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Vibrational energy landscapes and energy flow in
GPCRs: comparison between class A and class B
GPCRs using all atom and coarse-grained models

Humanath Poudel,†ab Pathick Halder Shaon,†a David J. Wales c and
David M. Leitner a

We compare vibrational energy landscapes and dynamics of the glucagon-like peptide 1 receptor (GLP-

1R), a class B G-protein coupled receptor (GPCR), with corresponding properties of a class A GPCR

studied previously. Energy flow in GLP-1R is computed by molecular dynamics (MD) simulations in active

and inactive states using all atom (AA) and coarse-grained (CG) models. Based on the MD data, we

construct and analyze the vibrational energy landscape of GLP-1R, focusing on the relative free energy

of each residue and the minimum free energy barriers for energy transfer between them. We find that

prolines and glycines, which contribute to GLP-1R plasticity and function, are bottlenecks to energy

transport along the backbone, causing diversion of energy through alternative pathways via nearby

noncovalent contacts. The probability distributions for the energy transfer time between numerous pairs

of amino acids are computed, revealing pathways for energy transport that include noncovalent

contacts connecting different helices. These distributions and mean energy transfer times are similar for

the AA and CG models, validating the CG representation for future applications.

Dynamically coupled residues that can be quite distant from
each other contribute to enzyme catalysis1–3 and allostery,4–7

motivating many studies to identify networks of residues that
facilitate energy flow.8,9 Investigations of energy transfer in
proteins include experimental and computational studies prob-
ing energy dynamics in response to chemical reactions.10–12

Some of these studies have addressed vibrational energy relaxa-
tion and flow in receptor proteins, notably rhodopsin in
response to photoexcitation.13–15 Rhodopsin is a G-protein
coupled receptor (GPCR). Recent studies have also investigated
energy flow in other GPCRs and connections to change in
structure and structural dynamics upon activation or deactiva-
tion by binding of ligands.16–19

Rhodopsin is a class A GPCR, the most abundant and best
studied class, which also includes the adrenaline-binding
receptor, b2 adrenergic receptor (b2AR). The structure of all
GPCRs features 7 transmembrane (TM) helices, but members
of different GPCR classes are distinguished by their motifs,
regions with conserved residues, many of which undergo

structural change during activation.20 While the vibrational
energy landscape and energy transport have been studied for
b2AR,19 a class A GPCR, much less is known about energy
transport in GPCRs of other classes. In this report, we present
results of a computational study of the vibrational energy
landscape and energy transport in the glucagon-like peptide 1
receptor (GLP-1R), a class B GPCR, in active and inactive states.
With the new results for GLP-1R, we provide a comparison
between properties that mediate the flow of energy in class A
and class B GPCRs.

There is a second aim of the present report. Protein
dynamics occur over a wide range of time scales, including fast
sub-picosecond to nanosecond times for vibrational dynamics and
energy flow8,9 with folding times of microseconds and beyond.21

While the fast times for vibrational energy transfer are favorable
for computational study, noise in the dynamics often means that
long computational studies are still needed to identify patterns in
the flow of energy, even in small proteins.22,23 For larger proteins
or protein complexes, e.g., a GPCR complexed with the G-protein,
coarse graining offers a means to reduce computational cost, but
to date there have been no detailed studies comparing vibrational
energy flow in sizable proteins using all atom (AA) and coarse-
grained (CG) models. In this report, we compare vibrational energy
dynamics of GLP-1R using AA and CG models.

GLP-1R (Fig. 1) regulates bone turnover, blood glucose
control, and cardiovascular development,24 and is a potential
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drug target of type 2 diabetes, neurodegeneration, and cardio-
vascular diseases.25 Various endogenous agonists activate GLP-
1R, some of which are either under development or approved
for the treatment of type 2 diabetes.25–27 Here, we present
results of molecular dynamics (MD) simulations using AA and
CG models for GLP-1R in an active state, where the agonist is a
peptide ligand, and in an inactive state, where no ligand is
present. In a previous computational study of GLP-1R using the
same AA model, structural and dynamic properties of the
protein mediating energy flow were identified,17 and the con-
tribution of transmembrane water in stabilizing the active state
was analyzed. Elucidation of the connections between the
protein structure and dynamics to energy flow, a goal of many
previous studies,8,9,22,23,28–43 has shown that measurement of
energy transfer rates in a protein can yield information about
underlying structural and dynamic properties18,44–48 that con-
tribute to the dynamics and rates of chemical reactions in
proteins and allostery.1–3,12,49

