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From text to insight: large language models for
chemical data extraction
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The vast majority of chemical knowledge exists in unstructured natural language, yet structured data is

crucial for innovative and systematic materials design. Traditionally, the field has relied on manual curation

and partial automation for data extraction for specific use cases. The advent of large language models

(LLMs) represents a significant shift, potentially enabling non-experts to extract structured, actionable data

from unstructured text efficiently. While applying LLMs to chemical and materials science data extraction

presents unique challenges, domain knowledge offers opportunities to guide and validate LLM outputs. This

tutorial review provides a comprehensive overview of LLM-based structured data extraction in chemistry,

synthesizing current knowledge and outlining future directions. We address the lack of standardized

guidelines and present frameworks for leveraging the synergy between LLMs and chemical expertise. This

work serves as a foundational resource for researchers aiming to harness LLMs for data-driven chemical

research. The insights presented here could significantly enhance how researchers across chemical

disciplines access and utilize scientific information, potentially accelerating the development of novel

compounds and materials for critical societal needs.

Key learning points
1. End-to-end workflow for LLM-based chemical data extraction: from data collection to structured output.
2. Advanced techniques to enhance extraction: multimodal approaches and agentic systems.
3. Quality assurance in chemical data extraction: constrained decoding and domain-specific validation.
4. Future frontiers: addressing cross-document analysis, diverse modalities, and emerging challenges in chemical LLMs.

1 Introduction

Materials and molecular design have a long history of using
empirical correlations or models to guide the design and
synthesis of new compounds—or to inspire new theories. For
example, structured data has been used via Ashby plots to select

materials,1 or via scaling relations to design catalysts.2 More
recently, structured data has been used via machine learning
models to predict the properties of compounds before they
have been synthesized.3–6 In some cases, models can even
directly recommend materials based on desired properties or
guide the design of chemical experiments.7,8 A foundation for
all these data uses is that the data must be available in a
structured form, e.g., a table with clearly defined columns
(often representing specific chemical or physical properties).

While there have been many advances in research data
management, only a minuscule fraction of all available
research data is available in a usable structured form (see
Fig. 1). Most data is still only reported in a compressed and
highly processed form via text such as scientific articles. Thus,
there is a large untapped potential in leveraging this unstruc-
tured text data.

The promise of leveraging data ‘‘hidden’’ in scientific arti-
cles—such as links between disjoint data published in separate
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articles (‘‘Swanson links’’)—has motivated researchers to
develop dedicated extraction pipelines.10,11 These pipelines
often relied on rule-based approaches,12–16 or smaller machine
learning (ML) models trained on manually annotated
corpora.17–21 Those approaches, however, face challenges with
the diversity of topics and reporting formats in chemistry and
materials research as they are hand-tuned for very specific use
cases.22 In 2019, researchers still struggled to effectively utilize
data from old PDFs as ‘‘currently available solutions still
fail[ed] to provide high enough accuracy to reliably extract
chemistry’’9 and the development of extraction workflows
typically required very deep understanding and investment of
multiple months of development time that had to be recom-
mitted for every new use case. Data extraction, thus, presents a
‘‘death by 1000 cuts’’ problem. Automating the extraction for
one particular case might not be too difficult, but the sheer
scale of possible variations makes the overall problem
intractable.23,24

With advances in large language models (LLMs) this has
dramatically changed because LLMs can solve tasks for which
they have not been explicitly trained.25–28 Thus, LLMs present a
powerful and scalable alternative for structured data extraction.
Using these LLMs, many data extraction workflows that would
have taken weeks or longer to develop can now be bootstrapped
into a prototype over the course of a two-day hackathon.29

While there has been a growing number of reports showing
the use of LLMs for data extraction in chemistry30–33 and
materials science,21,34–40 there is still no clear framework on
how to best build and evaluate such extraction pipelines for
materials and molecular data. In many cases, chemical data
extraction is more complicated than in other domains.41 How-
ever, chemical expertise and physical laws also offer unique
possibilities to constrain or validate the results.

This review aims to leverage the synergy between LLMs and
chemistry and provide a practical guide for materials scientists
and chemists looking to harness the power of LLMs for
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structured data extraction. We cover the entire workflow and
real-world applications, drawing from the latest research and
insights from the field. By bridging the gap between LLM
research and practical application in chemistry and materials
science, we aim to empower researchers to make the most of
these powerful models. To facilitate this, each section will be
accompanied by a section in an executable Jupyter Book42 that
elaborates on hands-on examples (Online Material – matex
tract.pub).43

2 Overview of the working principles
of LLMs

At the most basic level, LLMs work by completing the text they
receive as input with one of the (what they compute to be) most

likely tokens (Fig. 2). In this context, tokens are the basic units
of text on which those models operate. They are usually words
but can be suffixes, prefixes, or individual characters. A model
knows only a finite number of tokens, which is typically known
as the vocabulary. This vocabulary must be determined prior to
the training of the model and can limit the performance of
models, e.g., via suboptimal splitting of chemical formulas or
numbers.44

2.1 Sampling outputs

The output of the most commonly used models (so-called
decoder-only models) is a probability distribution over tokens,
i.e., a measure of how likely each token the model knows is as a
completion of the input sequence (Fig. 2). While it might seem
most intuitive to choose the most likely token (so-called greedy
decoding), this often leads to unnatural-sounding text. Thus, in
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some applications, it is common to choose less likely tokens.
The frequency of this happening is determined by a model
parameter known as temperature. A higher value of tempera-
ture means that there are higher probabilities that less likely
tokens are generated. For structured data-extraction tasks,
working at a temperature value of 0 is typically the best, as this
will lead to deterministic outputs with the most relevant
information. It is important to keep in mind that most LLMs
are so-called autoregressive models.45–47 This means that they
generate the output using their previous output tokens as
input. For example, the model in Fig. 2 would generate one
token based on the input, and the output token would then be
added to that input. Using this longer input, the model can
be queried again, producing another token. This process can be
repeated a fixed number of times or until a specific end-of-
sequence indicator is reached. The autoregressive nature is

important because it leads to two major limitations. First,
making predictions requires a full pass through the model
for each output token, which can be slow. Second, errors
multiply, i.e., if a token is generated incorrectly, it cannot be
‘‘fixed’’, and the generation of subsequent tokens is affected by
that error, potentially leading the output astray.48

2.2 Embeddings

Internally, the models do not work with the discrete tokens.
Instead, they operate with high-dimensional vector representa-
tions of tokens, so-called embeddings. The power of these
embeddings is that they capture the syntactic and semantic
relationships between tokens. That is, synonyms or related
words and phrases are mapped onto neighboring parts of this
high-dimensional space. Internally, LLMs transform input
embeddings by letting them interact, e.g., using the attention

Fig. 1 Number of research papers vs. datasets deposited in data repositories in materials science and chemistry per year. The top graph shows the
number of publications from 1996 to 2023. The number of records was obtained from the search queries ‘‘(nanoparticles)’’, ‘‘(battery AND cathode AND
materials)’’, ‘‘(photocatalytic AND materials)’’, ‘‘(polymers)’’, ‘‘(thermoelectric AND materials)’’, ‘‘((metal–organic AND framework) OR MOF)’’, ‘‘(biomater-
ials)’’, ‘‘((2D AND materials) OR graphene)’’, and ‘‘(semiconductor AND materials)’’ in the Web of Science Core Collection on July 1, 2024 (search based on
title, abstract and indexing, including ‘‘Article’’ and ‘‘Data Paper’’ document types) (categories based on Kononova et al.9) (see Online Material – research
articles vs. datasets in chemistry and materials science). The two graphs below show the number of datasets in chemistry and materials science
deposited in the Zenodo and DataCite repositories from 1996 to 2023. The number of records was obtained from similar queries by restricting the
document type to ‘‘dataset’’. Note the different y-axis scale between the top and bottom graphs. While this figure highlights the large difference in the
availability of structured datasets compared to papers, we note that a one-to-one comparison of these numbers is not always fair. This is because
sometimes multiple papers can be used to create a single dataset, as in the case of curated databases, or vice versa, where multiple structured datasets
can result from a single paper’s work.
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mechanism25 to give access to the entire sequence at each time
step. The attention blocks are the core of recent LLMs, allowing
them to capture long-range dependencies and making the
training of these models highly parallelizable. However, atten-
tion does not account for changes in the order of the tokens. To
still capture the order of the tokens, LLMs introduce so-called
positional encoding that adds a unique signal to each word
embedding, which describes the location of each token within
the input.

2.3 Training and tuning of LLMs

The capacity of these models to generate coherent text comes
from their training, in which they are exposed to massive
amounts of natural text mined from the internet. Most recent
LLMs are initially trained to predict the next token within a
sentence. This process is called pre-training and provides
models with general-purpose representations, an understand-
ing of semantics and syntax, and world knowledge.49 Since
those models are trained to complete text, they are typically not
ideal for answering questions. They will often attempt to
complete input patterns, e.g., by generating more questions.
To overcome this issue, they are often specifically tuned to
follow desired guidelines and to answer such as humans would
do. This is known as instruction-tuning and is typically per-
formed as a supervised training task, where the model is
trained on prompts and desired completions. In the context
of LLMs, prompts refer to the input sequence containing the
user’s query and potentially some additional examples (see
Section 3.2.1). The most recent models are often also aligned
to human preferences using processes such as reinforcement
learning from human feedback (RLHF) in which LLMs are
tuned based on preference data such as the preferred choice
among two completions generated by the model.50 Importantly,
it has been observed that this process makes the output
probabilities of the model less calibrated,51 that is, they no
longer correspond to expected error rates.

