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magnets, with a specific focus on using the OpenMolcas program.

1 Introduction

Single-molecule magnets'™ are a class of coordination com-

plexes where the ligands impart a crystal field potential such
that the ground magnetic states of the ion(s) experience an
easy-axis magnetic anisotropy. The presence of magnetic aniso-
tropy is equivalent to stating that different projections of the
total angular momentum (this could be spin, S, where the
projections are mg or S,, or spin plus orbit, J, where the
projections are m; or J,) have different energies. When the
anisotropy is easy-axis type, the projections of the total angular
momentum along one direction are energetically favoured,
compared to those in the plane perpendicular to it (the so-
called hard plane). For example, if the total angular momentum
is J = 15/2 (such as Dy, the most common metal ion employed
for modern SMMs), then the m; = +15/2 states which have the
largest projections along the quantisation axis (often synony-
mised with the z-axis, hence the subscripts S, or J,; we will
return to this point in detail later) are stabilised compared to
the m; = £1/2 states which have the smallest projections along
the quantisation axis. The physical interpretation is that if the
total angular momentum vector j points as close to “up” or
“down” the energy is minimised compared to when J points
close to the perpendicular plane (Fig. 1, for J = 3/2). If all the
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Fig. 1 (a) Quantised projections of a total angular momentum J = 3/2. (b)
Energies of the projections of the total angular momentum for an easy-
axis magnetic anisotropy.

states in between ‘“up/down” and “in-plane” (recall that
m;=—J, =] +1,...,J] — 1, ) smoothly vary in energy, then we
can associate the easy-axis magnetic anisotropy with an energy
barrier to re-orientation of the magnetic moment (Fig. 1b),
referred to as Ueg. [As an aside, recall that the total angular
momentum vector J (or equally S) cannot point directly along
the quantisation axis, as its length /J(J + 1) is greater than its
largest projection on that axis 7, = J.] When the energy barrier is
larger than the thermal energy available to the molecule, i.e. via
vibrational energy, the magnetic moment cannot freely reverse
its direction. This leads to a magnetic memory effect that
depends on temperature and timescale, and hence, the origin
of a SMM.

The practicalities of designing SMMs and measuring their
properties have been expounded in various other texts>® ! and
we will not dwell on these matters here. Rather, this article is
intended as guide for connecting ab initio quantum chemical
calculations (the pioneering work of Chibotaru and Ungur for
popularising ab initio calculations on SMMs is recommended
reading,'>"® particularly their book chapter'®) to spin Hamil-
tonian models and to experimental interpretation. We will
focus on use and interpretation of CASSCF-SO using
OpenMolcas,"”° however the guidance herein can be equally
taken for use with Orca,” or any other CASSCF software
package with the required functionality.

Research in the field of molecular magnetism tends to accu-
mulate numerous minutiae that are assumed knowledge that
seem to cross discipline boundaries, making study of this area
difficult without significant experience or a knowledgeable guide.
In this article I have tried to impart my experience to serve as a
reference for newcomers. Throughout we will focus on the case of
Dy™, being the most emblematic of ions associated with SMMs
besides Mn™,>?* but the discussions are equally relevant to the
electronic structure of any other Ln™ ion, and with some
modifications can be generalised to d-block or 5f ions.

2 Electronic structure of trivalent 4f
ions

We begin with a brief recap of the electronic structure of Ln™
ions.*>?* The 4f (5f) orbitals are unique in the periodic table, in
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that they are filled after the more radially-extensive 6s, 5s and
5p orbitals (7s, 6s and 6p), the latter two of which remain fully-
occupied in the trivalent ions (i.e. the Ln™ ions have 4f"5s>5p°®
configurations). Hence, in complexes of the Ln™ ions, the 4f
orbitals are well-shielded from the environment and are essen-
tially non-bonding (we will see later that even in complexes the
4f orbitals are roughly 99.9% pure atomic 4f orbitals).

In the presence of a degenerate set of orbitals, excluding the
half-filled 4f” case of Gd", we are free to choose from many
different electronic occupations which on paper all have the
same energy. This is the so-called “orbital degeneracy” that
gives rise to an orbital angular momentum, an additional
source of magnetism on top of the spin angular momentum
of the unpaired electrons. In a classical analogy, the freedom of
electrons to hop between 4f orbitals with no energy penalty can
be thought of as a “current” around the atom, which gives rise
to its own magnetic field. Under this classical analogy, it should
be no surprise that two magnetic moments (spin and orbital
momenta) will interact with each other: this is the spin-orbit
coupling. Note, however, that spin-orbit coupling is actually a
relativistic effect which arises due to the confluence of special
relativity and quantum mechanics (see the Dirac equation), and
so the classical analogy can only go so far.

Nonetheless, the spin-orbit coupling does as its name
suggests: the spin and orbital momenta (quantum numbers S
and L, respectively) are coupled into a total angular momentum
(quantum number J). Note that the spin and orbital angular
momenta are vector quantities, and so the summation to
make the total angular momentum (i.e. ] = L + S) follows
vector addition rules, leading to allowed quantum numbers
J=IL-S|,|IL-S]+1,..,L+S—1,L+S.

For the simplest Ln"™ ions Ce™ and Yb™ (which have 4f" and
4f" configurations, respectively), the spin quantum number is
S =1/2 and the orbital angular momentum quantum number is
L = 3. A pair of definite spin and orbital quantum numbers
defines a Russell-Saunders (RS) or LS term and is given in
spectroscopic notation 'L (recalling that spin multiplicity is
given by 2S+1and that L=0 - S,L=1 - P,L=2 — D, etc.)
and hence for both Ce™ and Yb™, the RS electronic term is °F.
After spin-orbit coupling, this term gives rise to J = 5/2 and
J =7/2, which are each referred to as spin—orbit multiplets, and
given as **"'L;,. Hence, for Ce"" and Yb™ we have the *F5;, and
’F,,, multiplets. Determination of which spin-orbit multiplet is
lowest in energy is dictated by the number of 4f electrons: for
<7 4f electrons the smallest j multiplet is the ground
state, while for >7 4f electrons the largest J/ multiplet is the
ground state. As it is the spin-orbit coupling that breaks the
(2S + 1)x(2L + 1) degeneracy of the RS terms, the energy
separation between J multiplets is related to the spin-orbit
coupling constant. Spin-orbit coupling increases across the 4f
series from { = 640 cm ™! for Ce™ (Z = 58) to { = 2950 cm ™ * for
Yb™ (Z = 70),*® with an approximately quadratic dependence on
7278 The 4f spin-orbit coupling constant { is often trans-
formed into the relative spin-orbit coupling constant 4 for a
given RS term, with the relation 4 = £{/2S, where the + sign is
for <7 4f electrons and the — sign for >7 4f electrons.
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For other Ln" ions with more than one unpaired electron,
there are far more RS terms. The ground RS term is dictated by
Hund’s rules, which specify that the term with largest spin, and
then largest orbital angular momentum, is lowest in energy. For
Dy", the ground Hund’s rule RS term is °H, with S = 5/2 and
L = 5. After spin-orbit coupling we have J = 5/2, 7/2, 9/2, 11/2,
13/2, 15/2, and as Dy"" is 4f° the ®H;5,, multiplet is the ground
state and the °Hy3, multiplet lies at approximately 3500 cm™*
(Fig. $1).°

The J multiplets contain 2] + 1 m; states each, which for a
free ion (i.e. gas-phase Ln'") are all degenerate. Once a Ln"" ion
is incorporated into a complex or material, the removal of
spherical symmetry removes the 2/ + 1 degeneracy of the m,
states, which is usually termed the crystal field or ligand field
splitting; we will return to this in some detail. For achieving
good SMM performance, one wishes to have a large magnetic
moment, and thus maximising J is wise. Hence, the later 4f
ions, Tb™, DyHI, Ho™ and Er'™ have attracted the most
attention.

The final consideration on choice of Ln™

ion is the spin
parity. Ions with an odd number of unpaired electrons are
subject to a time-reversal symmetry, also known as Kramers
theorem, which means that in the absence of a magnetic field
all electronic states must be at least doubly-degenerate. This
guarantees that for any such ion (a Kramers ion), no matter the
shape of molecule, the ground state will always be magnetic
and have the possibility of supporting a magnetic memory
effect. This is not the case for ions with even numbers of
unpaired electrons (non-Kramers ions), which can have singlet
ground states that are intrinsically non-magnetic in small
magnetic fields. Hence, the most common Ln™ ions for SMMs

are the Kramers ions Dy™ and Er'".

3 Hamiltonian matrices and
diagonalisation

Before we can discuss SMM-specific details, we need to briefly
recap how we solve quantum mechanical models using linear
algebra techniques. Whether we are talking about a quantum
chemical calculation or a spin Hamiltonian model, both
approaches share common elements. Those are: (i) definition
of a Hamiltonian operator H, (ii) choice of basis, (iii) calcula-
tion of matrix elements for the matrix representation of the

ol

Hamiltonian operator H, and (iv) diagonalisation of H to
determine the wavefunctions (eigenvectors) and energies
(eigenvalues). When we construct the matrix representation of
an operator, including the Hamiltonian, we usually do this
using a complete and orthonormal basis set, which defines the
Hilbert space. We associate the solution to the Hamiltonian as
the set of eigenvalues and eigenvectors that diagonalise its
matrix representation. A crucial concept is that the set of
eigenvectors are a mutually-orthogonal set that spans the same
Hilbert space, such that matrix diagonalisation can be viewed
as a rotation in the Hilbert space. In linear algebra terms, the
set of eigenvectors expressed as column vectors and packed
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into a matrix form (here given the symbol ?) is a unitary matrix
that performs the rotation:

=]

THY =

|

The matrix E is a diagonal matrix that contains the eigen-
values on its diagonal, one for each eigenvector or eigenstate,
which together are termed eigenpairs. The eigenvectors
obtained from the matrix diagonalisation process are deter-
mined up to an arbitrary complex phase. That is, if |) is an

eigenvector of the Hamiltonian and hence H|y,) = Ey,),
then e”|y,) is also an eigenvector with the same eigenvalue
for any real ¢, where i is the imaginary unit i = v/—1.

As an explicit example, we will focus on the J = 15/2 problem
connected with Dy"" SMMs. Throughout this work we will use a
hypothetical model complex, [Dy(OH)Br]", purposely defined to be
non-linear and using an odd choice of molecular coordinate
frame, where the pertinent internal coordinates are: Br-Dy =
32 A, Dy-O = 2.6 A, O-H = 1.0 A, Br-Dy-O = 175°, Dy-O-H =
110°. Later, we will interrogate the results of an explicit ab initio
calculation on this molecule as an example, using Open-
Molcas’’® and our molcas_suite and angmom_suite tool-
boxes.?**!

While later we will consider the full low-symmetry Hamilto-
nian, we start here by assuming that the axial magnetic
anisotropy imposed by the near-linear disposition of bromide
and hydroxide ligands can be simply modelled by the crystal
field Hamiltonian H = B30,09. We will not review the crystal
field operator equivalent method here, and instead direct
readers to references,®” but suffice it to say that when
considering crystal field splitting of a Ln™
|7, m;) basis, the O3 operator is proportional to J,% so that for
this example we will simplify our Hamiltonian to read A =
AJ,%. To proceed, we evaluate the matrix representation of the
Hamiltonian by calculating the matrix elements of the
Hamiltonian operator in the |J = 15/2, m;) basis, usually
referred to as the |m;) basis, which canonically are assumed
as eigenstates of the J, operator; that is, J,|m)) = my|my).
Hence, we can immediately determine the matrix elements
to be:

ion in the in the

H

my) = <m/]‘AJA:2

(m)y myy = (mly|Am,J.|my;)

= (m)|Am/P|m;) = Amj (m)|m;) = Amjzémrj,,,,l

where 0y, is the Kronecker delta (05, =1 if k=n; 0, = 0if k #
n). This defines a diagonal matrix with Am,” on the diagonal.
Thus, we need not diagonalise the matrix: the |m,) or J, basis
is already the eigenbasis for this Hamiltonian. Hence, we can
read the energy values of each m; state from the diagonal
which are just Am;”. In the case of the [Dy(OH)Br]" molecule,
we expect a m; = £15/2 ground state owing to the near-linear
disposition of negative charges,®***° and so this molecule

This journal is © The Royal Society of Chemistry 2025
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would have A < 0 for a spin Hamiltonian model defined
as H = Ajzz.