We recently computed disconnectivity graphs50–52 to repre-
sent the vibrational energy landscape governing energy flow in
b2AR in both active and inactive states,19 using data from MD
simulations generated in earlier work on this protein.16,18

Disconnectivity graphs provide a visualization of how free
energy minima are organized in the energy landscape based
on the lowest barriers between them.50–52 Here we employ a

construction representing the vibrational energy landscape of a
protein using a measure of the free energy associated with each
amino acid, related to its size. The minimum free energy
barriers to energy transfer between residue pairs19 are obtained
by converting the calculated rates using the Eyring–Polanyi
relation.53,54 Hence, the depth of the branches on the vertical
scale of the disconnectivity graphs, associated with amino acid
residues, encode their relative free energies, while the barriers
return the calculated rates by construction.

The disconnectivity graphs computed for b2AR provided new
insight into the contributions of composition, structure and
dynamics to energy flow. Noncovalent contacts between TM
helices, such as hydrogen bonds and van der Waals interactions,
can facilitate energy transfer between them. By construction,
noncovalent contacts for which energy transfer rates are rela-
tively large correspond to relatively low barriers between TM
helices.

Shortcuts for energy flow in sequence via noncovalent con-
tacts such as hydrogen bonds provide alternative pathways if
there are bottlenecks to energy flow along the main chain. In
the study of b2AR, prolines and glycines were identified as
bottlenecks to energy transfer along the protein backbone.
Prolines and glycines destabilize helices,55 and their presence
in TM helices gives rise to kinks (Fig. 1), which contribute to
flexibility and function.56–59 The rate of energy transfer across a

Fig. 1 GLP-1R is shown in (a) inactive and (b) active states with the peptide ligand in blue. The active state is also shown in (c) with the beta turn,
discussed in text, colored cyan and prolines and glycines indicated, also discussed in the text. Views from the cytoplasmic region are shown in the (d)
inactive and (e) active state. Note that TM6 is farther from TM3 in (e) than in (d). Prolines and glycines are helix destabilizers. (f) Kinks appear at these
residues in transmembrane (TM) helices 6 and 7, which change angle between inactive (gray) and active (green) states. Their presence in the TM region
contributes to GPCR flexibility and function.
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noncovalent contact depends both on the nature of the contact
and on fluctuations in its length. Rates of energy transfer are
typically faster across hydrogen bonds than across van der
Waals contacts. Both are short range contacts. When either
contact is present, the rate of energy transfer is fastest if
fluctuations in the length of the contact are small,18,60 corres-
ponding to a lower barrier, which can be read from the
disconnectivity graph.

Both structural and dynamic changes that occur upon
binding of agonists contribute to allosteric regulation of
GPCRs,61–68 and these changes are related to differences in
the flow of energy through the protein upon activation. Class A
GPCRs, such as b2AR, have been studied for some time, while
structures for class B GPCRs such as GLP-1R have only become
known more recently.69–78 It is interesting to determine
features found in the vibrational energy landscape of b2AR
shared by GPCRs of different classes and the study of GLP-1R
allows us to make such a comparison, in addition to a compar-
ison of results obtained using AA and CG models.

In the following section, we present the methods used in the
computational study of vibrational energy flow in GLP-1R. We
then compare energy transfer rates between residues of GLP-1R
obtained using AA and CG models, disconnectivity graphs
constructed for these systems, and first passage time distribu-
tions computed for various energy source-sink combinations
across noncovalent contacts. We compare features of the
vibrational energy landscape and energy flow computed for
GLP-1R with previous results19 computed for b2AR. We also
compare mean first passage times computed for transport
between pairs of residues (termed sources and sinks) where
prolines or glycines are present or absent. This comparison
provides another test for CG models in capturing how vibra-
tional energy flows in the protein.