2.4 LLM-systems

For simplicity, we are going to mostly write LLMs even though
most of the time, we are using systems. Systems are a combi-
nation of models and additional tools that might include safety
filters. When a user calls a model via an application program-
ming interface (API), they seldom interact with only the model
but also get some inputs and outputs being processed by
additional tools.

Additional resources on how LLMs work can be found in the
Online Material – overview of the working principles of LLMs.

3 Structured data extraction workflow

The structure of this section describes a common workflow of a
data extraction project. In practice, parts of the workflow must
be optimized iteratively depending on the quality of the extrac-
tion result (see Fig. 3). The pipeline typically starts by collecting
data (Section 3.1.1), which then must be preprocessed and
often chunked before it can be sent to interact with an LLM.
The LLM can be used in diverse ways, such as by prompting or
fine-tuning it, or in agentic (to use tools) or multimodal (to
study other modalities than text) settings. Often, the desired
output follows a special structure. In those cases, one can
leverage techniques to ensure that the output follows this
structure. To be able to optimize the extraction, it is essential
to evaluate the extraction performance. This is often not trivial
but can be aided by insights from materials science and
chemistry.

3.1 Preprocessing

3.1.1 Obtaining data. The first step in the structured data
extraction workflow is acquiring the necessary data. Data
mining can pose significant challenges due to legal restrictions
and practical difficulties in accessing and processing scientific
literature. To ensure the legality of data mining, it is important
to consider copyright infringements that may occur when

Fig. 2 High-level explanation of the working principle of an LLM. The data flow in the image corresponds to a decoder-only model, e.g., a GPT or Llama
model. One token is produced each time, considering all the tokens from the input and all previously produced tokens. The process starts with the
tokenizer, which converts the user query into smaller constituent units, the tokens. The tokens are passed into the model, where input embeddings are
computed, after which additional operations transform the embeddings. As a result, the model outputs the probabilities over possible subsequent tokens.
Depending on the temperature parameter, the most probable token or a less probable one is chosen, and the sampled token is added to the input. By
repeating this process, the model generates the response to the query.
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copying and adapting the original work. There are two possi-
bilities to avoid copyright infringements: either by getting the
owners’ permission for usage, or if the data mining actions fall
under a copyright exception. Only a few publishers, such as
Elsevier, Wiley, and Springer Nature, provide a general copy-
right license for text and data mining (TDM) use in addition to
their usual contracts, and sometimes at an extra cost. However,
most publishers lack a general TDM agreement. Thus, research-
ers (or the libraries that have an agreement with the publishers)
must approach the publishers individually. Yet, there is a wide
variety of copyright exceptions that may also cover TDM
research. In the US, there is a ‘‘fair use’’ clause that represents
a general exception to copyright for research and educational
purposes, which has so far been interpreted by courts to allow

at least some TDM applications.52 In contrast, the UK and
Japan have explicit exceptions to copyright for content mining,
and EU member states have to at least permit copying for non-
commercial research or private studies.53,54

Several resources besides the major scientific publishers are
available for data mining (Table 1). First, there are repositories
of open-access published articles like EuroPMC55 or preprint
servers such as ChemRxiv56 and arXiv,57 which contain a wealth
of open-access scientific articles about different academic dis-
ciplines. Furthermore, data dumps like S2ORC58 or the Elsevier
OA Corpus59 collect a large variety of open-access scientific
publications with mostly Creative Commons Attribution
licenses. Most available data sources also provide automated
access through an API, simplifying data collection. However,

Fig. 3 Data extraction workflow. This figure illustrates the flow of data from left to right through various stages of the extraction process. The evaluation
loop includes all steps in the workflow, indicating that if evaluations do not yield satisfactory results, corrections and improvements may be necessary at
any stage. It is important to conduct these evaluations using a representative and labeled test set, rather than the entire unstructured data corpus. Once
the evaluations demonstrate satisfactory results, the entire corpus of unstructured data can be processed.

Table 1 Overview of some data sources relevant for structured data extraction from scientific text, including published articles in open-access archives
data dumps. This table gives a non-comprehensive overview of data sources, the license provided by these publishers, the database size, the available
data format of the articles, and how these articles can be accessed programmatically

Data source Description License Size Data format
Automated
access

Published articles
EuroPMC55 Corpus of life science literature License terms of the respective

authors or publishers
43.9m abstracts, 9.7m full
text articles

XML or PDF With RESTful
API from
EuroPMC

arXiv57 OAa archive for different academic
disciplines

License terms of the respective
authors or publishersb

2.4m full text articles HTML or PDF With arXiv API

ChemRxiv56 OAa archive for chemistry and
related areas

License terms of the respective
authors or publishers

150k full text articles PDF With ChemRxiv
public API

USPTOc Federal agency for granting U.S.
patents and registering
trademarks

Text and drawings are typically not
subject to copyright restrictions

Over 50k chemical reac-
tions only from 1976 till
2016

Images and
text
documents

With USPTO
APIs

Data dumps
S2ORC58 Academic articles from many aca-

demic disciplines
ODC-BY 1.0d 81.1m abstracts, 8.1m full

text articles
Machine
readable text

With semantic
scholar APIs

Elsevier OA
CC-BYa 59

Corpus of OAa articles from across
Elsevier’s journals

CC-BYe 40k full text articles With Elsevier’s
APIs

Open Reac-
tion
Database61,62

OAa corpus for organic reaction
data

CC BY-SAf 2m chemical reactions With ORD
interface

a OA is ‘open-access’. b For arXiv one has to check the copyright restrictions for each article. The default license does not specify reuse. c USPTO is
‘The United States Patent and Trademark Office’. d ODC-BY 1.0 is ‘Open Data Commons Attribution License v1.0’. e CC BY is ‘Creative Commons
Attribution’. f CC BY-SA is ‘Creative Commons Attribution – ShareAlike’.
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most APIs provide a limit for requests per time to protect
servers from overload. Thus, API providers might block
researchers’ IP addresses or even cut off whole institutional
access if TDM rules are violated.53,60

Tools for data mining. Various tools have been developed to
aid in the data mining process. Thus, for the first step in this
process, typically the collection of a database of potentially
relevant articles for a topic, one could use different techniques
like full-text or abstract search, search across different sources,
so-called federated search, or search for one specific publisher.
The Crossref API63 or the Scopus API64 are examples of feder-
ated search APIs, which can be used to collect potentially
relevant works from various publishers and sources and
retrieve their metadata. However, it is important to note that
the selection of relevant articles for a specific research focus is
still an open question. After finding relevant articles, one could
use tools like SciCrawler65 to collect the full-text articles from
different corpuses, although researchers must be aware of
current copyright law. Articles from open-access databases
can be collected using tools such as pygetpapers.66 One can
find a demonstration of these tools in the Online Material –
obtaining data.

Importance of structured data. However, simply mining
unstructured data is insufficient for creating a data extraction
pipeline. To optimize and evaluate the extraction pipeline, it is
critical to programmatically evaluate the extraction perfor-
mance at a later stage. This requires a set of unstructured data
paired with the desired output. Tools such as Argilla67 or
Doccano68 are emerging to aid in the creation of such datasets.
Since extraction pipelines need to be optimized, such as by fine-
tuning the LLMs, it is necessary to have both a test set and a
validation set. The validation set is necessary because the test
set should only be used to evaluate the final performance of the
pipeline. If the test set is used to guide the optimization of the
pipeline, information from the testing stage will influence the
optimization process (data leakage), which is a major pitfall in
ML.69

3.1.2 Curating and cleaning data. While there are plenty of
resources that provide (unstructured) data, this data is often
not in a form that can, or should, be used for generative data
extraction (see Fig. 4). On the one hand, this is because the data
might be only provided as an image, which cannot be used as
input for a text-based model. On the other hand, the unedited
articles often still contain information (e.g., bibliography,
acknowledgments, page numbers) that might not be needed
for the extraction tasks. Thus, the input for the model could be
compressed and less ‘‘distracting’’ if such parts are removed.

Document parsing and understanding. Before any such cura-
tion can occur, the document must be in a form that curation
tools and models can work with. In many cases, this involves a
step of visual document understanding (VDU), which enables
machines to understand documents. This might require not
only optical character recognition (OCR), which is focused on
extracting machine-readable text from text images, but also the

ordering and sequence of text blocks and layout (i.e., the
reading order). Further layout understanding is needed
because documents such as images or PDFs, in contrast to
extensible markup language (XML) or hypertext markup lan-
guage (HTML), do not have semantic annotations that
describe the meaning and context of different parts of the
document. In such cases, additional tools must be used to
analyze the document’s structure. Traditionally, this has often
been performed using rule-based systems (as, e.g., in PDFDa-
taExtractor by Zhu and Cole70) operating on OCR output
(which can be obtained using OCR tools such as Tesseract71).
However, recently, it has been shown that high performance
can be obtained using end-to-end modeling approaches such as
Nougat72 or Marker,73 which are specialized for converting
scientific papers from PDF to Markdown (see Online Material –
document parsing with OCR tools). In those Markdown files,
the meaning of different parts (e.g., sections, tables, equations)
is semantically annotated using the Markdown markup. Com-
plicated structures like complex equations and large tables
have a high potential for errors.74 As an alternative to text-
based models, multi-modal models can also handle other types
of inputs, e.g., images. These approaches are discussed in
Section 3.2.4.