Now consider the case where we decided that we should
instead write our Hamiltonian as A = AJ,. Perhaps this is
because we have defined our molecular geometry such that the
main anisotropy axis is along the x-axis. We could of course just
choose to write our Hamiltonian in an |m;) basis that was instead
defined as eigenstates of the T operator, and then we would obtain
exactly the result as before. But for the sake of illustration, let’s
continue with the evaluation of the Hamiltonian in the canonical J,
eigenbasis. We start by defining the J, operator in terms of the
raising and lowering operators J, = %(j L +J _), and hence
J2 = %(jﬁ +JyJ_ +J_J, +J_?). Evaluation of the matrix ele-

ments is now more tedious, but is simple enough using the
=/JJ+ 1) —my(my £ 1)|my £ 1).

fundamental rules J.|m,)
The working is:

A A
(o ony) = (5

4(

4
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Chem Soc Rev

obviously not the same J, eigenfunctions, but linear combina-
tions of them that serve to diagonalise the j,> operator. For
instance, the ground m; = +15/2 state when the uniaxial
anisotropy is defined along the x-axis has the following repre-
sentation in the J, eigenbasis:

Waisn) = ——=(1+15/2) + VI3+13/2)

3
+V105|+11/2) + V/455|49/2)

+V1365|+7/2) + V/3003|+5/2) + v/5005]+3/2)
+ V6435]+1/2) + V6435|—1/2) + v/5005|—3/2)
+v/3003|-5/2) + V1365|—7/2) + V455/-9/2)

+ V105|—11/2) + V15|—13/2) + \—15/2))

JRedd i i) ‘m1>

A R A A A A .
= A1 2+ )+ (T )+ (i 2[ms))

ﬁ«w

~(my + Dmy + 2T + 1) — my(my + 1))m, + z>

(Wl] — ])I’}’lj\/.](.]-i- 1) — WIJ(WIJ — 1))}’}’lj>

— (my + Dmy/T(J + 1) —my(my + 1))m1>

()
+ (i
+

VI + 1)

)y

~(my — D)y — 2T + 1) — my(my — 1)(m, - z>)

= (VIO = o 10+ DT+ 1) = s+ Dy

+ (2J(J + 1) - 2’/”./2)5}11",,"1&/

+VIJ+ 1) -

Clearly, this is no-longer a diagonal matrix as indicated by
the Kronecker delta functions; still, out of the 16> = 256
possible matrix elements, only 44 are non-zero. Note further
that because any observable operator, including the Hamilto-
nian, must have a matrix representation that is Hermitian

(I-A[ = Hf, where the dagger operator is the conjugate-
transpose), that only 22 matrix elements are unique. An alter-
native approach is to first evaluate the matrix representations
of the J, and J_ operators and then perform the appropriate

matrix products and sum given in the first line of the above, i.e.

the matrix representation of J,2 can be determined from the

= A= ==& 7 =7
sum J2 = Z(Jﬁ +J o J+J_ T+ J,z). Diagonalisation of
H defined by A = AJ,” in the canonical J, eigenbasis gives

exactly the same result as before: a set of doubly-degenerate
eigenvalues Am,>. However, the corresponding eigenvectors are

This journal is © The Royal Society of Chemistry 2025

(m-/ - 1)(}’}’11 - 2)\/‘]('] + 1) - }n./(m] - 1)5m’l.ml—2)

This compares to the eigenfunction of the ground m; = +15/2
state for uniaxial anisotropy defined along the z-axis, and also
written in the J, eigenbasis, which is simply:

I‘//+15/2> = |+15/2>

3.1 Consequences of Kramers theorem

We will not embark on a philosophical discussion of Kramers
time-reversal theorem,"® here we simply discuss how Kramers
theorem is intrinsically linked to magnetism. This arises
because the degeneracy of Kramers conjugate states is removed
by time-odd operators such as the magnetic field; that is, an
applied magnetic field removes the degeneracy (Fig. 2a). When
this occurs, the relative population of the two states depends on
the strength and direction of the magnetic field and hence a
material with Kramers degeneracy in zero-magnetic field can be
polarised by a magnetic field (Fig. 2a), which is the basis of

Chem. Soc. Rev., 2025, 54, 11468-11487 | 11471
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(a) Energy (b) Energy

Field Field

Fig. 2 Energies of a doublet state (a) and a singlet state (b) as a function of
magnetic field with equilibrium populations represented by the radius of
the red circles.

paramagnetism. Consider the opposite case where there are no
degenerate states (i.e. all the states are singlets): as a small
magnetic field is applied there is no change in energy, so that
the population does not appreciably change, and hence there is
no magnetic polarisation (Fig. 2b). For a large magnetic field,
where the Zeeman Hamiltonian can dominate over other terms,
there is a re-quantisation of the states towards eigenstates of
the Zeeman Hamiltonian and as such singlet states can “bend”
and take on non-zero magnetisation (see the Paschen-Back
effect).

Returning to the case of Kramers degenerate states, we have
several points to consider. In zero magnetic field we have
degenerate eigenvalues, and from basic principles of linear
algebra, degenerate eigenstates allow us to take arbitrary
linear combinations of the two degenerate eigenvectors to
define a new eigenvector in the degenerate subspace, where
the second eigenvector is defined on the condition that the pair
remain orthogonal. Returning to our J = 15/2 problem
with Hamiltonian operator A = AJ,%, we previously found that
the m; = £15/2 eigenstates were degenerate with eigenvalue

2

A (7) . In the J, basis in which we most naturally construct
this Hamiltonian, the eigenvectors are clearly |+15/2) and
| -15/2). However, as the eigenvalues for these two eigenstates
are degenerate, we can arbitrarily define two new eigenstates
) =5 (+15/2)|=15/2)) and W) =—=(1+15/2)=1-15/2)).
We can prove these two states are orthogonal (where the
simplification on the third line comes from the orthonormality
of the basis states):

i = (] + (2N ([+2) - |-5))

_1 +15 +15 +15 15
2 2 2 2 2
VAR IRCINNAREIINE
2 2 2 2
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and we can also prove that these two states share the same

, 15\
eigenvalue of 4 5):
. | 15 15
—g72 - (422 _
vy =47 ([ 72) +2)
LIS\ (218 1S
2 2 2

— 4 (;)2%%15/2) +]-15/2)) = 4 (12—5)2‘”

Hence, these states are equivalently eigenstates of the Hamilto-
nian A = 4f,%. Thus, in general, any set of degenerate states can be
rotated within the degenerate subspace and they remain eigen-
states. Care must be taken in the case where states are more
complicated linear combinations of the basis states, such that the
rotation maintains the correct relative contributions of the different
|m;) functions. In any case, note that some arbitrary rotation means
that these states are not eigenstates of J., nor do they have to be, as
they have only been defined as eigenstates of the Hamiltonian, A =
AJ? in this case. In practice, for ease of communication, it is
conventional to choose the arbitrary linear combination such that
the states are further eigenstates of some projection of the total
angular momentum. This is usually achieved by applying a small
magnetic field, because the Zeeman Hamiltonian is linear in the
projection operators of the total angular momentum, see later.

4 Ab initio multiconfigurational
quantum chemistry methods
4.1 Setting up a calculation

When attempting to describe ions that possess low-lying
excited states, or indeed degenerate electron configurations,
we are unable to rely on the basic assumptions of Hartree-Fock
(HF) or density-functional theory (DFT) which are both defined
assuming that the ground-state wavefunction is a single Slater
determinant. As a reminder, a Slater determinant is a particular
configuration of electrons in a set of orbitals.”’ For example,
consider molecular hydrogen H,: the ground state configu-
ration 6”>c*° defines a single Slater determinant (Fig. 3a), while
the excited configuration c'c*" defines four possible Slater
determinants (Fig. 3b); the two determinants with parallel
electron spins are the mg = +1 states of the first excited S = 1
state, while the symmetric linear combination of spin up/down
down/up corresponds to the mg = 0 state of the first excited S =1
state, and the antisymmetric linear combination of spin up/
down down/up corresponds to the mgs = 0 state of the first
excited S = 0 state. As an example for a Ln"" ion, consider Ce™
with a 4f' configuration (Fig. 3c): the seven different choices of
orbital and the two possible spin projections give 2 x 7 = 14
possible Slater determinants. This makes it obvious that if we
would like to capture the electronic states of Ln™", then we must
incorporate more than one Slater determinant.

This journal is © The Royal Society of Chemistry 2025
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Fig. 3 Ground state (a) and excited state (b) Slater determinants for
molecular hydrogen. One possible Slater determinant for the ground
configuration of Ce"" (c).

This can be achieved with various multiconfigurational
methods, but the most common in the context of SMMs is
the complete active space self-consistent field (CASSCF)
method.*” This is because CASSCF is well-suited to cases with
localised electron correlation such as atomic-like degeneracy,
perfect to describe molecular Ln™ complexes. We can view the
CASSCF method as an extension of HF theory, where we define
the wavefunction as a linear combination of Slater determi-
nants that are generated from a selected set of orbitals and
electrons comprising the active space. For Ln"" ions, the mini-
mal active space is the set of seven 4f orbitals (which are near-
degenerate) and the n electrons that reside therein; this would
be described as an “n in 7 active space”, or a “(n,7) active
space”, or a “CAS(n,7)SCF calculation”. Most CASSCF methods
do not in fact use a basis of Slater determinants (which are
individually eigenfunctions of the projection of the total spin,
mg = ) my,, where my,_is the spin projection of electron k), but

k

rather use a basis of configuration state functions (CSFs) which
are linear combinations of Slater determinants that are eigen-
states of the total spin operator 8. This is chosen because then
calculations can be performed using a scalar relativistic Hamil-
tonian without reference to the spin degrees of freedom (i.e. a
spin-free Hamiltonian®?). In this approach, CASSCF calcula-
tions are conducted separately for different total spin states,
using a set of CSFs that are appropriately defined from the
Slater determinants for the requested total spin quantum
number (where only the mgs = S component is explicitly calcu-
lated). Considering the ground (c*c*°) and first-excited (c'c*")
configurations of molecular hydrogen (Fig. 3), a minimal
CAS(2,2)SCF would allow us to define two singlet CSFs (ground
and first excited S = 0 states) and one triplet CSF (first excited
S =1 state).

Considering Dy™" which has a 4f° ground configuration, the
ground Hund’s rule term is ®H which has a total spin S = 5/2,
but there also exists excited terms with the same total spin,
such as °F, which would be possible states in a CASSCF
calculation of sextet multiplicity. But to account for excited
terms with different spin, for instance “F or “I (S = 3/2), or
’K (S = 1/2), etc., we would need a different spin-free CASSCF
calculation for each spin multiplicity. These RS terms are split

111
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from one-another owing to the electron-electron repulsion in the
4f" configuration; if the reader is unfamiliar with this concept, I
recommend Condon and Shortley,"* Abragam and Bleaney,>* and
Wybourne*® as foundational texts, in addition to the “Dieke
diagram”,** which is a constant fixture on my office wall
(Fig. S1). [If the reader is of the d-block persuasion, I suggest
the texts of Figgis and Hitchman,*> Gerloch,*® Griffiths,*” Mabbs
and Machin,*® as well as Abragam and Bleaney.>*]

Returning to a practical application of a minimal
CAS(n,7)SCF calculation, once we have chosen a particular
manifold of total spin S, we must determine the wavefunction.
This has two parts: determination of (i) the molecular orbitals
(in which our active space is defined), and (ii) the linear
combination of CSFs that are the eigenstates of the configu-
ration interaction (CI) problem. Just like in HF theory, we
define MOs as linear combinations of atomic orbitals (LCAO)
which are atom-centred basis functions:

Wi =2t [P~ Rl

Here, the spatial MO ; which has some amplitude and sign
as a function of position 7 in the molecule, is formed as the sum
over all possible basis functions ¢ for each atom A. Note here
that the “atom-centred” part is included by referencing the
argument of the basis function to the nuclear position of the
atom to which it is assigned, Ry [We note here that as all MOs
are expanded in the same atomic orbital basis, that even the
minimal “7z in 7 active space” for a Ln"" ion is perfectly capable
of capturing covalent effects; that is, the 7 active orbitals need
not be 100% 4f character, although we will see later that this is
nearly true anyway, revealing the staggering lack of covalency of
the 4f shell. However the active space may be systematically
expanded to include other frontier orbitals if those configura-
tions are suspected to be significantly involved in the electronic
structure of the Ln™ ion.***?]

To obtain the MO coefficients cy;, they must be variationally
optimised to minimise the energy of the Hamiltonian.’'**?
However, we must account for all possible electron occupations
in the active space that satisfy the chosen spin multiplicity, i.e.
solving the CI problem. This amounts to finding the linear
combination of CSFs that are eigenstates of the multiconfigura-
tional Hamiltonian, which we can find by matrix diagonalisa-
tion. Thus, for each step in the self-consistent optimisation of
the MO coefficients, we also solve the CI problem in the active
space, which provides us with the energies of the different
states of a given spin multiplicity.

As we have a wavefunction that can describe multiple electron
configurations, we can describe numerous states: which ones
should we choose to optimise the MOs for? In the case of Ln™
ions where we care about more than one state, we usually
perform a state-average CASSCF (SA-CASSCF) calculation. Given
the near-atomic nature of the active space, and that the 4f orbitals
are generally non-bonding, the state-average approximation is
quite robust for Ln™ ions. Naturally, it is a far poorer approxi-
mation when considering an active space comprised of bonding
and anti-bonding orbitals (a common problem class), where
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various excited states could easily have more-optimal MO descrip-
tions. However, the considerable pain that would come from
building multi-state wavefunctions from sets of MOs that were
unique for every state does not usually justify the improved
accuracy, notwithstanding numerical instabilities that can arise
when attempting to variationally optimise excited state-specific
MOs. The SA orbitals are thus a compromise for the set of states
being considered.