Methods

The inactive state structure was taken from the protein data
bank (PDB) entry 6LN271 and the active structure, which con-
tains a peptide agonist, from PDB 5VAI.74 We modeled all
missing residues in both states, mainly in the extracellular
domain (ECD) and TM helix 1 (TM1) using Modeller9.23,79

which gives the same homology of 393 amino acid sequences in
each state. Each system was initiated in a rectangular box of 170
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid
molecules, with the protein in the center, solvated with
21 000 water molecules. The systems were neutralized using
Na+ and Cl� ions at 0.15 M NaCl concentration. We used the
TIP3P,80 Lipid1781 and AMBER ff14SB82 representations for
water, lipids, and protein, respectively.

Details of the MD simulations using the AA model have been
provided elsewhere.17 Briefly, we performed 10 000 steps of
energy minimization using the steepest-descent method and
another 10 000 steps with the conjugate gradient method. The
NVT ensemble was heated starting from 0.1 K to 300 K for 1 ns
and held at 300 K for an additional 1 ns using the Berendsen83

thermostat. Positional constraints were applied to backbone
atoms with a force constant of 1 kcal mol�1 Å�2. The SHAKE
algorithm was applied to all bonds containing hydrogens. We
performed equilibration using 2 fs time steps for 10 ns with
position restraints and another 20 ns without restraints. The
production simulations of 600 ns were performed for each
system using 2 fs time steps in the NPT ensemble saving the
trajectory files every 1 ns for subsequent microcanonical simu-
lations. Energy currents, G, between residue–residue pairs of
GLP-1R were computed from the trajectories of the 500 to
600 ns NPT simulations starting with 50 structures obtained
every 2 ns. Each one was simulated for 150 ps in the NVE
ensemble with an integration time step of 0.5 fs and an Ewald
sum tolerance of 10�7 to reduce the energy drift. All energy
current calculations were computed using the CURrent calcula-
tion for proteins (CURP) version 1.2.184 developed by Yamato
and coworkers.

CG simulations were carried out for these systems following
the protocol developed by Pantano and coworkers.85,86 CG
forcefield models preclude an accurate estimation of conforma-
tional flexibility if the secondary and tertiary structures are
assumed to be fixed,85,86 which could affect the study of energy
transfer. To investigate this potential systematic error, we
began by mapping results from the AA force field to those
obtained with the CG model. To avoid the overlap of protein
and lipid, lipid molecules within 3.5 Å of the protein were
removed, following a standard protocol.85,86 The system was
solvated with an explicit CG water model, where again care was
taken so that water molecules and other parts of the system do
not overlap.85,86 The unnecessary water near the hydrophobic
region was removed.

The SIRAH force field was used,85,86 with parameters gener-
ated and simulations performed using the AMBER software
package. The energy minimization was performed in two steps.
First, the side chain atoms were energy minimized with positional
restraints for the backbone atoms with a force constant of
2.4 kcal mol�1 Å�2 for 10 000 steps, and then the whole system
was energy minimized for another 10 000 steps without positional
restraints. The system was heated for 500 ps from 1 K to 300 K and
maintained at 300 K for an additional 500 ps. After heating, we
performed equilibrium simulations for 2 ns with an integration
time of 4 fs using the positional restraint for the protein backbone
atoms with a force constant of 1.0 kcal mol�1 Å�2. Finally, we
performed 1 ms simulations with an integration time step of 20 fs.

Upon analyzing the structures during the simulations, we
observed that after 500 ns, TM6 of the active state turned
towards TM3 in the coarse-grained simulations (see SI), yield-
ing a structure resembling more the inactive state structure
than the active state. The change in structure of the active state
using the SIRAH CG model is not unique to that model.
Separate simulations carried out using the MARTINI force
field87,88 for the active state produced a similar displacement
of TM6 towards TM3 after about 500 ns. The CURP calculations
were carried out for times where the active state structure was
maintained and employed 50 structures, using the same pro-
tocol as described above for the AA model, considering the time
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range of 200 to 400 ns and taking trajectories at regular
spacings.