Fig. 4 Data preprocessing workflow. The process from the mined articles
to machine-readable and cleaned format, which one could send to a LLM.
For articles for which the relevant information cannot readily be extracted
using conventional visual document understanding (VDU) tools, vision
language model (VLM) might be a suitable alternative (see Section 3.2.4).
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Document cleaning. For many data extraction tasks, it can be
useful to preprocess the data, for example, by deleting text that
does not contain the relevant information. This can make the
system more robust (as noise is removed) and cheaper (as less
text has to be processed). Often, sections and structures such as
authors, affiliations, acknowledgments, references, page num-
bers, headers, and footers, as well as unneeded white spaces or
linebreaks, can be removed. Some old articles include the end
or the beginning of the next article in the text file, which could
lead to major errors during the extraction. For chemistry and
materials science-related data extraction tasks, for example,
one might need only the experimental part to extract raw
materials, synthesis, characterization, and products, or one
need to include the Supporting Information files which usually
contain detailed descriptions of synthetic routes and experi-
mental procedures in organic chemistry.75 Hence, the content
length of the articles could be reduced to the most relevant
parts. To do so, practitioners often use regular expression-
based pipelines as, for example, in the ChemNLP project.76

One can find examples for data cleaning methods in the Online
Material – document cleaning.

3.1.3 Dealing with finite context. The context window is
the range of tokens a model can process at a time. This includes
all text, such as the input given to the LLM and the response it
produces. When using an LLM with long, low information-
density documents, the context window size can be a hurdle. In
such cases, chunking strategies can be used to fit the text in
pieces (‘‘chunks’’) into the context window. However, careful
consideration must be given when chunking documents, as the
entity of interest could be located at any position in the text.77

This consideration is particularly critical in chemical sciences
literature, where key information is often dispersed throughout
the document. For instance, abbreviations and nomenclature
are typically introduced at the beginning, while synthesis
procedures and experimental results may be described in
separate sections. Therefore, the choice of chunking strategy
is crucial (see Fig. 5). Importantly, even though the context
windows of LLMs are rapidly growing,78 there is also value in
chunking because models can perform better if given a higher
density of relevant content.79

Chunking techniques. The simplest approach is to divide the
text into chunks of identical size to fit in the context window.

This is also known as fixed-size chunking. One downside of this
approach is that a word could be split between two chunks. One
can improve upon this by splitting based on special characters
like periods (.) or newlines (\n). In most situations, this is
similar to splitting based on sentences and, hence, will leave
words intact, but it is problematic when the text, such as
scientific text, has numbers with decimal points. For our use
case, it is important not to split these numbers.

Even though this approach preserves sentences, chunks of
text are often related to the previous chunk. To help preserve
some more semantic context from neighboring chunks, one
can have a certain length of overlap between them. This, in
practice, has been shown to produce better results.80 The size of
this overlap plays an important role in contextual awareness
and the total number of required LLM queries.

In many cases, we can also use the fact that many docu-
ments are naturally split with headings and sections. We can
use this to our advantage on top of all chunking techniques.
This is called semantic chunking.

Using retrieval augmented generation (RAG) and classification
to save costs. If the information density in the documents is low
and one has to deal with many documents, one can store these
chunks in a database and retrieve relevant chunks when
needed to query the LLM. Typically, a vector database is used
to store embeddings of the chunks while enabling fast retrieval
of semantically relevant chunks. This process of retrieving
information and using it as additional context when querying
an LLM is called RAG.81 Since embedding text is cheaper than
running it through a generative LLM, this can be an effective
strategy when dealing with many documents. However, the
performance of this technique highly depends on the embed-
ding model and retrieval strategy used.

A classification model can also be used to determine a text’s
relevance to the tasks at hand to improve extraction efficiency
by, for example, determining prior to extraction whether a
chunk contains relevant information.35,82 The classification
models used for this task can range from logistic regression
trained on the text embeddings to using the LLM directly to
classify text.

Chunking techniques and RAG are demonstrated in Online
Material – strategies to tackle context window limitations.

Fig. 5 Decision tree to help decide what chunking strategy to use. If the input text is quite short, no chunking is required. In contrast, if the information is
spread across a very large corpus, retrieval augmented generation (RAG) can provide cost and efficiency benefits. Chunking is typically applied with RAG. In this
case, one can use semantic chunking if it provides chunks that fit into the context window. The most simple option is to chunk text using a fixed window size.
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Extending context windows. Attention, which is a key part of
most LLMs, is costly to scale because the size of the attention
matrix grows quadratically with the sequence length. A number
of techniques have been developed to increase the model’s
context window.

Architectural changes (prior to training). One approach is to
modify the model architecture so that it can manage larger
context windows without a corresponding increase in computa-
tional cost. This can either be done by giving the model access
to the previous hidden state (but not computing the gradients
for the old states)83 or by using an additional (external) mem-
ory. This can be, for example, in the form of a small number of
extra tokens that store ‘‘global state’’84 or in a global memory to
which context is added during training and which can be
retrieved using elements of the conventional attention mecha-
nism. Those techniques currently still share a problem that was
also faced by recurrent neural networks (RNNs): adding new
information to a fixed-size memory will dilute past memory
over time.

Changes after training. In addition to changes to the actual
model architecture, some changes can also be performed after
training. For instance, models trained with so-called rotational
positional encoding (RoPE),85 such as Llama 3, can be fine-
tuned to understand (relative) position of tokens over a range
larger than the context window used in the actual training.86

While this does not increase the actual context window, it can
provide the model with a better understanding of the position
of a chunk within a larger document.

3.2 LLM-interaction

Once the data from different sources is correctly parsed, the
next step in the extraction workflow is to select the right
modeling framework to proceed. This section aims to provide
insights about the different models and learning paradigms.
Furthermore, it presents the advantages, challenges, and
potential strategies for optimizing the utilization of these tools
in extracting structured data.

3.2.1 General model with prompt engineering. In princi-
ple, as pointed out in Fig. 6, using a leading general-purpose
LLM87–90 may seem a good first option due to its simplicity

since no further training is needed. This option allows for rapid
deployment and does not need further labeled data beyond
the data needed for the evaluation of the extraction task. Such
base models have been trained on a general corpus of data that
does not belong to any specific field in particular and
has mostly been mined from the internet. Thus, these models
may lack knowledge and understanding of field-specific
vocabulary.22,91–94 However, as a result of the amount of data
they were trained on (e.g., the new Llama 3 model has been
trained on over 15t tokens of publicly available data95,96), these
models are often able to yield acceptable results for any of the
typical natural language processing (NLP) tasks for data extrac-
tion, such as named entity recognition (NER) or relation
extraction (RE) without further tuning.97 It is important to note,
however, that it is always valuable to try multiple models as, for
example, large models might be better at recall but show a
lower precision as Bran et al.75 found for knowledge graph
extraction from total synthesis documents.

When applying LLMs to extract information, one can adapt
the model to the task by changing the prompt. Besides the
actual text from which structured data should be extracted, the
prompt contains the instructions that are given to the model as
guidance to obtain the desired results. In addition, some
advanced prompting techniques such as Chain-of-Thought
(CoT)98 have been shown to improve performance on various
tasks. However, simple so-called zero-shot or few-shot prompt-
ing approaches are still the most common for generative data
extraction.

Zero-shot prompting. Zero-shot prompting means that the
text which is provided to the model does not contain any
examples or demonstrations; it will only contain the task that
the LLM is supposed to do (as well as the input text). When
using this zero-shot prompt, the results solely depend on the
knowledge and reasoning capabilities the model acquired dur-
ing its training. If the model is unfamiliar with the task and
vocabulary of the field, the outcomes are unlikely to meet
the expected level of satisfaction, i.e., the LLMs might not
recognize dimethylformamide (DMF) as a solvent in synthesis
or might not correctly understand how the compositions are
expressed.22

Fig. 6 Decision tree on how to decide which learning paradigm is better for each case. The term ‘‘leading LLM’’ is intended to describe any general
purpose LLM. The decision normally starts by testing a leading LLM with zero- or few-shot prompts. If the results are good enough, it is possible to
continue with this method; if not, fine-tuning may be necessary. But fine-tuning requires additional labeled data and computational resources. If those
are missing and simpler approaches do not work, pre-training also does not provide a solution, as it typically requires even more data (even though
unlabeled) and computational resources.
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Despite the simplicity, encouraging results have been
obtained in this setting.82,99 An alternative is to include some
advanced prompting techniques. In this fashion, Polak and
Morgan37 prompted GPT-3.5, GPT-4, and Llama 2 models to
extract information about materials such as pooling rates of
metallic glasses and yield strengths of high entropy alloys. To
make their zero-shot prompt more reliable, they developed a
workflow with several follow-up questions. Within these follow-
up questions, they included a technique called self-
reflection,100 which prompts the model to check its answers,
looking for possible errors and correcting them if they exist.

