obtained
for Co(II)@SiO2 corresponding to an adiabatic transition.10

At high temperatures, entropic contributions are
dominant.48 The entropies of formation of the transition
state is negative for both C–H activation steps, in alignment
with the dissociative nature of these steps. Free energy
barriers are higher than electronic energies (see Fig. S3 in the
ESI†). The rate determining step is the β hydride elimination
step in the heterolytic cleavage mechanism, the same as that
for Co(II)@SiO2. High-spin states result in longer bond
lengths due to repulsion within the occupied orbitals,
making the transition states more flexible and contributing
more to the entropic term. In contrast, low-spin states have
tightly bound transition states with shorter bonds, leading to
lesser entropic corrections. This leads to the flipping of the
spin state order at reaction temperatures in the free energy
diagrams, further suggesting the minimal benefit from spin
crossover during β-hydride elimination. The hydrogen
recombination step has a lower free energy change because
the elementary step is an association reaction with partial
H-H bond formation.

Instead of the hydrogen recombination (6) completing the
cycle, as shown in Fig. 2, it has been proposed5 that the
metal-hydride 5 could react with incoming ethane as shown
in Fig. 6 (intermediate 7). Through a σ-metathesis
mechanism, the metal-ethyl intermediate could then form
with concomitant release of H2. This is the general
metathesis mechanism for a d6 center and involves discrete
σ-complexes undergoing ligand exchange.49 Once the metal-
ethyl intermediate has formed, β-H elimination could ensue,
as described earlier. We tested this hypothesis12 and were

Fig. 4 Transition state geometries obtained in this work. Heterolytic cleavage mechanism: (a) 5TS1, (b)
3TS2 on the tricoordinate site; (c) 5TS1, (d)

3TS2 on the tetracoordinate site; (e) 5TS3 of the metathesis mechanism on the tricoordinate site; redox mechanism: (f) 6TS1 and (g) 4TS2 on the
tetracoordinate site. Superscript denotes the spin state, and subscript denotes the reaction number in the corresponding reaction mechanism
(heterolytic cleavage: Fig. 2, σ-bond metathesis: Fig. 5 and redox: Fig. 6(b)). Only the active site is shown for clarity (purple: Fe; red: O; white: H;
grey: C.).

Fig. 5 Molecular orbital diagram showing the interaction
corresponding to β-hydride elimination on (a) quintet (high spin) and
(b) triplet (low spin) Fe(II)@SiO2. Similar interactions can also be applied
to the spin states in Fe(III)@SiO2.
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able to optimize the related intermediates and transition
states (see Fig. 4e) for the 3-coordinate active site. We were
unable, however, to identify the respective intermediates and
transition states for the 4-coordinate site, possibly because
this geometry does not afford the active site complex
sufficient flexibility to accommodate six ligands on the metal
center. For the 3-coordinate geometry, the σ-bond metathesis
requires significant activation energy, with an overall energy

span near 3.5 eV (Fig. S4,† TS3), making this pathway very
unlikely compared with the mechanism in Fig. 2. The ligand
exchange step presents a high free energy barrier as shown in
Fig. S5 of the ESI.†

A redox mechanism has been proposed by Lobo and co-
workers17 for the dehydrogenation of propane to propylene
on isomorphously substituted H–[Fe(III)]-ZSM5 adapted for
ethane the mechanism is depicted in Fig. 7a. In that
mechanism, the Fe d5 atom is first reduced by accepting an
electron from the bound ethane molecule. Next, the unstable
ethane radical (C2H6˙

+) releases H2 and the resulting C2H4˙
+

radical accepts the electron back from Fe, which returns to
the 3+ oxidation state. Although never computationally
confirmed to the best of our knowledge, it raises the
intriguing possibility of a redox mechanism of C–H activation
on atomically dispersed Fe(III) on amorphous SiO2. A C–H
bond may in principle be activated by metal-oxygen pairs on
transition metal oxides, either through a hydrogen atom
transfer (HAT) mechanism or through a PCET
mechanism.50,51 In the HAT mechanism, the reaction
essentially proceeds through the formation of radicals: an H
atom is abstracted by the oxygen of the metal-oxide pair
while the alkyl radical coordinates to the metal center. In the
PCET mechanism, as described above, the abstracted
hydrogen atom ends up on the oxygen atom as a proton
while its electron is transferred to the metal center, which is
reduced as a result.

We tested the possibility of a redox dehydrogenation
mechanism on an Fe(III)@SiO2 site. We used the structural
model shown in Fig. 8. In this, the Fe atom was grafted
on three SiO− groups, making it formally d5. We
considered different spin states for the bare active site
and the one with multiplicity 6 was the ground electronic
state. Remarkably, analysis of the Mulliken spin density of
the bare active site showed that the Fe center had 4
unpaired α-electrons instead of 5, which means that Fe
was autoreduced to the d6 state. The spin density values

Fig. 6 Ethane dehydrogenation on Fe(II)@SiO2. σ-Bond metathesis
mechanism.