We refer to the energy current, G, obtained using the AA and
CG models as GAA and GCG, respectively. We need to introduce
scaling factors to compare them; we expect these parameters to
be transferable to different proteins. To scale GCG, we system-
atically grouped residue pairs based on their sequence separa-
tion. Residue–residue separations of 1, 2, 3, and 4 were each
treated as individual groups, independent of their G values. For
longer-range interactions (Z5 residues apart in sequence),
residue pairs were further classified into six bins based on
their GAA values in units of (kcal mol�1)2 ps�1: GAA 4 100, 75–
100, 50–75, 25–50, 1–25, and GAA o 1. This classification
yielded a total of ten distinct groups. For each group, we
computed a scaling factor, A, listed in Table S1, defined as

the ratio of the average GAA value to GCG value, i.e., A ¼ GAAh i
GCGh i.

These scaling factors were then used to adjust the CG model
values as G = GCG � A. We expect the scaling factors to be
applicable to other systems when comparing results using the
same AA and CG models.

G is proportional to the rate of energy transfer, w, between
residues. Rates of vibrational energy transfer, w, have also been
computed from nonequilibrium simulations by Stock and co-
workers.22 On average, the value of G, with units (kcal mol�1)2 ps�1,
can be converted to w using w = G/(187.93 (kcal mol�1)2), as
described in a previous study,19 and we use this conversion to
produce rate constants from values of G for residue pairs of
GLP-1R. The rate constants, moreover, satisfy detailed balance,
i.e., the rate of energy transfer from residue i with fi degrees of
freedom to j with fj degrees of freedom, wji, is wji = wij(fj/fi). We
note that some of the water molecules in the transmembrane
region of GPCRs stabilize the active state17,66 and can also
provide pathways for energy transport.7,17 The rate constants
for energy transfer between residue pairs were computed with
the water present so that disconnectivity graphs computed with
the rate constants account for the full system.

Disconnectivity graphs were constructed using the matrices
of rate constants, as in ref. 89 and 90, to identify free energy
minima for each amino acid and barriers between them. The
relative free energies of the residues and the barriers between
them are translated to reproduce the rates and the corres-
ponding equilibrium distribution of the linear master equa-
tion. We compute first passage time (FPT) distributions within
the same master equation representation for energy transfer
between all residue pairs following the procedure detailed in
ref. 89 and 91. The energy source is an amino acid with excess
vibrational energy, due to collision or photoexcitation. The
energy sink is a selected amino acid to which energy from the
source flows. The first passage time is the time taken for energy
to first reach the sink from the source, determined by the rate
constants for energy transfer between all pairs of amino acids.
Since there are an infinite number of pathways through which
energy can flow between an energy source and an energy sink,
we obtain a distribution of first passage times: some paths are
much more likely than others. Dijkstra’s algorithm92 is applied

to identify shortest paths between an energy source and sink in
terms of the transfer time. Here the metric for the path length
is defined using edge weights �ln Bij, where Bij is the branching
probability from residue j to i. This choice selects the path
corresponding to the largest term in the overall rate if inter-
vening minima are treated in steady state.93

Results and discussion

In Fig. 2, we plot G for all residue pairs, referred to as energy
exchange networks (EENs), for GLP-1R in active and inactive
states computed using both AA and CG models. EENs for the
inactive state are plotted in Fig. 2(a) and (b) and those for the active
state are shown in Fig. 2(c) and (d). The results obtained with the
AA and CG models are plotted in the left and right columns,
respectively. Data plotted in red represent the largest values of
G, G 4 50 (kcal mol�1)2 ps�1, in cyan the next largest values,
50 (kcal mol�1)2 ps�1 4 G 4 25 (kcal mol�1)2 ps�1, with smaller,
though still significant, values in blue, 25 (kcal mol�1)2 ps�1 4
G 4 1 (kcal mol�1)2 ps�1.

Values of G are relatively large near the diagonal, where
covalent interactions and hydrogen bonding along helices
contribute to the EENs. Energy transfer due to interactions
between helices appears near and perpendicular to the diag-
onal for neighboring TM helices, and away from the diagonal
due to interactions between TM helices that are farther from
each other in sequence. Significant differences between the
latter contributions for the active and inactive states appear,
due to the opening of the structure upon activation (Fig. 1),
which rearranges the interactions, and therefore values of G,
between TM3 and TM6, TM5 and TM6, TM6 and TM7, among
others. Differences between the active and inactive states in the
TM region obtained with the AA model are captured well by the
CG representation.