Few-shot prompting. One of the most fascinating observa-
tions made in the development of GPT-3 is that LLMs can
perform so-called in-context learning,101 i.e., learn a new con-
cept without updating the model parameters but by only
showing examples of desired behavior in the prompt.102 Some-
times, even only one example (one-shot learning) is enough.103

However, often more (k) examples (few-shot learning) lead to
better performance, mainly because adding more examples
helps prevent the model from becoming too focused on any
single example.104 The optimal number and order of examples
will depend on each application highly and can be found by
evaluating prompts with a variable number of shots.105 Often,
as in the case of Zhang et al.30 for chemical data extraction,
more examples improve the performance, but the number of
examples one can provide is limited by the context window of
the model. The examples that are provided must be chosen
wisely, and it can be important to include not only positive
examples but also negative ones, e.g., JSON schemas with some
empty optional fields.106 To choose the examples for the
prompt, one approach proposed by Liu et al.107 is to use
k-nearest neighbor clustering in the embedding space and
build the prompt by including the k-neighbors for each test
sample. Additionally, the examples can be modified to reflect
the intended completion of the model better or to improve the
conditions, e.g., summarize the examples, so fewer tokens are
consumed (see Online Material – collecting data on the synth
esis procedures of bio-based adsorbents).

Examples of zero-shot and one-shot prompts are shown in
Online Material – choosing the learning paradigm.

Advanced prompting techniques. Another possibility is to
combine the few-shot prompt with other prompting techni-
ques; for example, Sui et al.108 combined the few-shot prompt
with so-called self-augmentation. Self-augmentation consists of
a two-step process in which the model is prompted twice, and
the first answer of the model is used to improve the second
prompt by giving insight into the data. Using this technique to
prompt GPT-3.5 and GPT-4 models improved both models’
results with respect to a simple one-shot prompt in better
understanding and extracting data from tables of different
datasets. They also observed that the performance increases
significantly when going from zero-shot to one-shot prompts.
One drawback that especially limits few-shot prompting is the
context length of the models.89 Nevertheless, the latest models

released notably improved the context window (e.g., the latest
Gemini Pro model has a 2m token context window), allowing
for a bigger number of shots109 (for further discussion about
the context length, see Section 3.1.3). Despite all the good
results that these advanced techniques can give, it is not always
clear that they are going to work (see Online Material – collect
ing data on the synthesis procedures of bio-based adsor
bents).110,111 However, due mainly to their ease of use, it is
worth trying them before moving on to more complicated
setups.

Many recent models differentiate between so-called system
and user prompts. The system prompt provides high-level
instructions or context that guides the model’s behavior (‘‘per-
sona’’). It sets the overall tone or rules for the conversation.
However, the benefits of role prompting are still being
debated.93 A simple example of a system prompt for the data
extraction task can be: ‘‘you are a chemistry expert assistant
and your task is to extract certain information from a given text
fragment. If no information is provided for some variables,
return NULL’’. The system prompt is typically sent with the first
completion and cannot be overridden by subsequent user
follow-up questions. On the other hand, a user prompt repre-
sents the actual queries, statements, or prompts given by the
user. They might contain the input text from which one wants
to extract data, as well as a few-shot examples.

Prompt optimization. Typically, prompting techniques are
implemented by hard-coding templates. This task can be made
easier using frameworks like LangChain112 or LlamaIndex,113

which provide some of those templates. However, the models
have varying preferences for prompts,114 making actual
prompting mostly empirical (or often manual and prone to
data leakage) and constantly changing. This makes it impos-
sible to create general and robust prompts. To address this,
frameworks such as DSPy have been developed.115 These sys-
tems perform the optimization of entire LLM pipelines auto-
matically and systematically (e.g., by autogenerating prompts or
few-shot examples and then choosing the best ones using cross-
validation). However, those approaches are still in their infancy
and often require many LLM calls to optimize prompts.

Schema format. Another problem when using LLMs is the
cost associated with their use. While trying to improve the
performance when prompting the GPT-3.5 model for chemical
data extraction, Patiny and Godin116 reduced the number of
tokens by using a YAML input schema instead of the common
JSON format. Additionally, they proved that the GPT-3.5 model
can perform well with YAML schemas. However, the perfor-
mance of LLMs when working with different types of formats
will vary among models depending on the training data108,117

(see Online Material – data annotation for examples).
3.2.2 Fine-tuning. When the leading models fail to pro-

duce satisfactory results, fine-tuning can be used to improve a
model for a particular task or domain by training it further on
smaller but well-curated task-specific datasets.118–122 It is
important to point out that fine-tuning an LLM still requires
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a lot of expertise, which can be an important drawback
(Table 2). However, Zhang et al.30 found that by fine-tuning
leading models (including GPT-3.5) on chemical data extraction
tasks (such as reaction role labeling, metal–organic framework
(MOF) synthesis information extraction, NMR data extraction)
they could often outperform bespoke domain-specific models.

An example of how to fine-tune a model using an existing
dataset is available at Online Material – choosing the learning
paradigm.

Fine-tuning techniques. In principle, one can perform fine-
tuning by changing all trainable weights of the model (‘‘full
fine-tuning’’). This, however, results in a very computationally
demanding and slow process. To address this, parameter-
efficient fine-tuning (PEFT) techniques, in which only a few
parameters (frequently only 1% of the total number of trainable
parameters) are updated, have been developed. One popular
PEFT technique is called low-rank adaptation (LoRA).123 LoRA
involves freezing the weights and then decomposing the
updates’ matrix (a matrix that contains the weight updates
during the fine-tuning) into two lower-rank matrices that can
be optimized during fine-tuning. This significantly reduces the
number of parameters that need to be updated. Often, fine-
tuning is done in a task-specific way, for example, focusing on
NER + RE.34 For instance, Dagdelen et al.34 fine-tuned models
to link dopants and host materials, and for the extraction of
general information (chemical formulae, applications, and
further descriptions) about metal–organic frameworks and
inorganic materials. Fine-tuned LLMs have also been used for
constructing a materials knowledge graph,38 and extracting
nanoparticle synthesis procedures.124 Given enough diverse
data, it is also possible to fine-tune models for general infor-
mation extraction (IE) applications. For example, Sainz et al.125

built a model called GoLLIE to follow task-specific guidelines,
improving zero-shot results on unseen IE tasks.

One important drawback of fine-tuning is that it modifies
the pre-trained model, potentially limiting its generalizability.
This has been observed by Ai et al.,126 who used the Llama-
Adapter127 method (another PEFT technique) to fine-tune a

Llama 2–7b model for the extraction of reaction information
from organic synthesis procedures. Interestingly, it has been
shown that models tuned with LoRA are less prone to forget the
general capabilities of the base model but are also less profi-
cient in learning new capabilities compared to full fine-
tuning.128,129

Human-in-the-loop annotation. One of the main limitations of
fine-tuning is the need for large amounts of annotated data. To
solve this problem, Dagdelen et al.34 proposed a human-in-the-
loop annotation process in which a model performs the initial
data annotation. A human expert corrects possible errors in the
annotated data, and the resulting corrected data is used to
further fine-tune the model that continues to label the data.
Using this annotation method, they reduced the time needed to
annotate each sample by more than half for the last annotated
abstracts since correction is faster than annotating from
scratch.

3.2.3 Pre-training. If fine-tuning falls short, one costly
resort might be to train a model from scratch. For LLMs this
usually requires prohibitory computational resources, datasets,
and expertise, as described in Table 2. For example, training the
new Llama 3 models needed almost 8m GPU hours using two
clusters with 24k GPU each.95,96 However, it is possible to fine-
tune the Llama 3–70b model using a single GPU with 80 GB of
memory.34

However, when the data to extract is very specific and
general capabilities are not required, good results can be
achieved using smaller language model (LM) such as the ones
of the BERT series (so-called encoder-only LMs).130 For those
smaller models, less training data and less computational
resources are required. For example, SciBERT was pre-trained
on a corpus of 1.14m articles, resulting in 3.17b tokens.131

Similarly, MatSciBERT was trained on 3.45b tokens (compared
to 300b tokens for GPT-3).132 Note that for those smaller
models, it is still recommended to fine-tune on the task that
the model is intended to perform. In this way, Cole et al.
built task-specific BERT models by pre-training them on
batteries,20 optical materials,133 or photocatalytic water

Table 2 Key factors to consider for each learning paradigm assuming that the model is already deployed, either by API or by other means. Note that we
assume a first-year chemistry student is the user and consider the use cases in which the student may be interested. We assume for all cases the use of
proper LLMs (41b parameters). ‘‘Prototyping time’’ key factor refers to the time that it takes the user to do the first tests and see if the model can be used
for that task. ‘‘Field-specificity’’ intent to explain the understanding that the model can deal with terminology that is particular to a certain field, such as
chemical formulas. This factor is especially related to the tokenizers of the models. Tokenizers need to be set prior to training. Hence, tokens relevant to a
particular topic might be missing from pre-trained tokenizers. In pre-training or fine-tuning additional tokens can be added, which can result in an
improvement when extracting data from texts with complex notation

Key factors Zero-shot prompting Few-shot prompting Fine-tuning Pre-training

Expertise Very low Very low Medium/higha High
Prototyping time Minutes Hours Days Weeks
Field-specificity Noneb Lowb High Very high
Task-specificity Noneb Lowb High Medium
Data None 100–101 examplesc 102–103 samples E1012 tokens

a Depending on how much data is available or needs to be cleaned and prepared. b Considering knowledge added to the general pre-training of the
model during inference. c The number stands for the traditional use of the few-shot paradigm. Thus, with the actual context length of some
current models, the number of shots used can increase a lot.
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splitting134 field-specific text extracted from scientific articles.
After the pre-training, they fine-tuned them on the Q&A task
using the Stanford question-answering (SQuAD) v2.0 dataset.135

This pre-training and fine-tuning approach of smaller encoder-
only models has also been applied to extract polymer property
data21 and synthesis protocols of heterogeneous catalysts.40

Even though training smaller LM needs less data and
computation compared to training an LLM, training a small
BERT from scratch might be more costly than performing fine-
tuning using LoRA. As shown by Song et al.,136 LoRA-based
instruction fine-tuning of Llama models can outperform BERT-
based models on a suite of materials science tasks relevant for
data extraction.137 Thus, before deciding to train an LLM for
specialized tasks related to data extraction, we recommend
exploring other options outlined in this review to find poten-
tially feasible alternatives.