Fig. 7 Dehydrogenation mechanism on Fe(III)@SiO2. (a) Redox mechanism proposed by Yun and Lobo (ref. 16). (b) Revised redox mechanism
proposed in this work. In (b), Fe(III) is unstable and spontaneously undergoes reduction to the Fe(II) state while the system.
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are listed in Table 1 and spin density plots are shown in
Fig. S6.†

The spin densities on the oxygen atoms of the ligands
showed that the β-electron that transferred to the Fe atom
originated from one of the SiO− ligands. In addition, the
majority spin density on the silanolate ligands was
delocalized over the oxygen atoms of all three of them,
conserving the total spin multiplicity of 6. Thus, it appears
that Fe d5 is not stable in the environment of three silanolate
ligands on amorphous silica. The immediate implication,
therefore, is that the dehydrogenation of ethane to ethylene
would not proceed via the redox mechanism in Fig. 7a. That
notwithstanding, we proceeded to investigate the full
dehydrogenation mechanism, curious to explore the
mechanistic implications of the delocalized spin density on
the SiO− ligands and whether the mechanism would be
similar to the one we presented in Fig. 2 for the Fe d6 site
with two SiO− ligands. Our calculations showed that the
system retained the multiplicity of 6 both upon ethane
binding and at the C–H activation transition state (see
Fig. 4f). However, we found spin-crossing over to the more
stable quartet state upon formation of the Fe-alkyl
intermediate; the H atom was accepted by a SiO− ligand with
Fe coordinated to the three surface oxygens and the carbon
atom of the alkyl group (this is in stark contrast with the
mechanism over Fe(II)@SiO2, shown in Fig. 2, where spin-
crossing from the quintet to the triplet occurred after the Fe-
alkyl intermediate had formed and before the β-H
elimination.). In the quartet state of the Fe-alkyl
intermediate, the spin density of the Fe atom indicated about
3 unpaired electrons—it was 4 prior to the spin-crossing. In
addition, in the quartet state, the spin density on the SiO−

oxygen atoms were fully quenched, and the transferred H
atom carried no spin density. Taken together, the
calculations showed that the C–H bond broke heterolytically
in the sextet state and, upon formation of the Fe-alkyl
intermediate, the Fe atom was re-oxidized from the d6 to the
d5 electronic configuration by donating an electron back to
oxygen ligands, quenching their spins. As a result, the Fe
atom ended up with an empty d-orbital which prepared the
system for the β-H elimination over the quartet transition
state (Fig. 4g), as can been seen in Fig. 9. The system
returned to the sextet spin state upon formation of the metal-
hydride intermediate and ethylene. Based on this analysis, in
Fig. 7b, we present the revised redox mechanism.

The energy requirements are quite favorable compared
with the mechanism on Fe(II)@SiO2. The highest-lying
transition state in the redox mechanism is at ca. 1.6 eV
and it corresponds to the C–H activation. In the heterolytic
mechanism on 3-coordinate Fe(II)@SiO2, the highest-lying
transition state is at ca. 2.3 eV and it is associated with the
β-H elimination. The 1.6 eV barrier also compares favorably
with the 1.5 eV barrier (β-H elimination) calculated by
Srinivas et al.10 on Co(II)@SiO2. The rate-determining step
in the redox pathway on Fe(III)@SiO2 is the first C–H
activation step with a significantly lower energy barrier
compared to the heterolytic cleavage pathway, as shown in
Fig. S8 of the ESI.† In the redox mechanism, the spin state
ordering is conserved in the free energy profile unlike the
heterolytic pathway.

Fig. 8 Structural model of the Fe(III)@SiO2 active site. The Fe center is
coordinated to 3 silanolate ligands (purple: Fe; red: O; white: H; teal:
Si.).

Table 1 Mulliken spin densities related to the redox mechanism
presented in Fig. 6(b) (atom labelling scheme in Fig. 4)

Species Fe O1 O2 O3 C1 H1/H2
61′ 4.18 0.25 0.26 0.24 0 0
6TS 4.20 0.24 0.104 0.18 0.16 0.02
43′ 3.37 0.08 0.09 0 −0.55 0.014
4TS 3.17 0.13 0 0.13 −0.22 −0.32 (H2)
64′ 4.25 0.2 0 0.21 0.08 −0.22 (H2)

Fig. 9 Electronic energy profiles for the redox mechanism shown in
Fig. 7(b) on initially prepared Fe(III)@am–SiO2. The profiles correspond
to the two lowest-lying spin states with spin multiplicities 6 and 4.
Relevant intermediates and transition states (in bold) are indicated in
the energy profile with spin states in superscripts. Intermediate 1 is the
reference state, with energy equal to the sum of energies of the bare
active site and C2H6(g). Intermediates 2–4 are surface bound species.
C2H4(g) + H2(g) are gas phase ethylene and hydrogen gas generated as
part of the catalytic cycle. Full mechanism including the hydrogen
recombination step is presented in Fig. S7 of the accompanying ESI.†
The overall reaction is endothermic. Complete free energy profile is
shown in Fig. S8 of the ESI.†
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4. Conclusions

We have elucidated open questions related to the catalytic
behavior of silica-supported mononuclear Fe(II) and Fe(III) catalysts
for ethane dehydrogenation. We determined that σ-metathesis is
an unlikely dehydrogenation mechanism. On Fe(II)@SiO2,
irrespective of coordination, the reaction proceeds with heterolytic
C–H bond activation by a siloxide (Fe–OSi–) pair, followed by
β-hydride elimination facilitated by spin-crossing. Isolated Fe(III)
grafted on SiO2 exhibits a more nuanced behavior. In the high-
spin sextet state, Fe(III) spontaneously undergoes autoreduction to
the 2+ state by a silanolate ligand. The metal center is re-oxidized
to the +3 state as a result of spin-crossing to the low-spin quartet
state upon formation of the Fe-ethyl intermediate, which forms by
heterolytic activation of the C–H bond. In the 3+ quartet state, Fe
has an empty d-orbital which facilitates the β-elimination, upon
completion of which Fe returns to the 2+ oxidation. This redox
mechanism is energetically on a par with the heterolytic
mechanism on Co(II)/SiO2. We hope that these findings will spur
further experimentation in iron chemistry for C–H activation.
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