PCCP

CORRECTION

View Article Online

Cite this: Phys. Chem. Chem. Phys., 2025, 27, 16266

Correction: Influence of pseudo-Jahn-Teller activity on the singlet-triplet gap of azaphenalenes

Atreyee Majumdar, Komal Jindal, Surajit Das and Raghunathan Ramakrishnan*

DOI: 10.1039/d5cp90132d

rsc.li/pccp

Correction for 'Influence of pseudo-Jahn-Teller activity on the singlet-triplet gap of azaphenalenes' by Atreyee Majumdar et al., Phys. Chem. Chem. Phys., 2024, 26, 26723-26733, https://doi.org/10.1039/ D4CP02761B

The authors regret that Table 1 of the original article was incorrect. The correct table is shown here.

The associated discussion of Table 1 should read:

- (i) "Furthermore, for the D_{3h} structure of 1AP, the vertical STG underestimates the adiabatic transition energy (0-0), which accounts for geometric effects in S₁ and T₁ along with the zero-point vibrational energy, by +0.057eV at the CC2-level."
- (ii) "From previously reported CC2-level vertical and 0-0 values of STG, one can correct the TBE of the vertical STG of 5AP from ref. 13 to be -0.07 eV, agreeing with the experimental value of -0.047 eV.³⁰,

Additionally, in the same section, the authors would like to state that the results presented in Tables S1, S2, S3, and S4 of the supplementary information (ESI) of the original article are based on the cc-pVTZ basis set.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

Correction **PCCP**

Table 1 For the six azaphenalenes shown in Fig. 1, vertical excitation energies of the S1 and T1 states with respect to the ground state, S0, along with the singlet-triplet gap (S_1-T_1) are given in eV. The excited state energies were calculated using the ADC(2)/aug-cc-pVTZ method using geometries determined with the CCSD(T)/cc-pVTZ method. The barrier for automerization, E^{\ddagger} (in kJ mol⁻¹), determined using two-point CBS extrapolation of CCSD(T) energies with cc-pVTZ and cc-pVQZ basis sets, is stated for the symmetric saddle point. Results from other studies are included for comparison; 0-0 indicates adiabatic transition energies accounting for the energy of the vibrational ground state

System	E^{\ddagger}	S_1	T_1	S_1 - T_1	Source
1AP (D _{3h})	0.3	0.979	1.121	-0.142	This work
$1AP(C_{3h})$		1.130	1.190	-0.060	This work
1AP		1.047	1.180	-0.133	$CC2^9$
1AP		0.992	1.068	-0.076	$0-0$, $CC2^9$
$1AP(D_{3h})$		0.979	1.110	-0.131	TBE^{13}
1AP		0.97	0.93	+0.04	Exp. ^{28 a}
$5AP(C_{2v})$		2.128	2.274	-0.147	This work
5AP		2.231	2.365	-0.134	$CC2^9$
5AP		1.971	2.056	-0.085	0-0, CC2 ⁹
$5AP(C_{2v})$		2.177	2.296	-0.119	TBE^{13}
5AP		1.957	2.003	-0.047	0-0, exp. ³⁰
$7AP(D_{3h})$		2.636	2.889	-0.253	This work
7AP		2.756	2.998	-0.242	$CC2^9$
7AP		2.512	2.618	-0.106	$0-0$, $CC2^9$
$7AP(D_{3h})$		2.717	2.936	-0.219	TBE^{13}
7AP				< 0	Exp. ³
$2AP(C_{2v})$	2.1	0.838	0.941	-0.102	This work
$2AP(C_s)$		1.246	1.121	+0.125	This work
$2AP(C_{2v})$		0.833	0.904	-0.071	TBE^{13}
$3AP(C_{2v})$	5.3	0.689	0.768	-0.079	This work
$3AP(C_s)$		1.335	1.061	+0.274	This work
$3AP(C_{2v})$		0.693	0.735	-0.042	TBE^{13}
$4AP(D_{3h})$	11.1	0.550	0.623	-0.073	This work
$4AP(C_{3h})$		1.409	1.017	+0.392	This work
$4AP(D_{3h})$		0.554	0.583	-0.029	TBE^{13}

 $^{^{}a}$ Using S_{1} = 0.78 μm^{-1} and T_{1} = 0.75 μm^{-1} from ref. 28 multiplied by 1.2398 eV μm^{-1} .