Returning to SA-CASSCF, how many states, or roots of the
characteristic polynomial defining the eigenstates of the
Hamiltonian, do we choose? In the case of redox-innocent
Ln" ions, the choice is directly indicated by the Dieke
diagram (Fig. S1, and because the 4f orbitals are core-like,
this diagram is valid for nearly any coordination complex or
solid-state material you could think of). Let’s return to the
case of Dy™: our CAS(9,7)SCF calculation defines three possi-
ble total spin states, S = 5/2, S = 3/2 and S = 1/2 corresponding
to multiplicities of 6, 4 and 2, respectively. First considering
just the S = 5/2 states, for a 9 in 7 active space there are only 21
CSFs: these correspond to the °H, °F and °P RS terms in the
Dieke diagram. Recall that by working with a spin-free scalar
relativistic Hamiltonian using a basis of CSFs that are eigen-
states of the total spin operator, we no-longer need to consider
the spin degeneracy, and so we now only need to consider the
multiplicity of the orbital angular momentum. The rules for
determining the multiplicity of orbital angular momenta
follow the same rules for any other angular momentum: the
orbital multiplicity is simply 2L + 1. Hence, for the °H term we
have L =5 giving 2L + 1 = 11 states, for the °F term we have L =3
giving 2L + 1 = 7 states, and for the °P term we have L = 1
giving 2L + 1 = 3 states; the sum of these multiplicities is
11 + 7 + 3 = 21. It is no mistake that this matches the
maximum dimension of the CSF basis defined by the choice
of sextet spin multiplicity with a 4f° active space: when
considering well-defined “atomic-like” states, the multiplicity
of the orbital angular momentum states span the space of
CSFs for a given minimal active space when restricted to a
particular total spin.

This knowledge also allows us to define the minimum
number of states to include: a CAS(9,7)SCF calculation for a
Dy™ complex considering the S = 5/2 states should account
for at least 11 states (i.e. the whole °H term); other good
choices would be 18 states (the °H and °F terms), or the full 21
states (the °H, °F and °P terms). It would be foolish to run
calculations with a CAS(9,7)SCF wavefunction for a Dy™
complex for 1-10, 12-17, or 19-20 sextet roots: near-
degenerate states within RS terms would be neglected, result-
ing in an incomplete L basis for a given term (i.e. some m;,
states will be missing). Entirely analogous arguments can be
made for states of different spin multiplicity for Dy"" and
indeed for any other Ln"™ ion. [These arguments must be
adapted when considering d-block or 5f ions, depending on
element, oxidation state and geometry. A good rule of thumb
is to find large gaps in the spectra of the free-ion terms and
omit things above a certain energy cut-off to avoid including
very high-energy states that may not be required. However,
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Box 1.

In these boxes we will walk through an example SA-CASSCF-SO calcula-
tion for the [Dy(OH)Br]" molecule; the input and output files are in the
associated data repository, and there is more detailed explanation in the
SI. We have performed three SA-CASSCF calculations with a 9 in 7 active
space: one for 21 sextets, one for 48 quartets, and one for 32 doublets.
This corresponds to all possible sextet roots (°H, °F and °P), but we have
restricted the quartets to the lowest four terms (*F, *I, “G and *M) and the
doublets to the lowest two terms (*L and *K).

perhaps these are required for a certain problem like optical
absorption spectroscopy.]

4.2 Checking a CASSCF calculation

A crucial aspect of any CASSCF calculation is to check the
orbitals to ensure that the active space is what you intended it
to be. That is, if you ask for 9 active electrons in 7 active 4f
orbitals, you best check that indeed you’ve converged a
wavefunction that has this active space. This is because the
self-consistent optimisation of thousands of MO and CI
coefficients can converge into a local minimum that does
not describe the electronic structure you intend, depending
on the starting orbitals. The orbitals can be checked visually
by rendering them, or by checking the MO coefficients
themselves.

The second point is to consider the difference between the
average orbitals and occupation numbers versus state-specific
results. A SA-CASSCF calculation optimises one set of MOs in
which you define the active space and hence the CSFs. The
roots (eigenstates) are obtained by diagonalisation of the scalar
relativistic Hamiltonian for a given set of MOs (this is the
solution to the CI problem) and it is the average of the
eigenvalues that is minimised by variational optimisation; in
this case you can see how including lots of high-energy excited
states can skew the quality of the SA-CASSCF wavefunction
away from the ground states. With a converged SA-CASSCF
wavefunction, the orbital occupation numbers tell you how the
electrons occupy the MOs on average; for a well-behaved
calculation on a Ln" ion with a minimal active space we should
obtain n/7 for all seven active orbitals (e.g. for Dy with 9 4f
electrons we expect 9/7 x~ 1.29) - if you do not obtain the
expected number or they are not equal, something is not right!
Aside from the average orbitals (also referred to as pseudo-
natural orbitals), we may also obtain the natural orbitals for
each root by diagonalisation of the one-electron density
matrix:** we will not cover the theory here. The natural orbitals
can be considered the state-specific spatial wavefunctions for
the m,, states in each of the LS terms, noting that these are of
little value for Ln™ ions because the spin-orbit coupling (SOC),
which has yet to be included, is much larger than the crystal
field splitting of the 4f orbitals which is relatively small.
However, in cases where you are using more complicated active
spaces and perhaps restricted active space (RAS) calculations,>
the natural orbitals and their populations can provide useful
information.>”
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Box 2.
After a SA-CAS(9,7)SCF calculation for the 21 sextets we examine the
active space using our molcas_suite tool:

moleas suilte owlosy I.rzasseEns ——inekex 2

We find

==== MO G5il, eecec = 1.29, encrgy = =8.80632=01, ilncex = 2
Dyl 4f 99.896

==== MO 52, eece = 1,29, enarey = rl,30002=0, ilackx = 2
Dyl 4f 99.978

=== MO 53, oee = 1,29, energy = ¥2.41052=08, inckx = 2
Dyl alig 99.779

=== MO 54, eoeg = 1,29, energy = . 08061E=006, ilnckex = 2
Dyl 4f 99.973

=== MO 55, cee = 1,29, energy = =2.38932=09, inckex = 2
Dyl 4f 96,879

=== MO 56, oee = 1,29, eanemgy = 4+4.683458=07, ileecex = 2
Dyl 4f 99.920

=== MO 57, oee = 1.29, energy = =3.76328=08, ilnckex = 2
Dyl 4f 99.901

This indicates that the seven orbitals in the active space (index = 2) are
well-described as 4f functions of Dy1. Visualisation of the active orbitals
with Pegamoid®® leads to the same conclusion:

4.3 Inclusion of spin-orbit coupling

Usually for a Ln" ion, we would perform a set of SA-CASSCF

calculations to consider several spin multiplicities (using the
approach above to determine how many states to include for
each multiplicity). When these set of calculations are complete,
the spin must be re-introduced and the effect of SOC must be
included. This is generally referred to as a state-interaction
approach where the SOC is included a posteriori. [Note that this
means SOC is not included variationally - the MO and CI
coefficients are not optimised considering SOC, but that this
can be performed in some codes such as ORCA,>" but indeed
the state-interaction approach in OpenMolcas®” is not a “per-
turbative treatment” of SOC either.] In this stage, the
SOC Hamiltonian is formed in the spin-adapted basis of the
various SA-CASSCF eigenstates. Then, as for any matrix repre-
sentation of a Hamiltonian, the eigenstates are obtained by
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diagonalisation, giving the total SA-CASSCF spin-orbit (SA-
CASSCF-SO) states, which will enumerate > (2S; + 1)n; states
i
in total where n; are the numbers of roots for a given total spin
S;. At this stage, as it pertains to magnetism, we can obtain
from the final SA-CASSCF-SO wavefunction: (i) the energies of
the eigenstates, (ii) the matrix representations of the spin
angular momentum in the eigenbasis of the SA-CASSCF-SO

I

states (three matrices, S,, comprised of the matrix elements
(We|S.|W,) where o € x, y, z are the unit vectors of the

Box 3.

After obtaining the three SA-CASSCF wavefunctions, we calculate the SOC
and determine the overall SA-CASSCF-SO eigenstates; here we have
included all of the roots from our three SA-CASSCF calculations. The
low-lying SA-CASSCF-SO spectrum shows:

S0 State Dge, em== (=il)
i 0.0000
2 0.0000
3 546.3529
4 546.3529
5 10356567
6 1035, &567
i 1433.7079
8 1433.7079
9 1718.0046

10 1718.0046

i 191, 1705

12 LE9IL, L1705

13 192, 6057

14 192 6067

15 2075 9211

16 2075 9211

17 3851.6439

18 3851.6439

19 4269.9149

20 4269.9149

21 4607.6792

22 4607.6792

23 4900.9881

24 4900.9881

25 5146.4215

26 5146.4215

27 5311.2641

28 5311 . 2641

29 AL, 3921

30 5431.3921

SHlk 6706.2338

32 6706.2338

As expected, we have pairs of degenerate states (Kramers doublets) and
find 16 low-lying states (<2100 cm '), with the next 14 states between
3800 and 5500 cm™'; the next states are >6700 cm™'. I note that the gap
between the barycentres (centre of gravity, average energy) of the multi-
plets is 3453 cm ™!, which is close to expected value of ~3500 cm™*. The
SO splitting in SA-CASSCF-SO calculations is usually quite accurate, as
the SOC Hamiltonian is built using an atomic approximation which is
very good for the particular case of Ln"™" complexes. The calculated energy
gaps between adjacent terms (e.g. °H and °F) on the other hand are
usually not so accurate because while these splittings arise from the 4f-4f
electron repulsion (which is captured in SA-CASSCF), there are non-
negligible effects arising from dynamic electron correlation with the
other electrons in the molecule that are not captured. Hence, for accurate
optical transition energies (e.g. the °D, — ’F, emission in Eu™ com-
plexes), corrections for dynamic correlation in the form of CASPT2°® or
NEVPT2°® are required.
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orthogonal Cartesian reference frame defined by the input
atomic coordinates), and (iii) the matrix representations of
the orbital angular momentum in the eigenbasis of the SA-

CASSCF-SO states (L,, comprised of the matrix elements
<‘//k|f/o<|l//n> where o € XYy Z)'

Simply observing the spectrum of eigenvalues from the SA-
CASSCF-SO calculation is an important step at this point. For
the case of Dy, we should have 16 low-lying states (corres-
ponding to the ®°H;s,, multiplet) split by the crystal field effect
of the ligands, then, we should expect another tranche of 14
states (corresponding to the °H;3, multiplet) around
3500 cm ' higher in energy (refer to the Dieke diagram,
Fig. S1). Keep in mind that at no point in the calculation have
we explicitly told the quantum chemistry program that we have
a 4f° configuration and hence we should expect a °H;,, ground
multiplet. By virtue of selecting the MOs that correspond to the
set of seven 4f orbitals as our active space, including 9 active
electrons, requesting at least 11 sextet roots, and adding SOC,
the resulting spectrum of eigenvalues should indeed match our
expectations: this is the beauty of a fully-ab initio quantum
chemical calculation. If our results do not comply with these
expectations, however, that implies that something has gone
wrong (or the chemistry is very interesting). In addition to
checking the active space is as expected, this is an important
part of verifying our work.

5 Ab initio magnetic properties

If we consider the eigenstates of the SA-CASSCF-SO calculation as
those of the total zero-field Hamiltonian, we can calculate mag-
netic properties simply by adding the appropriate Zeeman term to
the Hamiltonian, and diagonalising the resulting matrix. This is
incredibly simple as we already have matrix representations of all
these parts: the matrix representation of the SA-CASSCF-SO Hamil-
tonian in its eigenbasis is simply a diagonal matrix with the
eigenvalues on the diagonal and zero elsewhere [n.b. this is
nothing more than stating that H|y) = E¢|y)], and the Zeeman

Hamiltonian is ﬁz% = U ((geg\x + ZAY) B, + (geav + ZAJ) B,+

(ge§z +E-) B.) where B, are the components of the magnetic

field, and up and g. are the Bohr magneton and free-electron
gyromagnetic ratio, respectively. Once we have the eigenstates of
the total Hamiltonian including magnetic field, thermodynamic
properties such as magnetisation, magnetic susceptibility and
heat capacity can be obtained from the properties of the
eigenstates.®*®> However, a note of caution is required here.
Thermodynamic quantities calculated ab initio are obtained
under three assumptions: (i) every molecule in the ensemble
are identical to one-another, (ii) that there is no significant
change in structure as a function of temperature, and (iii) that
the ensemble is in thermodynamic equilibrium (that is, the
population of the eigenstates are given by the Boltzmann
distribution). It is crucial to keep in mind the limitations that
these assumptions pose. For example, if there is disorder or
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dispersion in the molecular structure then the properties of the
bulk may not be well-approximated by assuming all molecules
are identical, in which case explicit distributions may be
required.®® If there are significant changes in structure as a
function of temperature, then clearly this will need to be
considered carefully on a case-by-case basis.®>®> Finally, and
perhaps most commonly, the assumption of equilibrium state
populations for SMMs is often broken: this is a natural con-
sequence of the slow-relaxation of magnetisation. A common
consequence of this effect is the rapid decrease in yvT as a
function of reducing temperature, often referred to as ‘“mag-
netic blocking”. As a paramagnet, the magnetic susceptibility of
an SMM should follow the Curie law with y oc 1/T (hence T
should be fairly constant). A gradual decrease in yT on redu-
cing temperature is expected as excited crystal field states are
thermally depopulated, obeying Boltzmann statistics perfectly
well. However, when the temperature is low enough that the
relaxation dynamics are sufficiently slow, the magnetic suscepti-
bility essentially becomes frozen on the timescale of the
measurement, and is observed as a plateau. When plotted as
the ymT product, the constant value of yy; makes y\T appear as
a linear function decreasing towards zero as T decreases
towards zero.’® Similar, but more complex, effects are observed
during zero-field cooled vs. field cooled experiments that will be
dependent on both the heating/cooling rates, the strength of the
applied magnetic field and the details of the field and tempera-
ture dependent relaxation rates of the particular SMM.*®”