There are differences between the AA and CG results within
the extracellular domain (ECD), which corresponds to the first
110 residues. The ECD contains mainly loops and is generally
more flexible than the helical TM region. Due to its greater
structural variability, we expect to find larger differences in the
ECD compared to the TM region.

Disconnectivity graphs for the inactive and active states of
GLP-1R are plotted in Fig. 3. Each branch corresponds to an
amino acid, and the height of each branch is proportional to
the free energy of the amino acid, which is related to its size
(the number of vibrational degrees of freedom). An energy scale
bar of 1 kcal mol�1 appears in Fig. 3(a). Deeper wells in the
energy landscape, represented by longer branches, correspond
to larger amino acids, while shallower ones appear for smaller
residues. The branches, corresponding to particular amino
acids, are connected via the lowest barriers where energy
transfer is the fastest. The height of the barriers corresponds
to the free energy of the transition state, which is a mapping of
the calculated rate via the Eyring–Polanyi formulation.53,54

If the fastest rate of energy transfer occurs between amino
acids in sequence, a series of branches connected to nearest
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neighbors would be visible. However, because of noncovalent
contacts such as hydrogen bonds, energy transfer between
residues more distant in sequence may occur more rapidly
than through the covalent bond network between neighbors. In
this case, branches corresponding to amino acids far apart in
sequence are connected in the disconnectivity graph. These
shortcuts are highlighted by coloring the branches according to
the helix in which each residue is located.

Because function of GPCRs is mediated largely by the TM
helices, it is convenient to group the branches into helices and
examine competition between energy flow along a helix and
between helices. We focus on the patterns in energy flow along
TM helices, which are labeled and indicated by the different
colors, along with some of the specific residues. We also
discuss helix 8, located in the cytoplasm and not a TM helix,
which is in contact with some of the TM helices.

The disconnectivity graphs reveal a number of interesting
features. First, we note that the lowest barriers separating

minima are modest, of order 1 kcal mol�1, as indicated by
the energy scale bar in Fig. 3(a), consistent with the picosecond
time scale for energy transfer between nearby amino acids. The
relatively small barriers allow for facile flow of energy along the
main chain of the protein. However, there is a noticeable
variation in barrier heights, producing clusters of residues in
the graph in which energy flow is particularly fast.

In both active and inactive states, computed using both AA and
CG models, TM1 (red) consistently separates into two distinct
clusters of branches, with Gly123 acting as a dividing residue. Each
amino acid is represented by a branch, and groups of amino acids
through which energy flows readily appear as a cluster of branches.
We see that amino acids 110–122 of TM1 are clustered together, as
are 123–139. Glycine acts as an energy flow bottleneck due to its
small size, as seen in our previous analysis of b2AR.19 When there
are also noncovalent contacts present near the glycine, coupling
different helices, the residues of one helix are seen to split into
different clusters of branches, mediated by glycine.

Fig. 2 Energy exchange networks (EENs) for GLP-1R obtained using AA (left column) and CG models (right column). In the top row, panels (a) and (b)
represent inactive states and in the bottom row, panels (c) and (d) represent active states. Red indicates residue pairs with G 4 50 (kcal mol�1)2 ps�1, cyan
indicates 50 (kcal mol�1)2 ps�1 4 G 4 25 (kcal mol�1)2 ps�1, and blue indicates 25 (kcal mol�1)2 ps�1 4 G 4 1 (kcal mol�1)2 ps�1. There are 393 residues in
each state and the active state has an additional peptide ligand corresponding to residues 394–424. Helices and the ECD are labeled at the edges of the
panels.
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Fig. 3 Disconnectivity graphs of GLP-1R computed using the AA model in (a) peptide-bound active and (b) inactive states, and the CG model for (c)
peptide-bound active state and (d) inactive states. The transmembrane helices are colored and labeled in the figure. An energy scale bar of 1 kcal mol�1 is
indicated in (a).
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TM2 was found to cluster into a largely single region in AA
active, AA inactive, and CG inactive models, with three identifi-
able but closely grouped branches. Some interactions with
residues outside the TM regions are apparent. In contrast, in
the CG active model, these three groups were also separated
and now mix, not only with residues in loops outside the TM
region, but also with helix 8, which is in the intracellular region
(Fig. 1). Since helix 8 can move in the cytoplasmic region, it may
come into contact with one or several TM helices during a
simulation, as observed for the active state using the CG model.
TM2 notably lacks glycine and proline, both of which have been
identified as energy transport bottlenecks.19

TM3 consistently forms two primary clusters of branches in
all panels of Fig. 3, Gly188–Glu219 and Gly220–Leu227, with
Gly220 serving as a clear boundary. The Gly188–Glu219 seg-
ment is intact with one cluster of branches in the active state. In
the inactive state, this sequence of residues splits into smaller
clusters in both the AA and CG models, because of interactions
between this portion of TM3 and portions of TM4 and TM6.