3.2.4 Beyond text
Vision models. While there are plenty of tools for converting

text, e.g., in PDF documents, in machine-readable markup
language as discussed in Section 3.1.2, the challenge of analyz-
ing and converting complex structures like large tables or plots
can often not be easily addressed with those tools.138 This
problem is becoming even more prominent in the extraction of
chemical data, where, in addition to plots and tables, crystal
structures, reaction schema, complex spectra, and intricate
graphical representations contain vast amounts of critical
information. Besides classic text processing models, there are
also models that were specifically trained to understand and
analyze images alongside text, which are so-called Vision
language models (VLMs). These models typically consist of
three main components: an image encoder, a text encoder,
and a component that fuses the information of these two.139

The main advantages of the usage of such VLMs are the
additional information gained through images and plots and
the end-to-end procession of the data since the loss of informa-
tion due to conversion steps mentioned in Section 3.1.2 is
minimized.140 Moreover, the end-to-end approach is preferred
since models could choose and learn the best preprocessing
method instead of humans choosing and hard-coding bespoke
processing workflows. For instance, some of these models can
leverage the specific layout of scientific articles, such as figures,

tables, and captions, and, therefore, can extract the data more
accurately. The downsides of using VLMs instead of LLMs are
potentially higher costs for the data extraction. However, also
VLMs still requires some preprocessing of the input, like
converting the input into suitable images and potentially
removing irrelevant sections like acknowledgments or refer-
ences or resizing and scaling the images. An example of a basic
extraction workflow as shown at Fig. 7 can be found in the
Online Material – beyond text.

A question that arises is in which case one should use
an OCR-LLMs extraction pipeline or a VLM for extraction
instead. Since usually LLMs model calls are less expensive,
starting by testing these models instead of VLMs is typically
preferred for the extraction of mostly text-based articles. How-
ever, if the input data includes a lot of complex structures like
tables and plots, a VLM can often be a suitable choice, as
demonstrated in the extraction of copolymerization
reactions141 or electrosynthesis reactions142—in particular if
the focus is on obtaining results without building complex
preprocessing or agentic pipelines. For example, Lei et al.36

demonstrated the higher efficiency of a VLM in the task of
detection of the material present in micrographs than a text-
only LLM.

A wide variety of open-source and commercial vision models
are available. The GPT-4 vision and Claude 3 models are the
largest and most widely used models. Although these are
commercial, some open-source VLM such as DeepSeekVL also
have achieved good results.143 Liu et al.144 used VLMs to per-
form different OCR tasks and introduced a benchmark to
compare the performance of different VLMs. While for simple
tasks like recognizing regular text, the VLMs achieved perfor-
mance comparable to state-of-the-art OCR-tools, they per-
formed poorly on unclear images, handwritten text, and
adhering to task instructions, as well as in extracting knowl-
edge graphs of organic chemistry reactions.75 Alampara et al.145

have shown that leading VLMs struggle to analyze basic spectra
and extract information from reaction schema and tables. They
have also exposed that the current models still fail to under-
stand the images’ content. Therefore, using specific tools
developed for these tasks might still notably increase the
accuracy.

Fig. 7 Workflow of data extraction with VLMs. Papers, for example, in the form of PDFs, can be converted into images and then processed using an
image encoder. The prompt containing the instruction is still provided in the form of text and the output of the VLMs is structured data in the form of text.
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Tools for special inputs/modalities. Besides these general
vision models, several tools are available for specific tasks
and structures, such as tables, chemical structures, and
plots. Since tables in scientific articles can be quite complex,
a dedicated focus on these could help to increase
accuracy.146,147 For instance, tools like TableTransformer148 or
DISCOMAT149 are specifically optimized for dealing with
data in tables, while Liu et al.150 reported a plot-to-table
translation model.

In chemistry and materials science, the most important
information about chemical components and reactions is often
hidden in images of structural formulas and reaction schemes.
Therefore, these non-machine-readable depictions have to be
extracted separately from the text. For instance, the Reaction-
DataExtractor 2.0151 opens the possibility of extracting a com-
plete reaction scheme, including components and reaction
conditions. OpenChemIE also extracts reaction data from text
or figures.152 Nevertheless, many of these tools encounter
problems with variable end groups mostly noted as ‘R-
group’.153

Another important modality for data extraction is plots and
images. The WebPlotDigitizer V4 is an open-source tool to
extract data from plot images to numerical data,154 as shown
by Zaki et al.155 to extract glasses information from graphs. In
addition, there has been a focus on extracting data (e.g., shape,
size, and distribution of the pictured particles) from micro-
scopy images.156–158

Due to the wealth of tools available and the various possible
use cases (leading to a combinatorial explosion of possible
combinations of tools), one can consider using an agentic
approach described in Section 3.2.5 to automatize the usage
of these.

3.2.5 Agentic approaches. LLM-based agents are novel
decision-making agents powered by one or more LLM that
can interact with (and modify) an external environment.159,160

They have shown promise in tasks as varied as simulating human

behavior,161 playing Minecraft,162 molecule design,163–165 and
autonomously performing chemical reactions.166,167 As a result
of the several reasoning cycles that the agents perform, they often
outperform vanilla LLMs.168–170 But what advantages can they
present in extracting data?

Why to use agents for structured data extraction?
Flexible dynamic workflows. The use of agents can be

especially interesting for data extraction when working with
multimodal data, i.e., not only text but also tables and figures
(Fig. 8). Although VLMs can understand figures, the results
when extracting data might be not good enough,144 especially
when this data is field-specific, such as specialized scientific
images.171 Even though specialized tools exist for many of these
use cases a limitation of all these specialized tools is that they
must be manually used or manually chained into workflows by
developing bespoke programs. However, an LLM agent with
access to these tools can autonomously build dynamic work-
flows without manual human input, making data extraction
more accessible, scalable, and flexible.172

Higher accuracy. Another important advantage of using
agents is that they can show the ability to automatically
improve and correct wrong results by using self-reflection and
self-criticism of previous actions.173 This ability has been
shown to reduce hallucination considerably in some data
extraction applications,174 even achieving superhuman
performance.79

Design patterns for LLM-powered agents. Different classifica-
tions have been proposed in the literature to define the
agents.159,169,175,176 However, we think that the most appropri-
ate for the data extraction task is a classification close to the
one proposed by Weng.160

Planning. Complex tasks typically involve many steps.
Thus, agents need to be able to decompose tasks and plan
ahead. In LLM-agents, planning is typically provided by the

Fig. 8 General workflow of an agent for the data extraction task. The unstructured data from the articles is given to the agent as text, images, equations
in LaTeX form, or any other format that can be given to the models. Using its reasoning capabilities, the agent decides which one of the available tools is
best to extract each data type. When all the data available are extracted, the agent provides it as structured data.
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reasoning capabilities of the LLM. The simplest form of task
decomposition is CoT prompting, which utilizes test-time
computation to decompose the task into simpler steps by
prompting the model to ‘‘think step by step’’. This framework
has been extended in a multitude of ways, such as tree of
thoughts,177 which, similar to CoT decomposes tasks into steps
but then, in a tree-like fashion, explores multiple reasoning
paths at once using techniques such as breadth-first
search (BFS).

Reflection. Self-reflection is a vital aspect that allows auton-
omous agents to improve iteratively by refining past action
decisions and correcting previous mistakes. It is a common
design pattern that involves the system explicitly criticizing
and evaluating its output and subsequently refining it in an
automated setup, often leading to notable performance
gains.100,178,179

Memory. Another important building block for solving
complex tasks is the ability to memorize information. Apart
from the information provided to the agent within the context
window of the LLM, it is possible to embed previous interac-
tions of the agent in a vector database and retrieve them using
RAG.180 This enables systems to retain and use information
across very extended periods.