One property of the zero-field SA-CASSCF-SO eigenstates
that is particularly useful in the case of Ln"" complexes is the
effective g-values of the doublets. Just like the free-electron
gyromagnetic ratio g., g-values describe the gradient of the
energy levels in an applied magnetic field. In this case, they are
termed “effective” g-values because these are not the ‘“real”
free-electron gyromagnetic ratio g.. [Indeed, neither are they
the Landé grvalues that are defined for the Zeeman Hamilto-
nian written in the |J, m;) basis Hyee = uBg](fxBx + fyBy + J,B,),

3 LIL+1)-S(S+1)
where 81=5- T+
of g. = 2.**] Under the action of the full ab initio SA-CASSCF-SO
plus Zeeman Hamiltonian described above, the eigenstates will
exhibit some magnetic field dependence, and the reader will note
that indeed there is only one g-value included in the expression

under the approximation

for H Zee in the column to the left the “real” g.. However, when we
decide to look at a certain doublet independently of the others,
we can define a model Hamiltonian in the two-dimensional
space of an effective spin S = 1/2, also termed pseudo-spin or
fictitious spin. The effective Zeeman Hamiltonian becomes:

HZee = HBLgxngx + gySyBy + gzngz)

While the effective g-values above are often labelled g, g,
and g,, these do not necessarily correspond to any lab or
molecular frame; we will see later that such “principal”
g-values are obtained by matrix diagonalisation and indeed
the eigenvectors provide information on their spatial orienta-
tion. For pure m, states we can determine the expected effective
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Table 1 Effective principal g-values when treating pure m; states of the
J = 15/2 multiplet of Dy"" as pseudo-spin S = 1/2 states

my 8x gy 8z
+15/2 0 20
+13/2 0 52/3
+11/2 0 44/3
+9/2 0 12
+7/2 0 28/3
+5/2 0 20/3
+3/2 0 4
+1/2 32/3 4/3

g-values by simply equating the expectation value of the Zee-
man Hamiltonian with a magnetic field along each of the
Cartesian axis for a pseudo-spin doublet and the real m; state.
For the choice of the z-axis we obtain the following (considering
only one component of each Kramers doublet):

(+1/2 | ﬂBgzngzl"'l/Z) = <m]| .ung]Aszlmﬂ

UBgeB:/2 = pipgyB.1y
812 = gy
8 = 2gmy

For the x- and y-axes, the expectation values (m;|usg,B.|m;)
(where o € x, y, z) are zero for all states, and hence g, = g, = 0.
However for the m; = £1/2 states, the magnetic field mixes the
two components in first-order, i.e. the off-diagonal elements are
(+1/2|pungf<B<| F1/2) = 4upgiBy and (F1/2|ung,By|£1/2) =
+4iupgiBy, and so we must diagonalise the two-dimensional
subspace which gives eigenvalues of +4pg/B, (o € x,y) in either
case. A similar situation occurs for the off-diagonal elements of
for spin S = 1/2, giving (F 1/2|upgxSxBx|+1/2) = upg,B./2 and
(F1/2|ungySyBy|£1/2) = +iugg,B,/2, which give eigenvalues of
+upg,B,/2 (¢ € x, y). Thus, equating the eigenvalues of the
Zeeman Hamiltonians for the |/, £1/2) and |S = 1/2, +1/2)
subspaces we find g, = g, = 8g; for the m; = £1/2 states. For Dy
where g; = 4/3, the resulting g-values are given in Table 1.

Generally speaking, this is just an application of perturba-
tion theory in a particular subspace, and for Kramers doublets
this treatment is natural; that is, they really do behave like S =1/
2 states with funny g-values (in the limit of a small magnetic
field compared to the crystal field splitting between adjacent
doublets). When the magnetic field is significant compared to
the crystal field splitting, the doublets cannot be approximated
as independent and the whole Hamiltonian must be consid-
ered. In this case, the Zeeman splitting can become non-linear
when the magnetic field begins to dominate the Hamiltonian.

In the general case of a Kramers ion where we do not have
pure my states, we can follow a simple procedure®® to evaluate the
action of the magnetic field via the Zeeman Hamiltonian in the
two-dimensional subspace and define the effective g-values for
the pseudo-spin S = 1/2 state. For various mathematical reasons,
the three-by-three g matrix to which we associate the magnetic
properties of the pseudo-spin does not have the correct rotational
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properties to be considered a tensor,”* which indeed means that
it is not always symmetric or diagonalisable.®® However, the
three-by-three matrix GG is a well-behaved tensor and thus
can always be diagonalised to yield principal effective g-values
as the square root of its eigenvalues. Within the basis of a
Kramers pair GG is defined as (where «, 8 € x, y, z and k and
n are the indices of the Kramers pair):

(GGT)M =2 ( (ge

ol
J’_
h
v
A
OQ
OJ)II
h)\l

+ (ge@ 4 Z) (gjﬁ i f,;)
k,k k.k

Along with the eigenvalues, the eigenvectors provide the
spatial orientation of the principal effective g-values in the
coordinate system of the molecular structure. Note that in
low-symmetry, there is no requirement for any of the doublets
to share principal axes of their effective g-values; we will return
to this later. Also note that this method gives no information on
the sign of the effective g-values: the positive square root is
taken by convention, but indeed g-values can be negative.>*”%”*

The preceding approach can be taken for any Ln™ ion under
the assumption of pure m; states. However, for non-Kramers
ions, note that all m; basis states are integers, and so while in
certain high symmetries there are doubly-degenerate states of
the same |my|, there is no m; = +1/2 doublet and rather a m; =0
singlet; clearly, we cannot treat the latter as a pseudo-spin
S = 1/2 state. In the case of general non-Kramers systems
without pure m; states there is not always rigorous double-
degeneracy when the spatial symmetry is low. Thus, the doub-
lets or near-degenerate doublets are usually referred to as
pseudo- or Ising-doublets, and when using the GG" approach,
only one effective g-value is defined, while the other two are
exactly zero.

Box 4.
Examination of the ground Kramers doublet shows:

g _L g 2 g_3
g 1l: 19.9127 x 0.7219 -0.6920 0.6354
g_2: 0.0000 y -0.6196 -0.6463 0.7699
g 33 0.,0000 z 0.3083 0.3215 0.0595

The eigenvalues g; through g; (labelled arbitrarily) are listed in the left
column, and their corresponding eigenvectors (with respect to the
Cartesian coordinate system x, y, z in which the input atomic coordinates
were defined) are the relatively-labelled columns in the matrix on the
right. In this example, we observe the ground doublet has its largest
g-value g; = 19.91 pointing along the vector v; = (0.7219, —0.6196, 0.3083).
Note that the origin for this vector is ill-defined: it is simply an
eigenvector of the GG" matrix, obtained by assessing the effect of
magnetic fields along the Cartesian axes in the molecular reference
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frame. In the case of SA-CASSCF-SO calculations on molecules with well-
localised spin and orbital angular momentum such as monometallic Ln™"
complexes, the origin is well-approximated as the nucleus of the metal
ion. Note also that as the two other g-values are degenerate, then the
associated eigenvectors are completely arbitrary linear combinations of
each other and they merely define the plane in which the zero g-values lie.
This set of g-values is easy-axis and Ising-like (there is axial symmetry and
the g-values perpendicular to the axis, g , are zero), with g; approaching
that expected for a pure m; = £15/2 state (Table 1), so it would be a good
assumption that this state is well-described as |+15/2) if we choose the
quantisation of the total angular momentum to lie along the same vector
;. If we plot this vector on the molecular structure using the PyMolVis
software’ (scaled so that it can be visible, as the eigenvectors are unit
length, and considering its origin as the Dy atom), it points along the
average Br-Dy-O axis as expected (Cartesian axes: x (red), y (green), z
(blue)). Note that although we have drawn one vector v;, this direction
defines an axis, so that plotting v (or both) provides the same
information.

6 Orientations, reference frames and
quantisation axes

Whenever we perform a quantum chemical calculation, the
coordinate system or reference frame is defined by the input
geometry. That is, we may define our [Dy(OH)Br]" complex in a
sensible way with Dy at the origin and the bromine and oxygen
atoms roughly along the z-axis, but of course this is completely
arbitrary and the molecule could be in any orientation (as we
have chosen for our example), and indeed it can be translated
arbitrarily; the results of the calculation should not change
depending on these choices. Thus, any result must be inter-
preted considering the reference frame defined by the molecu-
lar geometry. In the case of [Dy(OH)Br]" we expect an easy-axis
magnetic anisotropy with a ground m; = +15/2 doublet along
the Br-Dy-O axis. If we had defined the molecular geometry
such that Br-Dy-O lay along the computational z-axis then we
would find that one of the effective g-values approaching 20
would have an eigenvector approximately (0, 0, +1). However, if
the molecular geometry was defined with Br-Dy-O along the
computational x-axis, the eigenvalue would still be the same
value, but the eigenvector would be approximately (+1, 0, 0).
This does not mean anything other than a permutation of the
axes labels; after all, what does the computer know about up,
down, left and right?

But what about if we don’t know what the ordering or
composition of the m; states are, and we want to learn that
from the calculation? This question can be answered in two
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ways: the first, purely ab initio, way is to calculate the
expectation value of the total angular momentum along
the quantisation axis. Conventionally, we refer to this as
the z-axis, and hence we would like the expectation value of
the J, operator for each state, (J,). If we have made a fortuitous
choice of molecular geometry such that the Br-Dy-O axis
is parallel to the computational z-axis, then the expecta-
tion value () = (Willulws) = Willalys) + (WdSelv) ~ +7.5
for our ground m; = £15/2 doublet states (providing that the
correct linear combination of the degenerate states is chosen
to diagonalise J,). However, if we chose a less fortuitous
orientation, say along the computational x-axis, then our cal-
culation would give approximately (j,) ~ 0. This is simply
because our m; = £15/2 ground states would be nearly eigen-
states of the J,? operator in our calculation (see above) not the
J.? operator, so instead we would actually want to calculate ().
Indeed, it usually makes more sense to re-label the axis system
such that we follow convention with using the z-axis as the
quantisation axis, which is just a rotation of the coordinate
system. Once the choice of quantisation axis is made, we could
calculate the (f,) expectation values for all doublets and attempt
to assign my; labels to the states, however this clearly would only
work in the case of nearly pure |m;) functions with no mixing,
which is not a very general solution.

The second approach to answering this question is equiva-
lent to asking how our ab initio Hamiltonian maps onto a
model Hamiltonian constructed in a basis of definite angular
momentum. There are many ways that this could be done, and
the text herein is not exhaustive on the subject, nor will we
cover many of the minutiae that must be considered in prac-
tical mapping codes.” In the simplest approach, where we have
a priori knowledge of the expected electronic states (e.g. in the
case of Ln"™ complexes), we can take the first (2] + 1) x (2/ + 1)

sub-block of the ab initio-calculated ZA: and §Z matrices (corres-
ponding to the 2/ + 1 states of the lowest J multiplet), and then

form the matrix representation of jA (ie. .7_- = §: + Z) Note
that these matrices are obtained from the calculation in the
eigenbasis of the SA-CASSCF-SO calculation, and that from now
on we assume that the z-axis is already defined as the quantisa-

tion axis of choice. Diagonalisation of J. (which we assume is
already in a basis that is diagonal in J?, i.e. we have chosen only
one spin-orbit multiplet) gives eigenvalues of the j, operator
(which should be the values m;= —J, =]+ 1, ...,] — 1, ]) as well

as the unitary transformation matrix, P., that maps the ab initio
SA-CASSCF-SO eigenstate basis to the J, eigenstate basis (where

f:,diag—z is a diagonal matrix containing the eigenvalues of f:):

P.=J

Nl

~ll

—1

~

n

Jdiag—z

The square moduli of the matrix elements of i tell us how
much each |m;) state (the rows as we go down each column)
contributes to each SA-CASSCF-SO state (given by the columns).

If we then use the unitary matrix ?’: to transform the f v and f v
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matrices (which are obtained similarly from the first (2] + 1) x

(27 + 1) sub-block of the ab initio-calculated L, and S, matrices)
in the same way, we can transform them into the J, eigenstate
basis. This works because they are all written initially in the
same basis (the ab initio SA-CASSCF-SO eigenstate basis), so the
same unitary transformation applied to all of them will put
them all in the same basis.