Similar patterns appear for the remaining TM helices. TM4
is divided into three clusters in both states for both models,
with Gly245 and Gly257 contributing to these separations. In
TM5, fragmentation of clusters of branches occurs at Pro284 and
Gly290 for both active and inactive states using both AA and CG
models. TM6 displays clusters of branches separated by Gly333
and Pro330, which together form the kink in TM6 (Fig. 1). TM7 is
split into two major clusters by Gly367, again at a kink in the
helix (Fig. 1), with some difference in minor clusters of branches
for the different models. Finally, helix 8 exhibits a range of
clustering structures due to its intracellular location and flexible
movement during the MD simulations, as noted above.

In a previous study,19 we constructed disconnectivity graphs
for b2AR, a class A GPCR, in active and inactive states using rate
matrices obtained from MD simulations using the same AA
force field as for GLP-1R. We now compare some of the results
for b2AR with those for GLP-1R. Glycine and proline residues
act as bottlenecks to energy flow along the backbone in both
systems, providing a route for energy transfer to other residues
far apart in sequence via direct noncovalent interactions. Class
A GPCRs, such as b2AR, have several conserved motifs includ-
ing Pro-Ile-Phe (PIF), Cys-Trp-xx-Pro (CWxP), Asn-Pro-xx-Tyr
(NPxxY) in TM5, TM6, and TM7, where the proline residues
are located. In addition, there are proline residues in intracel-
lular loops 2 and 4, TM2 and TM4.

Class B GPCRs, such as GLP-1R, have two conserved motifs
in which only one motif, Pro-x-x-Gly (PxxG), in TM6, consists of
proline and glycine, which help to form the kink and shift the
lower half of TM6 upon activation (Fig. 1). The HETx motif of
class B GPCRs is spanned by several helices including TM7.
Gly367 of TM7 gives rise to the formation of a sharp kink
(Fig. 1) and hence the graph is split into different clusters.

For b2AR, we identified a large barrier between TM1–3 and
TM4–7, which appears in both the active and inactive states,
caused by Pro110 in the intracellular loop connecting TM3 to
TM4.19 No such barrier appears in this region for GLP-1R as
there is no proline between TM3 and TM4.

In GLP-1R, there is a proline at the edge of TM1 separating a
series of residues in the ECD from TM1, a separation that is not
seen in the disconnectivity graphs for b2AR, which does not
have a proline in this location. In GLP-1R, there are glycines in
the loops connecting TM1–2, TM4–5, and TM6–7. These gly-
cines separate these TM helices, which is again different from
b2AR. For both b2AR and GLP-1R, proline causes the fragmen-
tation of clusters of branches belonging to TM helices. For
b2AR, this effect is seen for TM2, TM4, TM5, TM6, and TM7,
and for GLP-1P, we find this pattern for TM5 and TM6.

Residues of the beta turn in the ECD of GLP-1R appear
fragmented due to the prolines and glycines at each end of the
turn, a feature absent for b2AR, which lacks this beta turn in the
ECD. Finally, for b2AR, we see that the residues of helix 8 are
well separated from other residues by a large barrier, due to the
presence of Pro270 in the intracellular loop separating TM7
from helix 8. In GLP-1R, helix 8 is connected via a loop with
TM7 without a barrier, due to the absence of either proline or
glycine.