Tool use. As alluded to above, one of the most important
design patterns for LLM-powered agents is to let them use
external tools such as specialized models,181 web APIs,182

simulation engines, or databases (e.g., citation traversal79) to
make up for the information and capabilities that might be
missing. A powerful tool can also be additional LLM calls, as in
the reranking and contextual summarization step in
PaperQA.79 Here, the tool summarizes different chunks of
papers and then rates the relevance for answering the question
(in contrast to naı̈ve retrieval that is typically performed in RAG
systems). The so-called ReAct framework is a common way to
implement this.183 It prompts the LLM to reason about the
user’s query and then act by choosing a tool. It is important to
mention that the reasoning is done through inference, i.e., the
model reasons only by the completion. The actions will lead to
observations (e.g., responses from an API call) that might lead
to further think-act-observe cycles before a final answer is
returned.

A simple case about building an agent with custom tools can
be found in Online Material – agents.

Multi-agent collaboration. The multi-agent approach has
proven to be a robust variant for self-reflection and self-
criticism.184 This approach involves making more than one
agent work together. By doing this, it is possible to define
different roles. For example, defining one evaluator agent and
one critic agent can greatly improve the overall results. Another
possibility is to include an agent that provides feedback or to
add self-feedback to all the agents. Feedback can help the
agents better understand possible areas of improvement, lead-
ing to better system performance. In multi-agent setups, it is

even possible to create ‘‘creator’’ agents185 that create new
agents with a specific role and goals to accomplish.

Limitations. Current agent workflows are still limited in
several ways, most importantly by the error rate of the base
model, which leads to a high risk of failures in longer
workflows.111

Error amplification. A fundamental problem of autoregres-
sive models such as current LLMs is that errors accumulate
since the outputs of the models are the inputs for the subse-
quent generation. In the case of agents, this means that in a
long reasoning path, if one tool has an error, the agent passes
this error to the next tool or reasoning step. The following tools
can amplify the initial errors leading to large errors in the final
answer.186,187

Limited context-length. Similar to other applications of
LLMs, agents are limited by the finite context length of the
model.188 This is particularly pronounced for agent systems as
they typically ‘‘memorize’’ the planning, reflection, or tool use
traces within their finite context window.189 This problem
might be resolved by the rapidly growing context windows of
frontier models.

Endless loop. Another situation that may happen is that the
agents can end up stuck in the same loop forever. This situation
can arise as a result of hallucinations and chaining different
thoughts.190 This is especially likely to happen when dealing
with complex problems that the agent may not be able to
solve.185

Safety-critical interactions. Since agents are supposed to
interact with their environment,191–193 giving them access to
computer systems or even laboratories requires additional
safety precautions.167,194,195

Challenges in evaluation. Finally, these agents are very
difficult to evaluate and optimize since not only the final
answer must be evaluated but also the reasoning
process.196,197 The evaluation of the reasoning path can be
necessary for the proper application of these systems for open-
ended tasks as it allows for identifying the different sources of
errors, i.e., if the error comes from a bad reasoning step of the
LLM or if it comes from a wrong answer by one of the tools.162

Evaluating the reasoning path is a very difficult task because of
the freedom that the agent has to reason and make decisions.
In addition, most existing benchmarks rely on a ground truth;
however, for many open-ended tasks, such a ground truth may
not be available.

3.3 Postprocessing

3.3.1 Constrained decoding and enforcing valid outputs.
The raw outputs of an LLM are probability distributions over
tokens (see Section 2). The distributions indicate how likely
each of these tokens (i.e., text fragments) are a continuation of
the given text. By default, LLMs consider all possible tokens
they have seen during training, which means every token has a
nonzero probability. There are different techniques (‘‘sampling
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strategies’’) for choosing the next token, thus text, from the
probability distribution. Naı̈vely, one might always choose the
next token with the highest probability (‘‘greedy decoding’’). It
has, however, been shown that this sometimes leads to unna-
tural text. Thus, practitioners often sample from the distribu-
tion to obtain natural text, where a factor called temperature
indicates how frequently the sampling will give less probable
tokens. This is nonideal for two reasons. First, we often know a
priori that only a certain subset of tokens might be relevant—for
example, we may care only about numbers, and limiting the
pool of tokens we consider to only numbers will increase our
chances of generating one. Second, sampling introduces ran-
domness, which is typically unwanted in structured data extrac-
tion. The latter point can often be avoided (without taking into
account randomness due to hardware or inherent tradeoffs in
model deployment198) by always taking the most probable
token (i.e., setting temperature to zero). The former point can
be implemented via so-called constrained decoding techni-
ques. Those techniques can ensure that only a subset of
‘‘allowed’’ tokens will be used in the sampling stage (see Fig. 9).

Constrained decoding can be implemented in different
ways. One of the first widely popularized implementations
has been in jsonformer.199 The key to understanding this
approach is that models generate outputs one token at a time.
That is, predictions are used as inputs to make the next
predictions (so-called autoregressive generation). If one aims
to create structured data, one can make multiple optimizations
in this process. First, some of these tokens are obvious, can be
generated using code, and do not have to be generated by a

model. For instance, code can generate much of the structure of
a JSON file, such as the opening brace. That is, we can make the
generation more efficient by only generating the content tokens
using a model. Second, if we know the types of our data, we can
limit the pool we sample from to only a subset of all tokens. For
instance, Llama 3’s vocabulary encompasses 128 256 tokens. If
we want to fill a field with a boolean value, however, we only
need to compare the values of the tokens for ‘‘true’’ and ‘‘false’’
(i.e., two out of 128 256 tokens). In the simplest setting, one can
start by already inserting a part of the desired output in the
response, e.g., {‘‘query’’: One can then decode until a stopping
criterion is reached. This would be any token that is not a
number or decimal separator (.) for simple numeric fields.
From there, one can then start again by inserting all the text
that is already known to be part of the desired output, e.g., a
closing comma (,) and the next key. These ideas can be
extended to more complex constraining patterns, for example,
based on formal grammars.200 These formal languages can
describe, in principle, the structure of any computable
object.201 Thus, one could, for example, constrain the model
to generate syntactically valid code in a programming language
of choice (as programming languages can be described using
formal grammar). While such constrained decoding is now
well-supported in libraries such as outlines,202 instructor203

(see Online Material – collecting data for reactions procedures),
marvin,204 ggml (which supports grammars provided in
Backus–Naur form),205 or even the OpenAI API (via JSON mode
and function calling, or its newest feature, structured outputs,
which ensures that the model’s response adheres to a provided
schema via specifically finetuned models), it is still not widely
used for generative data extraction in the chemical sciences.206

This is a promising future research direction as many relevant
chemical datatypes (e.g., IUPAC names) can be represented with
a formal grammar. One limitation with those approaches,
however, is that they cannot naı̈vely be used with advanced
prompting techniques that nudge the model to ‘‘think’’ by
generating tokens. In those cases, it might make sense to use
multiple prompts.

A middle ground between prompting without type and
syntax constraints and constrained decoding can be to provide
type hints in the prompt. These type hints can, for instance,
also be literal, meaning a list of permitted strings.

Examples of constrained decoding and enforcing valid out-
puts are shown in Online Material – constrained generation to
guarantee syntactic correctness.

To aid the integration with existing knowledge bases, one
can also ground the LLM output on established ontologies as,
for example, Caufield et al.207 have implemented in SPIRES,
which demonstrated effectiveness in extracting chemical-
disease relationships from biomedical literature, grounding
entities to standardized identifiers (e.g., mapping ‘‘Cromaka-
lim’’ to MESH:D019806).

3.3.2 Evaluations. To optimize a system, its performance
needs to be evaluated. In the case of structured data extraction,
this is not trivial as there are many different yet related data
items one extracts in a potentially nested data model (Fig. 10).

Fig. 9 Example of generating a number with conventional and con-
strained decoding. In conventional decoding (top), all tokens have a
non-zero probability of being sampled (indicated by green checkmarks).
Thus, there is a non-zero probability that outputs are being generated that
are not a number. With constrained decoding (bottom), however, we can
dynamically adjust the set of tokens from which the system samples to
generate only valid outputs. For instance, in the first step, only the two
integer tokens are allowed. In the next step, also .1 is allowed, as it might
lead to a valid number. However, once .1 has been sampled, it is no longer
allowed (indicated by red crosses) as a number can only contain one
decimal point.
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In addition, many entities can be reported in multiple
synonymous ways. Thus, it is essential to carefully inspect
the extracted data for common error sources. This manual
inspection then allows an informed development of an auto-
mated evaluation pipeline that allows for systematic assess-
ment of the extraction performance of different systems. As
Sayeed et al.206 indicate, the lack of a properly defined metric
for structured data extraction makes systematic evaluation
challenging.

Scoring the extraction of a simple entity extraction. The sim-
plest setting can be thought of as extracting a single value. For
example, if the task is collecting all chemicals in a document,
the performance of a model could be scored by measuring how

many chemicals we found (retrieved entries) out of all the ones
reported in the documents (relevant entries) and how many of
the extracted chemicals are actually correct. The first measure
is recall (eqn (1)).

Recall ¼ jfrelevant entriesg \ fretrieved entriesgj
jfrelevant entriesgj ; (1)

where the - symbol denotes a set intersection between the set
of entries, and |set| indicates the number of items in a set.