M
Ml

By doing so J,giag—- and J, giig—- will not be diagonal
matrices because the basis that diagonalises j, does not also
diagonalise J, or j, (this is just stating that we cannot have
simultaneous eigenstates of J,, fy and Jf,). However, because the

eigenvectors of i (the columns of i) are only determined up

to an arbitrary phase (see earlier), the J.giag—- and Jy giag—-
matrices will also not look like the canonically-expected matrix
representations of J, and jy. Hence, we must apply a phase

factor to each column of 1:’:, such that the resulting f vdiag—z 1S

purely real and positive, and f ydiag—- 18 purely imaginary (this is
the Condon and Shortley choice of phase®!), which results in
the matrix Iz’z‘phased. We can then use this phase-adapted unitary
transformation to transform the entire ab initio SA-CASSCF-SO
Hamiltonian (which is simply a diagonal matrix with the energy
eigenvalues as the diagonal elements, because it is given in its

own eigenbasis) into the f, basis which we will refer to as H i

= =S =
P:.phased EP_ﬁphased = Hj:

The H 7. matrix is now the SA-CASSCF-SO Hamiltonian in a
definite basis of J. eigenstates, with the correct phase behaviour
of the canonical J, and jy operators. Hence, we can simply
determine the matrix elements of a model Hamiltonian and

directly equate the matrix elements to those of H ;. in the same
positions and solve a set of linear equations to determine the
parameters. For example, in the case of the (2] + 1) x (2] + 1) sub-
block of the ab initio eigenstates for a Ln"" ion, we would usually
like to know the coefficients corresponding to the crystal field
splitting Hamiltonian written in terms of Stevens operators
(where the 0; are the operator equivalent factors that allow
translation of the “true” Bf parameters into any basis, including
the single electron f-orbital basis - they are tabulated for all
ground multiplets and terms in the PHI user manual®?):

k
A=Y Y B0l
k=246 g—k

Here, at most we have 27 B parameters, and at least 36 matrix

elements (for the smallest ground J = 5/2 of the Ln™ ions), and so
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the set of linear equations is over-determined, meaning that the
solution is in-fact equivalent to a least-squares minimisation
problem. Alternatively, we could use the fact that the Of operators
are related to the spherical harmonics and are a set of orthogonal
operators in the angular momentum Hilbert space, and hence
directly project the B parameters (exactly like a dot-product)
without using a linear equation solver.”*” The approach we have
just described is, roughly speaking, how the SINGLE_ANISO
routine in OpenMolcas works.”® Indeed, the above approach can
also be performed in the spin-free basis using the first (2L + 1) x

(2L + 1) sub-block orbital angular momentum E:,Spin-free which
leads to definition of the crystalfield parameters in the
|L, m;) basis.

While this text is not intended as a tutorial on crystal field
methods (see ref. 32-34 and 37), it is relevant here to point out that
the restriction of the stevens operators to k € 2, 4, 6
arises from the assumption that the crystal field is a real-one-
electron operator acting on the 4f orbitals. As the angular part of
single-electron atomic orbitals are defined by the spherical harmo-
nics Y7, and we can describe the effect of the crystal field also using
spherical harmonics Y/, this leads to integrals of the form:

T 21
J J Y YY" sin 0d0d¢
0=0J ¢p=0

Which are only non-zero if k < 2/ and k is even, which leads
to k € 2, 4, 6 for f orbitals with / = 3. [Note that parameters with
odd rank k arise when considering intra-configurational effects
such as the crystal field mixing between d and f orbitals.>**"]
However, if we consider the crystal field parameterisation to be
purely phenomenological and not solely arising from this one-
electron picture, then in principle the Of operators have non-
zero matrix elements for k < 2J or k < 2L depending on which
basis is being used; however, as the one-electron crystal field
effect is a good approximation for Ln™, the terms k > 6 are
usually quite small. Indeed, the Of operators have a convenient
property (because they are related to spherical harmonics Y%)
that they are a mutually-orthogonal set of operators. This
means that every operator Of will have a uniquely-defined B{

0 parameter when projecting them from H ;.- Thus, in analogy
to a Fourier transform, parameterisation of the full crystal field
Hamiltonian (with all k¥ < 2J or k < 2L) provides an exact
decomposition of the ab initio Hamiltonian into an orthogonal
basis of operators.

With the crystal-field parameters in hand, they provide infor-
mation on the contributions of the ligands to the Hamiltonian in
a spherically-adapted basis. Hence, the ¢ = 0 terms provide
information on the axially-symmetric contributions, and the
other terms with ¢ # 0 provide information on the contributions
related to C,; symmetry elements: eg. terms with g = 4 are
significant in square prismatic complexes that have pseudo C,
rotation symmetry.>**” However, this would only be apparent if
the quantisation axis for j, was chosen to be coincident to the
(pseudo) C, axis. As such, crystal field decompositions provide a
route to interrogating the contributions of various symmetry
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elements of the ligands to the total Hamiltonian, which can be
used to rationalise magnetic and optical properties.””””® Finally,
we note that the action of the operators Of is to mix states with
Am; = +q so that for example a 0,* term would mix the |+15/2),
|£7/2), | ¥1/2) and | F9/2) states, etc.

In the case where there is no well-isolated manifold of states
to directly assign to a chosen angular momentum, for instance
the crystal-field splitting of a Dy ion was so large that the
J=15/2 and J = 13/2 manifolds overlapped, we need a different
approach. Here, the alternative is one that uses projection
operators to ‘“extract” the angular momentum content from
the ab initio eigenstates,*®”>’® which is possible even if
there is significant J-mixing. This is the approach that our
“angmom_suite project” code takes.*"”* Once this is done, the
ab initio SA-CASSCF-SO Hamiltonian is transformed into the
desired angular momentum basis (e.g. the °H;s,, multiplet or
the entire °H term) and operators can be projected similarly to
above. This approach is particularly useful for more compli-
cated situations, including transition metals, 4{"5d™ config-
urations, or molecules with more than one spin or orbital
moment. In the latter cases we are able to separate the different
contributions to the spin and orbital momenta and project a
model Hamiltonian accounting for electron coupling; we will
not discuss this here, but direct the reader to our recent
WOrkS.66'80_84

For our [Dy(OH)Br]" example molecule, the obvious choice
for the quantisation axis is along the average Br-Dy-O vector.
But what about the far more common case where there is no
clear choice? Usually in the case of SMMs we have designed
molecules that support some kind of easy-axis magnetic aniso-
tropy, following the classical electrostatic design rules for
magnetic anisotropy in Ln™ complexes:**° this would suggest
two-coordinate linear for Dy™ and Tb™ and trigonal or square
planar for Er'™ (of course these perfect geometries are not
obtained in practice). In such cases it is sensible to think about
the pseudo-symmetry axis that appears somewhat unique com-
pared to the plane perpendicular to it, even if this direction
hosts no formal symmetry elements (e.g. along the average
CPcent—Dy-CPeent  Vector in the case of dysprosocenium
cations®®). In cases where there is no such obvious choice,
what should be done? Take for example the ubiquitous class
of Ln™ tris beta diketonates - e.g [Ln(acac);(H,0),],*°
[Ln(acac);(phen)],®” etc. - here, there is no clear axial direction,
and yet, ab initio calculations for the Dy™ analogues of these
two examples show that the ground state has g, > 19.5
suggesting a m; = +15/2 state.*® In these cases, choosing the
quantisation axis as that defined by the eigenvector of the
largest ground state g-value is sensible. It is common that once
a quantisation axis is chosen that it is simply referred to as the
z-axis.

Hence from our SA-CASSCF-SO calculations we can obtain
(J.), and plotting these values versus energy for each state leads
to the construction of the energy level diagram (Fig. 4a). [Note
that usually a small magnetic field is applied along the z-axis so
that the degeneracy of the states is completely removed and
there is no ambiguity of arbitrary linear combinations, as
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discussed above.] In the case of [Dy(OH)Br]" we obtain some-
thing that looks just like we would expect for an SMM - an
energy barrier between the ground m; = £15/2 states. However,
if we had made a bad choice of the quantisation axis, say
perpendicular to the average Br-Dy-O axis, then we would
obtain something that does not look like an SMM (Fig. 4b).
But how can this be?

Box 5.

Projection of the SA-CASSCF-SO Hamiltonian onto a crystal field model
Hamiltonian for the J = 15/2 ground multiplet, defining the quantisation
axis as the largest g-value of the ground Kramers doublet, using
SINGLE_ANISO’® gives:

kI @ B(k,q) |
s e i ot oo |

2 | -2 -0.78605351390355E+00 |

2 a1 0.23116968488328E-02 |

29| 0 -0.12304426032647E+02 |

20 1 0.41003797142487E-01

2 2 -0.12577057462565E+01
e [ ot ottt e et |

a | =4 0.21820207488647E-04 |

a | =3 0.18761027095137E-04 |

4 | -2 -0.28588785122559E-03

4 | -1 -0.40000233941737E-03

a | 0 -0.38995029065723E-02 |

A4 1 -0.23137016895326E-03

a4 2 -0.48334928504280E-03

a | 3 -0.27895807026883E-03

4 | 4 0.99021333988065E-05
e s et s s e e G |

6 | -6 0.76612392124879E-09

6 | -5 0.91000731757445E-08

6 | -4 0.34079942295530E-08

6 | -3 -0.88885824315653E-06

6 | -2 0.11941157806199E-04 |

6 | =i 0.83130004664506E-05

® | 0 0.24141979675308E-04 |

6 | 1 -0.82510535529330E-06

& | 2 0.18621636717687E-04 |

6 | g 0.30477052552723E-05

5 | 4 0.11138285741133E-06

6 | 5 0.84318242117469E-07 |

& | 6 0.53223222619884E-09

|

Note that these already include the operator equivalent factors 6; for
Dy", which for the °H, s/, multiplet are 0, = —2/315, 0, = —8/135 135 and
06 = 4/3 864 861, so these must be divided out to give the true Bf values
(column one, Table S1). SINGLE_ANISO also gives the crystal field
parameters in the L = 5 basis (column two, Table S1), which must
similarly be divided by the appropriate operator equivalent factors for
the °H term of Dy, which are 0, = —2/135, 0, = —4/10395 and 0 = 2/
81081; tables of the 0; can be found in the PHI user manual.®* The
resulting parameters are slightly different owing their different method
of extraction, but their similarity highlights the transferability of the
Stevens operator equivalent method.*

We can also interrogate our resulting states without recourse to a model
Hamiltonian using angmom_suite, which is particularly useful in cases
when you are not sure of the angular momentum content:

angmom_suite proj --molcas_rassi DyBrOH.rassi.h5 \
> e coul

This journal is © The Royal Society of Chemistry 2025
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Which gives information on the RS term content of the calculation
(truncated for brevity):

Spin=free section:
S =0.5

Term composition:

1,02 2> =
0,968 (21> =
S =5

1.00 |4F> = ..
1.01 |4G> = ..
15103 | AT> =
0.99 |4M> = ..
S =2.5

0,99 (62> = .
1,00 (68> = o
1.00 |6H> = ..

Showing that as expected we have the ’K, L, *F, *G, ‘I, *M, °P, °F and °H
terms in the calculation. This can be useful for quantifying the mixing of |L,
my) states or the orbital reduction owing to covalent effects (i.e. where L
ceases to be a good quantum number). Then the spin-orbit states can be
interrogated in the same way:

State composition:

|State 1z 0,00) = 0.95(6E1LE/2>
|State 2z 0.00) = 0.95|6H15/2>
|State I ( 546.35) = 0,93|6EHIE/2>
|State d> ( 546.35) = 0,93(6HL5/2>
| Sraite 5> ( 1035.86) = 0,93(6kHLE/2>
|State 6> ( 1035.86) = 0,93(6HLE/2>
|State 7> ( 1433,71) = 0.93(6:15/2>
| Sieaice §> ( 1433,71) = 0,93(6E1LE/2>
| Seate Oz ( 1718,00) = 0,93 6E1LS/2>
|State 10> ( 1718.00) = 0.93(6EHL5/2>
[Seate 11> ( 189l.17) = 0,94 6H1LS/25
[Seate 12> ( 1891.17) = 0,94 6H1l5/2>
[Seaee 13> ( 1962.61) = 0,94 6Hl5/2>
[Seate 14> ( 19682,61) = 0,94 6H1LE/2>
|State 15> ( 2075.92) = 0,94|6:H1L5/2>
|State 16> ( 2075.92) = 0,94|6H1L5/2>

Showing that, as expected, the lowest 16 states correspond to the ®Hys),
multiplet.

We can also use angmom_suite to project the parameters of a crystal field
Hamiltonian for the °H,5, multiplet using the lowest 16 states only. Note
that here we have set the quantisation axis to be the direction of the maximal
gvalue of the ground Kramers doublet, using exactly the same choice of axes
as SINGLE_ANISO above via the —quax keyword (column three, Table S1):

angmom suite proj --molcas rassi DyBrOH.rassi.h5 \
=—oslell speee GRLS /2 ——lbeisis o == Geimenite G
SaoEms R Lol e TonDy 8 LEE e s G
==QLEs ELENT, BNt —=veEsesE > pre] 152.euE

This could also be done by projecting out all of the °H;5/, content from
the wavefunction first, before projection (column four, Table S1):

angmom suite proj --molcas rassi DyBrOH.rassi.h5 \
=—eelell speee GRLS /2 ——feomms ef=0 —=tlate A

--ion Dy3+ --k max 6 --quax quaxJ.txt --verbose \
> o) GEILEZ ol
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Or in the |L, S, ms, mg) basis including the SOC Hamiltonian (again we’ve
used the same quantisation axes as SINGLE_ANISO, however that code
made a different choice in the L = 5 basis rather than the J = 15/2 basis, so
that is reflected here for comparison; column five, Table S1):

angmom suite proj --molcas rassi DyBrOH.rassi.h5 \
Esnodc I sp lec MOHESE e enis Mo i lifcoc AsE = e ol coe i
= ileEe ——den Dye el iens (5 =G quisedl, et

- verbose > proj 6H.out

From the projection in the |L, S, mgs, ms) basis, we obtain the isotropic
SOC value of 2 = —378 cm ™.