We turn now to first passage time (FPT) distributions for
vibrational energy transfer, introduced in the Methods section,
which have been computed for GLP-1R for a variety of energy
sources and energy sinks. An energy source is an amino acid
with excess energy, and an energy sink is a chosen amino acid
to which the energy flows. Any pair of residues can be selected
as the source and sink, and a separate first passage time
distribution is calculated for each choice. For energy transport
along the helices of b2AR, we found that the FPT distributions
look quite similar to one another.19 We therefore focus on FPT
distributions for energy transport via noncovalent contacts. We
consider energy sources and energy sinks on or near different
helices that are linked by noncovalent interactions yielding the
largest rates for energy transfer between helices. We plot results
in Fig. 4 using the AA model as solid curves and the CG model
as dashed curves for selected combinations. Noncovalent con-
tacts between different helices for which the largest rates of
energy transfer were obtained using the AA model have been
chosen for the examples we discuss.

Each FPT distribution in Fig. 4 exhibits a large peak at
around 100 ps. We observe this long-time peak in all the FPT
distributions we have computed, including those for b2AR.19

This long time peak corresponds to the random flow of energy
among roughly 400 chemical groups and is unrelated to the
structure of the disconnectivity graph.19 It apparently takes
around 100 ps for energy to flow randomly to the sink, which
far exceeds the time for excess vibrational energy to relax into
the environment of the protein.22,23 We therefore focus on
peaks at shorter times, which sometimes appear as a shoulder
at the short time side of the long-time peak. The peaks at
shorter times correspond to the faster pathways for energy flow
revealed by the disconnectivity graphs.

In Fig. 4(a), we plot the FPT distributions for the source-sink
combination Asn276–Phe341, between which energy flows via
the shortcut Arg282–Asp344 between TM5 and the loop just
beyond TM6. The FPT distribution obtained with the CG model
is similar to the FPT distribution obtained with the AA model.
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The peak at short times seen for the inactive state is clear for
both the AA and CG data, and the shift to longer times for the
active state due to a weaker interaction between Arg282 and
Asp344 upon activation is captured well by both the AA and CG
models.

A similar trend is found for the Cys198–Val259 source-sink
combination plotted in Fig. 4(b). The slower energy transfer rate
through the shortcut between TM3 and TM4 in the active state,
as seen by a shift to longer times in the short-time peak of the
FPT distribution compared to the inactive state, is captured by
both the AA and CG models. The shortcut that transfers energy
between TM3 and TM4 is TYR207–TRP246, which is intact in
both the active and inactive states. The polar contact between
this amino acid pair was found in previous work17 to be more
flexible in the active state than in the inactive state, so that the
rate of energy transfer across the contact is lower in the active
state. The FPT distributions plotted in Fig. 4(b) clearly illustrate
how the change in dynamics upon activation of a GPCR, in this
case giving rise to a polar contact with greater fluctuations in its
length in the active state, alters the energy flow between helices.

Rates of energy transfer via non-covalent contacts serve as
sensitive probes of protein dynamics, and entropy associated
with the dynamics, as confirmed by theoretical and computa-
tional studies of a variety of proteins.44–47,60 Since both struc-
tural fluctuations and rates of vibrational energy transfer can be
measured by 2-dimensional infrared (2D-IR) spectroscopy, con-
nections between them can be analyzed by this experimental
technique.94

Fig. 4(c) and (d) represent cases where there is little shift in
the short-time peak between the inactive and active states,
consistent in both the AA and CG results. For the Val218–
Ile280 source-sink combination plotted in Fig. 4(c), the short-
time peak is mainly seen as a shoulder of the long-time peak at
shorter times. Apparently, the noncovalent interaction that
provides a shortcut for energy flow between TM3 and TM5 is
not sufficiently strong in either active or inactive states to give
rise to a more prominent feature at shorter times. The source-
sink combination Leu153–Ala210 is plotted in Fig. 4(d). The
shortcut is due to a hydrogen-bonded contact between Ser158–
Asn212 of TM3 and TM4, which is found in both the active and
inactive states. We observe only a small shift in the short-time
peak of the FPT distribution when the state changes from active
to inactive, for both the AA and CG models. However, the shift,
while small, is in the opposite direction for the two models.
There is a small shift to shorter times upon activation based on
the AA data, whereas there is a small shift to longer times upon
activation for the CG model.