The second measure is known as precision and is defined in
almost the same way, except for the denominator being the
retrieved entries (eqn (2)).

Precision ¼ jfrelevant entriesg \ fretrieved entriesgj
jfretrieved entriesgj : (2)

Intuitively, recall can be thought of as how many of the
values we expected are extracted correctly and precision as out
of just the extracted values how many are actually correct.
Based on those two definitions, additional metrics can be
defined, such as the F1-score (which is the harmonic
mean between precision and recall and also known as the Dice
score).

Due to the infancy of evaluations of structured extrac-
tions, there is much confusion about how to use metrics
meant for classification models for this task. We propose to
define true positive as a correct value extracted by the LLM.
False positive is when there is an extraction but the value
does not match what we expect. False negative can be taken
as a value that is in our ground truth but has not been
extracted by the LLM. True negative is not applicable and
cannot be realistically defined for our task. True negative can
be thought of as a value that we did not ask the LLM and it
did not provide it. Therefore, it is every concept or word
available in our document or vocabulary that hasn’t been
reported. Table 3 provides examples of these different error
types one might encounter in structured data extraction.
Using these definitions, we can calculate many metrics like
the F1-score as it does not use true negative (TN). The recall

Table 3 Examples of error types. In the case of true positives, the extracted data matches the ground truth labels. In case there has been an extraction,
but for an entry that does not exist in the ground truth, we call it a false positive (‘‘hallucination’’). False negatives are values the LLM missed to extract. As
there are potentially infinite true negatives (not existing data the LLM did not extract), it is not meaningful to consider them

Outcome type Content example Extracted data Expected data

True positive (TP) The properties of TiO2 include a bandgap of 3.2 eV, which
is typical for materials used in photocatalysis.

Formula: TiO2, bandgap:
3.2 eV

Formula: TiO2, bandgap: 3.2 eV

False positive (FP) The properties of TiO2 include a bandgap of 3.2 eV, which
is typical for materials used in photocatalysis.

Formula: CeO2, bandgap:
3.37 eV

Formula: TiO2, bandgap: 3.2 eV

False positive (FP) The properties of TiO2 include a bandgap of 3.2 eV, which
is typical for materials used in photocatalysis.

Formula: TiO2, bandgap:
3.37 eV

None

False negative (FN) The properties of TiO2 include a bandgap of 3.2 eV, which
is typical for materials used in photocatalysis.

Formula: TiO2, Formula: TiO2, bandgap: 3.2 eV

True negative (TN)a The properties of TiO2 include a bandgap of 3.2 eV, which
is typical for materials used in photocatalysis.

None None

a Practically cannot be calculated.

Fig. 10 Evaluation workflow. The extracted structured data is displayed
on the left, while the manually labeled truth data is on the right. The colors
indicate matching on both sides. Checkmarks indicate correct keys,
crosses indicate incorrect ones, and circles refer to the keys in the
extracted and true data. Notice how there is an unmatched blue set in
the extractions and a yellow set in the truths. This affects how precision
and recall are calculated. Numerical data needs to be normalized if the
units are reported differently from how they are stored in the truth data.
Certain fields, like the simulation parameters, can be validated using
scientific analysis tools to make sure they obey all domain rules.
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and precision based on true positive (TP), false positive (FP),
and false negative (FN) looks like this:

Precision ¼ jTPj
jTPj \ jFPj recall ¼ jTPj

jTPj \ jFNj: (3)

Matching to ground truth. One challenge with these tailored
metrics for more complex data models is the presence of
multiple instances of the same object type. For instance, when
extracting reactions, there may be more than one reaction in a
paper. This poses a problem when scoring performance, as the
ground truth and extracted output may contain different num-
bers of reactions. The model may have missed some reactions
or falsely identified others. To accurately score a specific field,
such as the yield of a reaction, the extracted entities must be
matched with those in the ground truth before a comparison
can be made.

To achieve this, it is recommended to first define a unique
identifier for entities (such as a sorted list of the normalized
reactant names in reaction) and then utilize a fuzzy matching
score, such as the Levenshtein edit distance, to match each
extracted entry with one element from the ground truth. This
matching process can be seen as a one-to-one mapping
between two lists (extracted outputs and ground truth), which
is achieved by minimizing the total distance between all pairs.
More formally, this is known as the linear sum assignment
problem.208

Data normalization. For many extraction tasks, normaliza-
tion is relevant before calculating metrics. For chemicals, this is
relevant because there are often multiple equivalent ways of
naming the same compound. While the normalization work-
flow will differ from use-case to use-case, tools such as
PubChem209 or the Chemical Identifier Resolver Server210 will
often be useful to derive canonical representations for chemical
compounds. Additionally, when dealing with units, tools such
as pint211 or unyt212 can be used to convert data into standard
units before performing metric computations (see Online Mate
rial – evaluations).

Overall metrics. In addition to specific metrics, having a
general metric, that provides a score on the whole extraction
task, can be helpful. The Damerau–Levenshtein edit distance is
one such metric. It measures the minimum number of opera-
tions needed to change one document into another, including
inserting, deleting, substituting, or transposing characters.
This metric must be computed on canonicalized documents,
i.e., documents that have been sorted and encoded similarly.

Validation using chemical knowledge and understanding. Data
extraction in chemical and materials science has a significant
advantage over other domains due to our understanding of
rules and links between different data entries. This knowledge
enables us to conduct ‘‘sanity checks’’ to ensure the accuracy
and consistency of the extracted data. Despite this unique
opportunity, it has not been widely utilized. A notable example

is the work of Patiny and Godin,116 where they extracted
molecular properties from text and used cheminformatics tools
to validate the consistency. For instance, they extracted nuclear
magnetic resonance (NMR) spectra and used cheminformatics
tools to verify if they were consistent with the given molecular
formula (see Online Material – validation case study: matching
NMR spectra to composition of the molecule and Online
Material – retrieving data from chalcogenide perovskites for
an example using stability criteria for perovskites). Similar
validation can be performed on other experimental data, such
as mass spectra and elemental analysis (see Online Material –
collecting data for reactions procedures for an example of
checking the extraction of the correct number of atoms on
both sides of a reaction). The benefit of these consistency
checks is not only improving data quality but also enabling
a first evaluation loop without the need for manually
labeled data.

Beyond the use of validation based on chemical knowledge,
it can also be practical to use another LLM to check, for
example, for factual inconsistencies (e.g., if there were halluci-
nations during the extraction).

4 Frontiers

LLMs have greatly advanced the capabilities of data extraction
given their ability to process text and other data modalities,
such as figures through VLMs. These advancements open up
further compelling opportunities to make data extraction more
robust and accessible, which we describe along a handful of
research frontiers.

4.1 Improving multimodal models

As described in Section 3.2.4, data modalities beyond text
often lead to unique challenges. While VLMs can be quite
helpful in extracting useful information from diverse types of
data one might encounter in scientific literature, such as
tables, formulas, structure files (e.g., CIF files for crystals213),
and sub-figures containing images with intricate relation-
ships. Future work remains to make them more robust and
amendable to the diversity of data found in materials science
and chemistry. As described in Hira et al.,22 some of the
complexity can arise when diverse modalities are contained
within a different data structure, such as chemical composi-
tion and related properties within a table that are linked to a
figure in other parts of the document. Furthermore, the data
format that current methods provide, such as LaTeX or XML
code, may not be ideal for training LLMs and other AI models
for desired downstream tasks. As such, further work is
needed to expand the capabilities of modern tools to not
only provide structured data but also diverse forms of
structured data.

4.2 Cross-document linking

As reported by Miret and Krishnan,214 current extraction meth-
ods, including LLMs and VLMs, mainly focus on extracting data
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contained within a single document or a sequence of docu-
ments given in a broader window, as described in Sec-
tion 3.1.3. Much of scientific data, however, relies heavily
on referenced work for relevant concepts, descriptions,
and experimental results (that might be in other
repositories).22,215 In scientific publishing, including this
work, it is very common for a scientific report to reference
a procedure from another paper or report for brevity and
accreditation. As such, the references and their potentially
important context are usually not considered for information
extraction methods today. The exclusion of such information
likely limits the performance of modern LLMs and VLMs to
perform relevant chemical tasks.214 This also extends to
data extraction, where understanding the relevant scientific
background of a given figure, table, or data modality
could help the LLMs process the data to the appropriate
structured format and provide semantic meaning.
One potential approach for addressing this challenge
could be using multiple agents to analyze the same set of
data with one agent providing relevant scientific back-
ground, such as a RAG-based chemistry LLM, and another
providing extraction capabilities for the figure itself, such
as VLMs.

4.3 Scientific literature bias

The scientific literature is strongly biased towards positive
results and highly refined information presented in curated
text, figures, and tables. While it is important to maintain the
high-quality standard in scientific publishing, there are likely
adverse effects of not having LLMs observe negative results that
are common in a wide range of real-world use cases, such as
internal reports and communications.7,216 On top of that, many
works of the scientific literature contain only incomplete infor-
mation, which has fueled a reproducibility crisis in various
fields, leading to concerns that advanced AI methods, such as
LLMs, will make the situation worse.217 As such, it is important
to improve data reporting methods that enable better dissemi-
nation of scientific knowledge in line with the development of
scientific LLMs.