Building barrier figures like Fig. 4a is easy using the angmom_suite code
(applying a 0.1 T field along the ground state anisotropy axis):

Sngmem islicelbarEic sl amolcds Tnas= TRDVBEOH: Goss o8
== States 16 ==save \
==eeuem 0,07218 =0.06196 0.03083

6.1 Experiments are reality

The two most important experiments for quantification of SMM
properties are measurement of the magnetic hysteresis and the
relaxation rates by alternating current (AC) susceptometry.” In
the former experiment, a large magnetic field is applied at low
temperature to saturate the magnetic moment and then the
magnetic field is swept to negative field and back to positive
field again - the observation of a non-zero magnetic moment at
zero field (the remanent magnetisation) is a key indicator of a
magnetic memory effect.” In the latter experiment, an oscillat-
ing magnetic field is applied at low temperature and we
measure the in-phase and out-of-phase response of the mag-
netic susceptibility.” Both experiments are usually performed
on polycrystalline powders. Hence, there are some molecules
that experience a magnetic field parallel to their easy axis, some
that experience it in the hard plane, and for the other molecules
the magnetic field is somewhere in between these limits.
Considering the case of a perfect Ising-like easy-axis ground
Kramers doublet (g, = g, = 0 and g; # 0): a magnetic field along
the easy-axis will lead to a splitting (Fig. 2a) while one in the
hard-plane will lead to no splitting (Fig. 2b). Along the axis, we
expect significant polarisation at low temperature according to
Boltzmann statistics (of course the polarisation is smaller for
an AC experiment which uses magnetic fields on the order of a
few Oe (ca. 10™* T) compared to the hysteresis experiment
which usually uses fields on the order of a few T). [Note that the
magnetic moment of a state is related to the gradient of its

. — dE;
energy as a function of magnetic field M; « fd—B', and the net

magnetisation for an ensemble in equilibrium is simply the
Boltzmann-weighted sum of the individual states’ magnetic
moments.] However, when the field is in the hard plane and
the splitting is zero, there is no polarisation. For molecules in
between, clearly it will be the projection of the magnetic field
along their easy-axis that determines their magnetic polarisa-
tion. When the field is removed, only the molecules with a non-
zero polarisation can contribute to the magnetisation or the
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Fig. 4 Magnetic relaxation barrier for the choice of quantization axis
along the Br—Dy—-0O axis (a) and perpendicular to the Br—Dy-O axis (b).

magnetic susceptibility. Hence, in the case of a perfect Ising
magnetic material, the only relevant action of the magnetic
field is how it impinges on the easy-axis of any of the molecules
in the ensemble. Looking it another way, we care about how
states are quantised and polarised by the applied magnetic
field. Indeed, the choice of quantisation axis should be
informed by the questions being asked in the experiment;
and for SMMs, we care about magnetic fields along the easy-
axis of the ground Kramers doublet.

In the general case of low-symmetry molecules that show
some SMM effect (but do not have perfect Ising anisotropy),
there is invariably an easy-axis anisotropy in the ground state
where one effective g-value is larger than the other two which
are considerably smaller. In these cases, the above interpreta-
tion is still a good approximation, and hence the direction of
the largest effective g-value of the ground doublet is usually
chosen as the quantisation axis to define J,. In other cases
where there is either easy-plane anisotropy (where two g-values
of the ground doublet are larger than the third) or substantial
rhombic anisotropy (where all three g-values are distinct), then
the molecule will not be an SMM, and the quantisation axis in
the former case is best chosen along the unique smallest
g-value, while in the latter case there is no “good” choice and
simply picking either the largest or smallest g-value is suitable. In
any case, the quantisation axis used to perform these analyses must
be stated. Hence, although the eigenstates behind both panels in
Fig. 4 are the same, the choice of quantisation axis for Fig. 4b is
“wrong” because measurement of the magnetisation dynamics will
probe the properties of the molecule “looking” along the main
magnetic axis of the ground state employed in Fig. 4a.

7 Energy barriers and quantum
tunnelling of the magnetisation

So far we have quite extensively discussed the static properties of
the ground multiplet, but this article is aimed at understanding
slow magnetic dynamics and SMMs. We will not discuss the
mechanisms of relaxation or the quantum tunnelling of the
magnetisation (QTM) in detail; there is detailed literature on these
more complex topics,>***¥°! including a tutorial review recently
published by our group on the former topic.” But we will discuss
how the static properties of the calculated eigenstates can be
connected with the experimental observation of slow relaxation
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in an AC susceptometry experiment. Several key concepts are
required for a basic understanding of spin dynamics in SMMs:

(i) A molecule can only be in one quantum state at any time.
However, we usually perform experiments on ensembles and so
must consider the populations of a set of states, or the prob-
ability of a molecule being in one of those states.

(ii) If a molecule is in an eigenstate of the Hamiltonian it will
remain in that state unless the Hamiltonian changes or it
interacts with something outside the quantum system, e.g. with
a phonon or photon.

. . dE;
(iii) Because magnetic moments are defined as M; oc ——

then any non-degenerate (singlet) state in zero magnetic fieléj f;s
non-magnetic; magnetic character can be switched on with an
applied magnetic field when the states “bend”.

The requirements for observation of SMM properties centre
around the presence of an easy-axis anisotropy for a doubly-
degenerate ground state;” hence, the first step is examination of
the ground state.

7.1 Non-Kramers ions

Non-Kramers ions (with an even number of unpaired electrons)
have integer total angular momentum J and the low-symmetry
crystal field of a molecule can completely remove the degen-
eracy of the m; states. That is, the ground state could be non-
degenerate (a singlet ground state), for which there will be no
SMM properties. However, even in the absence of symmetry, if
there is sufficiently strong uniaxial magnetic anisotropy then
the states can appear as pseudo-doublets. We refer to these as
pseudo-doublets because in low symmetry there will be a small
energy splitting between them. The splitting of the pseudo-
doublets is referred to as the tunnelling gap or tunnel splitting
and is directly related to the efficiency of zero-field QTM:
Torm = 4(4/h)’ty, where 4 is the tunnel gap and 7,y is related
to the spin-phonon relaxation timescale.®®

When a large magnetic field acts on a pseudo-doublet at low
temperature, the pseudo-doublet will become polarised just
like a Kramers doublet (Fig. 2a), and so for a large-enough field
and/or low-enough temperature, the ensemble population will
be near-unity in the lowest energy state (Fig. 5, red circle). If the
magnetic field is reversed slowly enough then the Hamiltonian
will change slowly (recall that inclusion of the Zeeman Hamil-
tonian will change the eigenstates as a function of magnetic
field), and an individual molecule will remain in an eigenstate
of the Hamiltonian at all times and simply follow the energy
eigenvalue (Fig. 5, red arrow); this is called adiabatic passage.
In this case, where there is a splitting of the pseudo-doublet in
zero field, an avoided crossing is formed and adiabatic passage

i

dE
will lead to reversal of the magnetic moment because 4B is

negative on the right and positive on the left (Fig. 5, green
circle): this is QTM.

If the magnetic field is reversed fast, then there is a non-zero
probability that the molecule could remain on its trajectory and
end up in the excited state (Fig. 5, blue circle) because it cannot
change its eigenstate quick enough (Fig. 5, blue arrow); this is

This journal is © The Royal Society of Chemistry 2025
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Energy

Field

Fig. 5 Avoided crossing owing to a non-zero tunnelling gap. After mag-
netic polarisation (red circle), slow reversal of the magnetic field will lead to
adiabatic passage and reversal of the magnetic moment via QTM (red
arrow going to green circle). Fast reversal of the magnetic field can lead to
a non-zero probability of a diabatic transition via Landau—Zenner tunnel-
ling (blue arrow going to blue circle).

called non-adiabatic or diabatic passage. The probability of
making such a transition is obtained from the Landau-Zenner
tunnelling formula p = exp[—n4?/2ha], where 4 is the tunnel-
ling gap and « = gerupdB/dt is the rate of change of the Zeeman
energy of the pseudo-doublet.®”** Thus, how fast the field
needs to be swept to suppress QTM is intimately related to
the size of the tunnelling gap, and hence sweep-rate dependent
demagnetisation experiments are one way to measure the
tunnelling gap.®*%° Alternatively put, the larger the tunnelling
gap, the faster the QTM rate at zero magnetic field (though note
we will not discuss the time-dependence of the spin dynamics
directly here).

Therefore, for non-Kramers ions, the first requirement to
observe SMM properties is slow QTM in the ground state, which
translates to a very small splitting within the ground state
pseudo-doublet (perhaps <1 ecm™ ). If this condition is ful-
filled, then we can consider what happens if a molecule is
excited from one of the ground states to the first excited state by
a phonon. If this excited state is non-degenerate, then it is non-
magnetic and hence would not support an energy barrier to
magnetic relaxation above it. That is, the molecule could simply
emit a phonon and return to either one of the pseudo-doublet
ground states with approximately 50:50 probability; thus, the
energy of this excited state would be a good estimate for Ueg. If,
on the other hand, the excited state is a pseudo-doublet, then
we consider the tunnelling gap of the excited state. If it is larger
than say >1 cm ™', then QTM in that excited state will be fast
and hence the magnetic moment can reverse and emit a
phonon to relax to the ground state; the energy of the excited
doublet will be a good estimate for Ueg. If, however, the tunnel
gap is small, then QTM may be slow enough for the molecule to

This journal is © The Royal Society of Chemistry 2025

View Article Online

Chem Soc Rev

be excited by another phonon to a further excited state. So on,
and so forth, we consider the tunnel splitting of each excited
state to determine at point QTM will facilitate reversal of the
magnetisation to determine Ukgs.

Another consideration is the orientation of the largest
principle g-value for each of the excited pseudo-doublets. Even
if the tunnel splitting is small, if the orientation of the largest
principle g-value is not collinear with that of the ground state,
then this state will also permit reversal of the magnetisation.
Consider the extreme case where the excited state g-value is
perpendicular to that of the ground state, then if the molecule
is excited into this state it has already re-oriented its magnetic
moment into the plane, and so reversal back to the opposing
ground state via emission of a phonon is facile. Experience
suggests that angles differing by >15° are sufficient for that
state to define the upper limit of U (although see SI and Fig.
S2 for discussion on this point).

7.2 Kramers ions

For a Kramers ion we are guaranteed at least a doubly-degenerate
ground state, and hence there is no tunnel splitting to worry
about. Thus, in principle, there should be no QTM for Kramers
ions. However, experiments indicate this is not true. QTM can be
facilitated by hyperfine coupling to nuclear spins®>°” but more
commonly by the presence of transverse magnetic fields. Con-
sider a doublet with g-values of g, = g, =1 and g, = 19: application
of a magnetic field in the xy-plane can split the state because g,
and g, are non-zero (recall that the g-value gives the gradient of
the state energy as a function of magnetic field). Thus, if there is a
fixed magnetic field in the plane (which can arise from the
dipolar magnetic field of neighbouring magnetic molecules),
then when the external magnetic field along the z-axis goes to
zero there is an avoided crossing just like for a non-Kramers ion
(Fig. 5). Hence, the presence of transverse magnetic fields and
non-zero transverse g-values permits QTM in Kramers ions by
directly mixing the opposing projections of the ground state
magnetic moment. [This is the reason many experiments are
conducted on doped samples, replacing a large portion of the
Ln™ ions with diamagnetic La™ Lu™ or Y, to reduce the
magnitude of the internal dipolar fields experienced at each
paramagnetic Ln™ ion.] Thus, QTM efficiency in Kramers doub-
lets is related to the magnitude of the transverse g-values as well
as the strength of the local transverse magnetic field.

With this in mind, the same process described above for
non-Kramers ions can be carried out to predict U.g. Excited states
sharing a common easy-axis magnetic anisotropy with small
transverse g-values suggests that they will support an energy
barrier to magnetic reversal, but the first doublet that is non-
collinear with the ground state or has a non-negligible transverse
g-value will likely facilitate QTM and hence define Ueg Looking
back on SA-CASSCF-SO calculations of 20 high-performance
monometallic Dy'™ SMMs performed by our group,®”%>%71%7
find that excited state QTM appears to be favoured when the
product of the average transverse g-value of an excited Kramers
doublet (gr = (g1 + g2 + g3sin0;)/3) and the angle between the
maximal g-values of the ground and excited Kramers doublet (6;)

we
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are greater than 20; i.e. QTM will generally occur when g+0; > 20
(see SI, Fig. S2).

7.3 Quantification of QTM rates and prediction of U

Beyond the hand-waving rules discussed above, it is common
plot a figure of the energy barrier (e.g. Fig. 4a) simply from the
properties of the eigenstates of the Hamiltonian. While the
transition rates between states due to the spin-phonon cou-
pling can be determined fully ab initio, it is quite costly (but it
can be done and is becoming more routine, see ref. 88, 92, 108
and 109). A common approximation is to assume that the
oscillations of the Hamiltonian caused by phonons may act
like an oscillating magnetic field and hence that the transition
rates can be approximated by the average of the square mod-
ulus of the three Cartesian magnetic moment operators:

2

29

1 N
e 3 Z | (Ve g,

aEX,Y,Z

From earlier you will see that the off-diagonal matrix ele-
ments of the J, operators will in generally be non-zero as these
operators will not necessarily be diagonal in the eigenstate basis
of the Hamiltonian. You will also see that using these operators
implies the action of . operators, which can cause transitions
between states differing by Am; = £1 (this is the EPR selection
rule); in situations where the eigenstates are not pure |m;) states
but rather mixtures thereof, these matrix elements are scaled by
the squares of wavefunction coefficients of pairs of states
differing by Am; = +1. We have favoured an approach that uses
these “rates” to propagate a fictional population starting in the
ground state with negative magnetic moment “over the bar-
rier”,"'* representing a relaxation process over the predicted
energy barrier U (Fig. 4a). Keep in mind, however, that these
“rates” are generated by assuming a magnetic perturbation and
a uniform phonon density of states and so they are not realistic.
Indeed, phonons modulate the entire Hamiltonian and oscillat-
ing crystal field terms Of can give rise to transitions between
states differing by Am; = ¢, and the phonon density of states of
molecular crystals is highly featured.!*17113

The rates above provide a way of estimating which states
might be connected by phonons, and similarly-qualitative
metrics for estimating QTM rates have been suggested. One
approach considers the average internal dipolar magnetic field
as a parameter Bgjp, and then calculate the QTM rate arising
35:116

’l' h\/ gxz +gy2 +g22
QMM —— —  —V——
tpBaip\/87 + &)

A slightly more realistic approach is to take assume a
Gaussian distribution of dipolar fields and calculate the rates
in a similar fashion.""” These calculations make a lot of
assumptions and so they best used to obtain qualitative esti-
mates, and while more specific methods are possible,”" these
require far more in-depth calculations.
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8 Conclusions

In this article I have attempted to provide a step-by-step guide
to de-mystify the process of setting up, running, and interpret-
ing a SA-CASSCF-SO calculation for Ln"-based SMMs. All-in-all,
there is a lot that can be learned about potential SMM behaviour
from a SA-CASSCF-SO calculation, including insights into the
dynamic magnetic properties, even before launching into more
advanced topics such as explicit relaxation rate calculations. The
interested reader should be able to use this guide as a starting
point for calculation of optical properties of Ln™ complexes, or
paramagnetic nuclear magnetic resonance effects, but these
topics usually require more elaborate active spaces and calcula-
tion of additional properties.

Conflicts of interest

There are no conflicts to declare.

Data availability

The example input and output files can be found at DOLI:
https://doi.org/10.48420/30028195.

Supplementary information (SI): Dieke diagram, annotated
OpenMolcas input file for SA-CASSCF-SO calculation, ab initio-
calculated crystal field parameters, empirical method for pre-
dicting U.g. See DOI: https://doi.org/10.1039/d5¢s00493d.

Acknowledgements

I would like to thank Prof. Eric McInnes, Dr Meagan Oakley, Dr
Benjamin Atkinson, Dr Jakob Staab, Dr Gemma Gransbury,
William Morrillo and Leander Held for assistance, comments
and suggestions that greatly improved this article. I thank the
ERC (ERC-2019-STG-851504), the Leverhulme Trust (RPG-2023-
025), The University of Manchester and The Australian National
University for funding.

Notes and references

1 R. Sessoli, D. Gatteschi, A. Caneschi and M. A. Novak,
Nature, 1993, 365, 141-143.

2 D. Gatteschi, R. Sessoli and ]. Villain, Molecular Nano-
magnets, Oxford University Press, 2006.

3 L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli and
B. Barbara, Nature, 1996, 383, 145-147.

4 J.R. Friedman, M. P. Sarachik, J. Tejada and R. Ziolo, Phys.
Rev. Lett., 1996, 76, 3830-3833.

5 R.Bagai and G. Christou, Chem. Soc. Rev., 2009, 38, 1011-1026.

6 J. D. Rinehart and J. R. Long, Chem. Sci., 2011, 2, 2078-2085.

7 N. F. Chilton, Annu. Rev. Mater. Res., 2022, 52, 79-101.

8 J.-L. Liu, Y.-C. Chen and M.-L. Tong, Chem. Soc. Rev., 2018,
47, 2431-2453.

9 S.-D. Jiang, B.-W. Wang and S. Gao, in Molecular Nano-
magnets and Related Phenomena, ed. S. Gao, Springer,
Berlin Heidelberg, 2014, pp. 111-141.

This journal is © The Royal Society of Chemistry 2025


https://doi.org/10.48420/30028195
https://doi.org/10.1039/d5cs00493d
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cs00493d

Open Access Article. Published on 11 November 2025. Downloaded on 2/11/2026 2:05:43 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Tutorial Review

10

11

12

13

14

15

16

17

18

19

20

C. V. Topping and S. J. Blundell, J. Phys.: Condens. Matter,
2019, 31, 013001.

W. J. A. Blackmore, G. K. Gransbury, P. Evans, J. G. C.
Kragskow, D. P. Mills and N. F. Chilton, Phys. Chem. Chem.
Phys., 2023, 25, 16735-16744.

P.-H. Lin, T. J. Burchell, L. Ungur, L. F. Chibotaru,
W. Wernsdorfer and M. Murugesu, Angew. Chem., Int.
Ed., 2009, 48, 9489-9492.

Y.-N. Guo, G.-F. Xu, W. Wernsdorfer, L. Ungur, Y. Guo,
J. Tang, H.-J. Zhang, L. F. Chibotaru and A. K. Powell, J. Am.
Chem. Soc., 2011, 133, 11948-11951.

L. Ungur and L. F. Chibotaru, Phys. Chem. Chem. Phys.,
2011, 13, 20086-20090.

R.]. Blagg, L. Ungur, F. Tuna, J. Speak, P. Comar, D. Collison,
W. Wernsdorfer, E. J. L. McInnes, L. F. Chibotaru and
R. E. P. Winpenny, Nat. Chem., 2013, 5, 673-678.

L. Ungur and L. F. Chibotaru, Lanthanides and Actinides in
Molecular Magnetism, John Wiley & Sons, Ltd, 2015,
pp. 153-184.

F. Aquilante, L. De Vico, N. Ferré, G. Ghigo, P. Malmgqyvist,
P. Neogrady, T. B. Pedersen, M. Pitonak, M. Reiher,
B. O. Roos, L. Serrano-Andrés, M. Urban, V. Veryazov and
R. Lindh, J. Comput. Chem., 2010, 31, 224-247.

F. Aquilante, J. Autschbach, R. K. Carlson, L. F. Chibotaru,
M. G. Delcey, L. De Vico, I. Fdez. Galvan, N. Ferré, L. M.
Frutos, L. Gagliardi, M. Garavelli, A. Giussani, C. E. Hoyer,
G. Li Manni, H. Lischka, D. Ma, P. A. Malmgqyist, T. Miiller,
A. Nenov, M. Olivucci, T. B. Pedersen, D. Peng, F. Plasser,
B. Pritchard, M. Reiher, I. Rivalta, I. Schapiro, J. Segarra-
Marti, M. Stenrup, D. G. Truhlar, L. Ungur, A. Valentini,
S. Vancoillie, V. Veryazov, V. P. Vysotskiy, O. Weingart,
F. Zapata and R. Lindh, J. Comput. Chem., 2016, 37, 506-541.
I. Fdez. Galvan, M. Vacher, A. Alavi, C. Angeli, F. Aquilante,
J. Autschbach, J. J. Bao, S. I. Bokarev, N. A. Bogdanov,
R. K. Carlson, L. F. Chibotaru, J. Creutzberg, N. Dattani,
M. G. Delcey, S. S. Dong, A. Dreuw, L. Freitag, L. M. Frutos,
L. Gagliardi, F. Gendron, A. Giussani, L. Gonzalez, G. Grell,
M. Guo, C. E. Hoyer, M. Johansson, S. Keller, S. Knecht,
G. Kovacevi¢, E. Killman, G. Li Manni, M. Lundberg, Y. Ma,
S. Mai, J. P. Malhado, P. A. Malmgqvist, P. Marquetand,
S. A. Mewes, J. Norell, M. Olivucci, M. Oppel, Q. M. Phung,
K. Pierloot, F. Plasser, M. Reiher, A. M. Sand, I. Schapiro,
P. Sharma, C. J. Stein, L. K. Serensen, D. G. Truhlar,
M. Ugandi, L. Ungur, A. Valentini, S. Vancoillie,
V. Veryazov, O. Weser, T. A. Wesolowski, P.-O. Widmark,
S. Wouters, A. Zech, J. P. Zobel and R. Lindh, J. Chem.
Theory Comput., 2019, 15, 5925-5964.

G. Li Manni, I. Fdez. Galvan, A. Alavi, F. Aleotti,
F. Aquilante, J. Autschbach, D. Avagliano, A. Baiardi, J. J.
Bao, S. Battaglia, L. Birnoschi, A. Blanco-Gonzalez, S. I
Bokarev, R. Broer, R. Cacciari, P. B. Calio, R. K. Carlson,
R. Carvalho Couto, L. Cerdan, L. F. Chibotaru, N. F. Chilton,
J. R. Church, I Conti, S. Coriani, J. Cuéllar-Zuquin, R. E.
Daoud, N. Dattani, P. Decleva, C. De Graaf, M. G. Delcey,
L. De Vico, W. Dobrautz, S. S. Dong, R. Feng, N. Ferré,
M. Filatov(Gulak), L. Gagliardi, M. Garavelli, L. Gonzalez,

This journal is © The Royal Society of Chemistry 2025

21

22

23

24

25

26

27

28

29

30
31
32
33
34
35
36
37

38
39

40

41

View Article Online

Chem Soc Rev

Y. Guan, M. Guo, M. R. Hennefarth, M. R. Hermes, C. E.
Hoyer, M. Huix-Rotllant, V. K. Jaiswal, A. Kaiser, D. S. Kaliakin,
M. Khamesian, D. S. King, V. Kochetov, M. Krosnicki,
A. A. Kumaar, E. D. Larsson, S. Lehtola, M.-B. Lepetit,
H. Lischka, P. Lopez Rios, M. Lundberg, D. Ma, S. Mai,
P. Marquetand, I. C. D. Merritt, F. Montorsi, M. Morchen,
A. Nenov, V. H. A. Nguyen, Y. Nishimoto, M. S. Oakley,
M. Olivucci, M. Oppel, D. Padula, R. Pandharkar, Q. M.
Phung, F. Plasser, G. Raggi, E. Rebolini, M. Reiher, I. Rivalta,
D. Roca-Sanjuan, T. Romig, A. A. Safari, A. Sanchez-
Mansilla, A. M. Sand, I. Schapiro, T. R. Scott, J. Segarra-
Marti, F. Segatta, D.-C. Sergentu, P. Sharma, R. Shepard,
Y. Shuy, J. K. Staab, T. P. Straatsma, L. K. Sgrensen, B. N. C.
Tenorio, D. G. Truhlar, L. Ungur, M. Vacher, V. Veryazov,
T. A. Vof3, O. Weser, D. Wu, X. Yang, D. Yarkony, C. Zhou,
J. P. Zobel and R. Lindh, J. Chem. Theory Comput., 2023, 19,
6933-6991.

F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, 2,
73-78.

R. E. P. Winpenny and E. ]J. L. McInnes, Molecular Materi-
als, John Wiley & Sons, 2010.

B. G. Wybourne, Spectroscopic properties of rare earths,
Interscience Publishers, New York, 1965.

A. Abragam and B. Bleaney, Electron Paramagnetic Reso-
nance of Transition Ions, Oxford University Press, 1970.

M. Blume, Phys. Rev., 1964, 134, A320-A327.

M. Dunn, Trans. Faraday Soc., 1961, 1441-1444.

S. Ohmura, T. Kato, T. Oyamada, S. Koseki, H. Ohmura and
H. Kono, J. Phys. B: At., Mol. Opt. Phys., 2018, 51, 034001.
A. J. Walisinghe and N. F. Chilton, Dalton Trans., 2021, 50,
14130-14138.

W. C. Martin, R. Zalubas and L. Hagan, Atomic energy levels -
the rare-earth elements: the spectra of lanthanum, cerium,
praseodymium, neodymium, promethium, samarium, europium,
gadolinium, terbium, dysprosium, holmium, erbium, thulium,
ytterbium, and lutetitum, National Bureau of Standards,
Gaithersburg, MD, 1978.
https://pypi.org/project/molcas-suite/.
https://pypi.org/project/angmom-suite/.

K. W. H. Stevens, Proc. Phys. Soc., London, Sect. A, 1952, 65,
209-215.

M. Hutchings, Solid State Physics, Elsevier, Amsterdam,
1964, vol. 16, pp. 227-273.

J. Mulak and Z. Gajek, The Effective Crystal Field Potential,
Elsevier, 2000.

I. D. Ryabov, J. Magn. Reson., 1999, 140, 141-145.

1. Ryabov, Appl. Magn. Reson., 2009, 35, 481-494.

C. Gorller-Walrand and K. Binnemans, Handbook on the
Physics and Chemistry of Rare Earths, Elsevier, 1996, vol. 23.
J. Sievers, Z. Phys. B: Condens. Matter, 1982, 45, 289-296.
N. F. Chilton, D. Collison, E. J. L. Mclnnes, R. E. P.
Winpenny and A. Soncini, Nat. Commun., 2013, 4, 2551.
J. J. Sakurai and S. F. Tuan, Modern quantum mechanics,
Addison-Wesley Pub. Co, Reading, Mass, Rev. ed., 1994.
E. U. Condon and G. Shortley, The Theory of Atomic Spectra,
Cambridge University Press, 1951.

Chem. Soc. Rev,, 2025, 54, 11468-11487 | 11485


https://pypi.org/project/molcas-suite/
https://pypi.org/project/angmom-suite/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cs00493d

Open Access Article. Published on 11 November 2025. Downloaded on 2/11/2026 2:05:43 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chem Soc Rev

42

43
44

45

46

47

48

49

50

51

52

53
54

55

56

57

58

59

60
61

62

63

64

65

66

67

11486 |

Computational Methods in Lanthanide and Actinide Chemis-
try: Dolg/Computational Methods in Lanthanide and Actinide
Chemistry, ed. M. Dolg, John Wiley & Sons Ltd, Chichester,
UK, 2015.