4.4 Beyond data extraction from papers

Much of scientific innovation occurs when deploying new types
of capabilities, such as synthesis equipment, characterization
tools, and scientific simulation codes. The dynamic nature of
these tools makes it possible for such new types of data
structures and modalities to be continuously invented and
deployed for diverse sets of applications. Ideally, LLMs should
be capable of extracting relevant information from new tools
and procedures. This represents a fundamentally new problem
that future research work can tackle, building on the
approaches described in this review. Agentic approaches
described in Section 3.2.5 may be a useful framework given
the flexibility of adding diverse tools for upcoming data
modalities.

4.5 From query to model

Given the emergence of agentic systems that can autonomously
build ML models,218 it is not difficult to envision coupling data
search agents (e.g., PaperQA79) with data extraction agents and
ML agents. The result would be a system that can take in a
search query and autonomously find data to train a model to
answer the question. However, those systems would face the
same challenges we discussed in Section 3.2.5 such as fragility
and complex evaluation.

4.6 Benchmarks and open questions

For information extraction, most existing benchmarks focused
on evaluating the performance on separate tasks such as NER,
or RE. More comprehensive benchmarks have been scarce,
given the high cost of data labeling. This challenge, however,
is unlikely to abate given the fact that new scientific discoveries
continue to expand human scientific knowledge. As such, it
might be useful to redirect the development of benchmarks
towards adaptation of LLMs in low-data scenarios. While this
has been observed in prior work, some potentially relevant
benchmarks are too easy for modern LLMs137 while others
measure capabilities in adjacent tasks.219 New benchmarks
should address the challenges of LLMs and VLMs for current
capabilities and enable research along the current frontiers
described above. This prompts a diverse set of remaining
questions that the research community can work towards,
including but not limited to:
� What modalities exist in chemistry that current LLMs and

VLMs cannot process?
� What methods can appropriately handle the complex

relationships of knowledge contained across multiple docu-
ments and knowledge sources in the chemical sciences?
� How can we mitigate scientific literature bias216 to build

more comprehensive databases that can be digested by LLMs?
� How can we integrate the developments in LLMs for data

extraction into broader efforts to build performant scientific
assistants for chemistry?

5 Conclusions

Structured data is immensely important for the advancement of
science. As shown in Fig. 1, the aggregate information across
diverse sub-fields in chemistry and materials science continues
to grow at a notable pace. While there have been prior attempts
to systematically extract data from these sources, only LLMs
present a scalable solution to address both the breadth and
scale of scientific data.

We hope that this review enables chemists and
materials scientists to profit from these developments, thereby
accelerating the understanding and discovery of new com-
pounds that further scientific knowledge and enable extraor-
dinary technological advancement—leading from text to
insights.

Tutorial Review Chem Soc Rev

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
D

ec
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

1/
7/

20
25

 1
0:

29
:2

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cs00913d


This journal is © The Royal Society of Chemistry 2025 Chem. Soc. Rev., 2025, 54, 1125–1150 |  1143

Glossary

Chain-of-Thought A prompt engineering technique that involves a series of intermediate natural language reasoning steps that
lead to the final output.98 CoT encourages an LLM to explain its reasoning step by step (e.g., by prompting it to
‘‘think step by step’’), and it is intended to improve the ability of LLMs to perform complex reasoning.

Chain-of-Verification A four-step process intended to reduce hallucination in LLMs:220 (i) the LLM generates a baseline response;
(ii) generates a list of verification questions to self-analyze if there are any mistakes in the original response;
(iii) answers each verification question in turn, checking the answer against the original response to check for
inconsistencies or mistakes; and (iv) generates the final revised response incorporating the verification
results.

Information extraction The process of automatically extracting information from unstructured text. This process involves converting
raw text into structured data by recognizing entities, relationships, and events.

Language model A ML model that estimates the probability of a token or sequence of tokens occurring in a longer sequence of
tokens. This probability is used to predict the most likely next token based on the previous sequence. Lan-
guage models are trained on large datasets of text, learning the patterns and structures of language to
understand, interpret, and generate natural language.

Large language model A language model that has a large number of parameters. There is no agreed rule for the number of para-
meters that makes a language model large enough to be called a large language model, but this number is
usually on the scale of billions.221 For example, Llama 3, GPT-3, and GPT-4 contain 70b, 175b, and 1.76t
parameters, respectively, while Claude 3 Opus is estimated to have 2 trillion parameters. Most current LLMs
are based on the transformer architecture. LLMs can perform many types of language tasks, such as gen-
erating human-like text, understanding context, translation, summarization, and question-answering.

Low-rank adaptation A PEFT technique that freezes the pre-trained model weights and decomposes the weights update matrix into
two lower-rank matrices that contain a reduced number of trainable parameters to be optimized during fine-
tuning.123

Masked language modeling A method of self-supervised learning in which a random sample of the input tokens are masked and, during
the training, the model is asked to predict the original inputs for the masked tokens based on the context
provided by the unmasked tokens.

Named entity recognition A NLP technique that identifies and classifies named entities within text into predefined categories such as
names of people, organizations, locations, dates, and other entities.

Name entity recognition and rela-
tion extraction

A combined process in NLP that first identifies and categorizes entities (such as materials and properties)
within a text and then determines semantic relationships between these recognized entities. This dual
approach enables the extraction of structured data, revealing how entities interact within the text, and is
crucial for building knowledge graphs or information retrieval systems.

Natural language processing A subfield of computer science that uses machine learning to enable computers to understand, interpret, and
generate human language. The main tasks in NLP are speech recognition, text classification, natural-language
understanding, and natural-language generation.

Next sentence prediction A task used during the pre-training of LLMs where the model is trained to predict whether a given sentence
logically follows another sentence. This task helps the model learn the relationships between sentences,
improving its understanding of context and coherence in text. By training on vast amounts of text data, the
model develops the ability to generate coherent and contextually appropriate continuations for a given text.

Optical character recognition A technique used to identify and convert images of printed or handwritten text into a machine-readable text
format. This involves segmentation of text regions, character recognition, and post-processing to correct
errors and enhance accuracy.

Parameter-efficient fine-tuning A methodology to efficiently fine-tune large pre-trained models without modifying their original parameters.
PEFT strategies involve adjusting only a small number of additional model parameters during fine-tuning on
a new, smaller training dataset. This significantly reduces the computational and storage costs while
achieving comparable performance to full fine-tuning.

Proximal policy optimization A reinforcement learning algorithm used to train LLMs for alignment by optimizing their behavior through
interaction with an environment, balancing exploration and exploitation. PPO achieves this by adjusting the
policy parameters in a way that keeps changes within a predefined safe range to maintain stability and
improve learning efficiency. This method helps ensure that the LLM aligns its outputs with desired goals,
such as ethical guidelines or user intentions, by iteratively refining its responses based on feedback. PPO is
often used as part of RLHF.

Reinforcement learning from
human feedback

A mechanism to align LLMs with user preferences by fine-tuning with human feedback. Users are asked to
rate the quality of a model’s response. Based on this, a preference model is trained and then used in a
reinforcement learning setup to optimize the generations of the LLM.

Relation extraction A NLP task that identifies and categorizes the semantic relationships between entities within a text, e.g.,
materials and properties.

Retrieval augmented generation A technique for improving the quality of text generation by providing LLMs with access to information
retrieved from external knowledge sources. In practice, this means that relevant retrieved text snippets are
added to the prompt.

Rotational positional encoding Rotational positional encoding is a method used in LLMs to represent the position of tokens within a
sequence. Instead of using absolute positional values, this technique encodes positional information as
rotations in a continuous vector space, which allows the model to understand both the absolute position of
tokens and their relative distances.

Self-supervised learning A machine learning technique that involves generating labels from the input data itself instead of relying on
external labeled data. It has been foundational for the success of LLMs, as their pre-training task (next word
prediction or filling in of masked words) is a self-supervised task.

Supervised fine-tuning The process in which a pre-trained LLM is fine-tuned on a labeled dataset of a specific task. It involves
adapting the parameters of the pre-trained model to improve its performance on the new task, leveraging the
knowledge and representations learned from the initial training.
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Acronyms

ANN Artificial neural network
API Application programming interface
BFS Breadth-first search
CLI Command-line interface
CoT Chain-of-Thought
CoVe Chain-of-Verification
DFS Depth-first search
EAE Event argument extraction
FN False negative
FP False positive
HTML Hypertext markup language
IE Information extraction
LLM Large language model
LM Language model
LoRA Low-rank adaptation
MAE Mean absolute error
ML Machine learning
MLM Masked language modeling
MOF Metal–organic framework
NER Named entity recognition
NERRE Name entity recognition and relation extraction
NLP Natural language processing
NMR Nuclear magnetic resonance
NN Neural network
NSP Next sentence prediction
OCR Optical character recognition
PEFT Parameter-efficient fine-tuning
PPO Proximal policy optimization
RAG Retrieval augmented generation
RE Relation extraction
RLHF Reinforcement learning from human feedback
RNN Recurrent neural network
RoPE Rotational positional encoding
SFT Supervised fine-tuning
SSL Self-supervised learning
TDM Text and data mining
TN True negative
TP True positive
VDU Visual document understanding
VLM Vision language model
XML Extensible markup language
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