J. Autschbach, J. Chem. Phys., 2012, 136, 150902.

W. T. Carnall, G. L. Goodman, K. Rajnak and R. S. Rana,
J. Chem. Phys., 1989, 90, 3443-3457.

B. N. Figgis and M. A. Hitchman, Ligand Field Theory and
Its Applications, Wiley-VCH, 1st edn, 1999.

M. Gerloch, Magnetism and ligand-field analysis, Cambridge
University Press, Cambridge [Cambridgeshire]; New York,
1983.

J. S. Griffith, The Theory of Transition-Metal Ions, Cam-
bridge University Press, 1961.

F. E. Mabbs and D. J. Machin, Magnetism and Transition
Metal Complexes, Chapman and Hall, 1973.

N. M. Edelstein, P. G. Allen, J. J. Bucher, D. K. Shuh, C. D.
Sofield, N. Kaltsoyannis, G. H. Maunder, M. R. Russo and
A. Sella, J. Am. Chem. Soc., 1996, 118, 13115-13116.

A. Kerridge and N. Kaltsoyannis, C. R. Chim., 2010, 13,
853-859.

P. Siegbahn, A. Heiberg, B. Roos and B. Levy, Phys. Scr.,
1980, 21, 323.

C. Kollmar, K. Sivalingam, B. Helmich-Paris, C. Angeli and
F. Neese, J. Comput. Chem., 2019, 40, 1463-1470.

P.-O. Lowdin and H. Shull, Phys. Rev., 1956, 101, 1730-1739.
V. Veryazov, P. A. Malmqvist and B. O. Roos, Int.
J. Quantum Chem., 2011, 111, 3329-3338.

C. A. P. Goodwin, M. J. Giansiracusa, S. M. Greer, H. M.
Nicholas, P. Evans, M. Vonci, S. Hill, N. F. Chilton and
D. P. Mills, Nat. Chem., 2021, 13, 243-248.
https://pypi.org/project/Pegamoid/.

P.-A. Malmgqvist and B. O. Roos, Chem. Phys. Lett., 1989,
155, 189-194.

K. Andersson, P. Aake. Malmgqyvist, B. O. Roos, A. J. Sadlej
and K. Wolinski, J. Phys. Chem., 1990, 94, 5483-5488.

C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger and
J.-P. Malrieu, J. Chem. Phys., 2001, 114, 10252-10264.

O. Kahn, Molecular magnetism, Wiley-VCH, New York, 1993.
R. Boca, Theoretical Foundations of Molecular Magnetism,
Elsevier, 1999.

N. F. Chilton, PHI User Manual v2.1, 2015.

M. Vonci, K. Mason, E. R. Neil, D. S. Yufit, E. J. L. McInnes,
D. Parker and N. F. Chilton, Inorg. Chem., 2019, 58, 5733-5745.
K. Qian, ]J. J. Baldovi, S.-D. Jiang, A. Gaita-Arifio,
Y.-Q. Zhang, J. Overgaard, B.-W. Wang, E. Coronado and
S. Gao, Chem. Sci., 2015, 6, 4587-4593.

Y.-S. Ding, W. J. A. Blackmore, Y.-Q. Zhai, M. ]J.
Giansiracusa, D. Reta, I. Vitorica-Yrezabal, R. E. P. Winpenny,
N. F. Chilton and Y.-Z. Zheng, Inorg. Chem., 2022, 61, 227-235.
C. A. Gould, K. R. McClain, D. Reta, J. G. C. Kragskow,
D. A. Marchiori, E. Lachman, E.-S. Choi, J. G. Analytis,
R. D. Britt, N. F. Chilton, B. G. Harvey and ]. R. Long,
Science, 2022, 375, 198-202.

M. Gregson, N. F. Chilton, A.-M. Ariciu, F. Tuna,
I. F. Crowe, W. Lewis, A. ]J. Blake, D. Collison,

Chem. Soc. Rev,, 2025, 54, 11468-11487

68
69

70

71

72

73

74

75

76

77

78

79

80
81

82

83

84

85

86

87

88

89

90

91

92

View Article Online

Tutorial Review

E.J. L. McInnes, R. E. P. Winpenny and S. T. Liddle, Chem.
Sci., 2016, 7, 155-165.

H. Bolvin, ChemPhysChem, 2006, 7, 1575-1589.

M. Gerloch and R. F. McMeeking, J. Chem. Soc., Dalton
Trans., 1975, 2443-2451.

L. Chibotaru, A. Ceulemans and H. Bolvin, Phys. Rev. Lett.,
2008, 101, 033003.

L. F. Chibotaru and L. Ungur, Phys. Rev. Lett., 2012,
109, 246403.

https://pypi.org/project/PyMolVis/.

J. K. Staab, PhD thesis, The University of Manchester, 2024.
L. F. Chibotaru, in Advances in Chemical Physics, ed. S. A.
Rice and A. R. Dinner, John Wiley & Sons, Inc., 2013,
pp. 397-519.

L. F. Chibotaru and L. Ungur, J. Chem. Phys., 2012, 137
, 064112.

L. Ungur and L. F. Chibotaru, Chem. - Eur. J., 2017, 23,
3708-3718.

D. M. King, P. A. Cleaves, A. J. Wooles, B. M. Gardner,
N. F. Chilton, F. Tuna, W. Lewis, E. J. L. McInnes and
S. T. Liddle, Nat. Commun., 2016, 7, 13773.

J. A. Seed, L. Birnoschi, E. Lu, F. Tuna, A. J. Wooles,
N. F. Chilton and S. T. Liddle, Chem, 2021, 7, 1666-1680.
B. R. Judd, Operator Techniques in Atomic Spectroscopy,
Princeton University Press, 1998.

Science, 2022, 378, eadf5804.

H. Kwon, K. R. McClain, J. G. C. Kragskow, J. K. Staab,
M. Ozerov, K. R. Meihaus, B. G. Harvey, E. S. Choi,
N. F. Chilton and J. R. Long, J. Am. Chem. Soc., 2024, 146,
18714-18721.

P. Zhang, R. Nabi, J. K. Staab, N. F. Chilton and S. Demir,
J. Am. Chem. Soc., 2023, 145, 9152-9163.

J. Du, B. E. Atkinson, J. A. Seed, R. F. Sheppard, F. Tuna,
A. J. Wooles, N. F. Chilton and S. T. Liddle, Chem, 2025,
11, 102494,

P.-B. Jin, Q.-C. Luo, G. K. Gransbury, I. J. Vitorica-Yrezabal,
T. Hajdu, L. Strashnov, E. J. L. McInnes, R. E. P. Winpenny,
N. F. Chilton, D. P. Mills and Y.-Z. Zheng, J. Am. Chem. Soc.,
2023, 145, 27993-280009.

C. A. P. Goodwin, F. Ortu, D. Reta, N. F. Chilton and
D. P. Mills, Nature, 2017, 548, 439-442.

S.-D. Jiang, B.-W. Wang, G. Su, Z.-M. Wang and S. Gao,
Angew. Chem., Int. Ed., 2010, 49, 7448-7451.

G.7J. Chen, C.-Y. Gao, J.-L. Tian, ]J. Tang, W. Gu, X. Liu, S.-
P. Yan, D.-Z. Liao and P. Cheng, Dalton Trans., 2011, 40,
5579-5583.

A. Lunghi, Sci. Adv., 2022, 8, eabn7880.

J. Villain, F. Hartman-Boutron, R. Sessoli and A. Rettori,
Europhys. Lett., 1994, 27, 159-164.

J. villain and A. Fort, Eur. Phys. J. B, 2000, 17, 69-83.

A. Mattioni, J. K. Staab, W. J. A. Blackmore, D. Reta, J. Iles-
Smith, A. Nazir and N. F. Chilton, Nat. Commun., 2024,
15, 485.

J. G. C. Kragskow, A. Mattioni, J. K. Staab, D. Reta, J. M.
Skelton and N. F. Chilton, Chem. Soc. Rev., 2023, 52,
4567-4585.

This journal is © The Royal Society of Chemistry 2025


https://pypi.org/project/Pegamoid/
https://pypi.org/project/PyMolVis/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cs00493d

Open Access Article. Published on 11 November 2025. Downloaded on 2/11/2026 2:05:43 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Tutorial Review

93

94

95

96

97

98

99

100

101

102

103

104

105

A. Fort, A. Rettori, ]J. Villain, D. Gatteschi and R. Sessoli,
Phys. Rev. Lett., 1998, 80, 612-615.

F. Troiani, C. Godfrin, S. Thiele, F. Balestro, W. Wernsdorfer,
S. Klyatskaya, M. Ruben and M. Affronte, Phys. Rev. Lett.,
2017, 118, 257701.

W. J. A. Blackmore, A. Mattioni, S. C. Corner, P. Evans,
G. K. Gransbury, D. P. Mills and N. F. Chilton, J. Phys.
Chem. Lett., 2023, 14, 2193-2200.

F. Pointillart, K. Bernot, S. Golhen, B. Le Guennic,
T. Guizouarn, L. Ouahab and O. Cador, Angew. Chem., Int.
Ed., 2015, 54, 1504-1507.

E. Moreno-Pineda, G. Taran, W. Wernsdorfer
M. Ruben, Chem. Sci., 2019, 10, 5138-5145.

T. Pugh, N. F. Chilton and R. A. Layfield, Angew. Chem., Int.
Ed., 2016, 55, 11082-11085.

Y.-S. Ding, K.-X. Yu, D. Reta, F. Ortu, R. E. P. Winpenny,
Y.-Z. Zheng and N. F. Chilton, Nat. Commun., 2018, 9, 3134.
P. Evans, D. Reta, G. F. S. Whitehead, N. F. Chilton and
D. P. Mills, J. Am. Chem. Soc., 2019, 141, 19935-19940.
K.-X. Yu, J. G. C. Kragskow, Y.-S. Ding, Y.-Q. Zhai, D. Reta,
N. F. Chilton and Y.-Z. Zheng, Chem, 2020, 6, 1777-1793.
L. R. Thomas-Hargreaves, D. Hunger, M. Kern, A. J. Wooles,
J. Van Slageren, N. F. Chilton and S. T. Liddle, Chem.
Commun., 2021, 57, 733-736.

L. R. Thomas-Hargreaves, M. J. Giansiracusa, M. Gregson,
E. Zanda, F. O’Donnell, A. J. Wooles, N. F. Chilton and
S. T. Liddle, Chem. Sci., 2021, 12, 3911-3920.

A. H. Vincent, Y. L. Whyatt, N. F. Chilton and J. R. Long,
J. Am. Chem. Soc., 2023, 145, 1572-1579.

G. K. Gransbury, S. C. Corner, J. G. C. Kragskow, P. Evans,
H. M. Yeung, W. J. A. Blackmore, G. F. S. Whitehead,

and

This journal is © The Royal Society of Chemistry 2025

106

107

108

109

110

111

112

113

114

115

116

117

View Article Online

Chem Soc Rev

I. J. Vitorica-Yrezabal, M. S. Oakley, N. F. Chilton and
D. P. Mills, J. Am. Chem. Soc., 2023, 145, 22814-22825.

S. C. Corner, G. K. Gransbury, I. J. Vitorica-Yrezabal,
G. F. S. Whitehead, N. F. Chilton and D. P. Mills, Inorg.
Chem., 2024, 63, 9552-9561.

S. C. Corner, W. J. A. Blackmore, G. K. Gransbury,
A. Mattioni, G. F. S. Whitehead, N. F. Chilton and
D. P. Mills, Chem. Sci., 2025, 16, 610-620.

M. Briganti, F. Santanni, L. Tesi, F. Totti, R. Sessoli and
A. Lunghi, J. Am. Chem. Soc., 2021, 143, 13633-13645.

R. Nabi, J. K. Staab, A. Mattioni, J. G. C. Kragskow, D. Reta,
J. M. Skelton and N. F. Chilton, J. Am. Chem. Soc., 2023,
145, 24558-24567.

N. F. Chilton, Inorg. Chem., 2015, 54, 2097-2099.

R. Nabi, B. E. Atkinson, J. K. Staab, J. M. Skelton and
N. F. Chilton, Chem. Commun., 2024, 60, 13915-13918.

A. Lunghi, F. Totti, R. Sessoli and S. Sanvito, Nat. Commun.,
2017, 8, 14620.

A. Albino, S. Benci, L. Tesi, M. Atzori, R. Torre, S. Sanvito,
R. Sessoli and A. Lunghi, Inorg. Chem., 2019, 58, 10260-10268.
E. Garlatti, L. Tesi, A. Lunghi, M. Atzori, D. J. Voneshen,
P. Santini, S. Sanvito, T. Guidi, R. Sessoli and S. Carretta,
Nat. Commun., 2020, 11, 1751.

A. Chiesa, F. Cugini, R. Hussain, E. Macaluso, G. Allodi,
E. Garlatti, M. Giansiracusa, C. A. P. Goodwin, F. Ortu, D. Reta,
J. M. Skelton, T. Guidi, P. Santini, M. Solzi, R. De Renzi,
D. P. Mills, N. F. Chilton and S. Carretta, Phys. Rev. B, 2020,
101, 174402.

B. Yin and C.-C. Li, Phys. Chem. Chem. Phys., 2020, 22,
9923-9933.

D. Aravena, J. Phys. Chem. Lett., 2018, 9, 5327-5333.

Chem. Soc. Rev., 2025, 54, 11468-11487 | 11487


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cs00493d