The FPT distributions plotted in Fig. 4 depend mainly on a
single noncovalent contact between sources and sinks on or
near different TM helices. There may also be several noncova-
lent contacts between a source and sink. We plot in Fig. 5(a) the
FPT distribution for the Gly50–His71 combination, which is
connected by a beta turn with several hydrogen bonds provid-
ing alternative, competing pathways. The beta turn and the
location of the source and sink are shown in Fig. 5(b) and
highlighted in Fig. 1.

Fig. 4 FPT distributions plotted as P(ln t) vs. ln t, for energy source and sink combinations obtained from the all atom model (solid curves) and coarse-
grained model (dotted curves) for active (blue) and inactive (red) states, respectively. Source-sink combinations are (a) Asn276–Phe341, (b) Cys198–
Val259, (c) Val218–Ile280, and (d) Leu153–Ala210.
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For the beta turn, we see that the short-time peak in the FPT
distribution is more prominent than the peak at longer times.
This result is consistent with the existence of multiple compet-
ing pathways for energy to flow between the source and sink.
The position of the short-time peak is about the same for the
active and inactive states, and for the AA and CG models.
However, the short-time peak for the active state using the
CG model arises from two separate, overlapping peaks. This
superposition can be seen more clearly by lowering the tem-
perature, as shown in Fig. 5(c). We note that the other short-
time peaks may also mask features that overlap, but we could
not separate them by lowering the temperature, suggesting that
if they exist, the corresponding time scales are closer.

Mean first passage times (MFPTs) are calculated from the
FPT distribution, p(t), as the integral of tp(t) to specific observa-
tion times, tobs, following ref. 91. This approach enables us to
account for the time scale accessible in a given experiment in
our analysis of energy transfer. One important limit is the time
for excess vibrational energy in the protein to relax into the
environment, which is roughly 5 or 10 ps.22,23,95–97 We consider
energy dissipation times of 5 ps to calculate values of the MFPT
here, as we did in a previous study of MFPTs for source-sink
combinations in b2AR.19

MFPTs are generally expected to increase with the distance
between residues in a helix. We therefore plot MFPT as a
function of the center of mass distance between source and
sink residues, as shown in Fig. 6. Data for both the active and
the inactive states are combined in Fig. 6, as we do not expect
systematic differences for energy transfer along any of the
helices that depends on the state of the system, as concluded
in the previous study of b2AR.19 We plot source-sink combina-
tions obtained using (a) the AA model and (b) the CG model.

The source-sink combinations in Fig. 6(a) and (b) are
grouped in two sets. If there is a glycine or proline along the
sequence of amino acids between the combinations, we plot
the MFPT in gray, and if there is no glycine or proline we plot
the MFPT in red. In Fig. 6(a), containing data obtained with the
AA model, the linear fit to the gray data appears as a gray line
with a slope of 0.081 ps Å�1. The linear fit to the red data
appears as a red line with a slope of 0.073 ps Å�1. We see that
the speed of energy transfer along the helix, estimated here as
the ratio of the distance between the centers of mass to the
fitted MFPT, is faster, 13.7 Å ps�1, when no proline or glycine is
present than if one or both are present, 12.3 Å ps�1. The impact
of the longer MFPT when glycine or proline is present is
magnified at greater distances, as shown in the inset.

Turning to the MFPT results obtained with the CG model,
plotted in Fig. 6(b), we see that the linear fit to the data for
source-sink combinations where there is proline or glycine in
between, plotted in gray, yields a slope of 0.087 ps Å�1, and the
linear fit to the red data, representing source-sink combina-
tions without proline or glycine, yields a slope of 0.074 ps Å�1.

Fig. 5 (a) FPT distribution plotted as P(ln t) vs. ln t, for source-sink combi-
nation Gly50–His71 of the beta turn for active (blue) and inactive (red)
states using AA (solid curve) and CG (dashed) models. (b) The section of
the extracellular domain that consists of the beta turn of GLP-1R and
nearby loop. (c) FPT distribution Gly50–His71 at the original temperature
of 300 K using the CG model and at temperatures that are lower by the
factor 0.5 (green), 0.4 (orange) and 0.25 (blue).

Fig. 6 Mean first passage time (MFPT) at observation times of 5 ps vs. center of mass distance between the source-sink combinations on the same helix.
Results using (a) AA and (b) CG models. MFPTs for combinations between which there is no glycine or proline are in red and via glycine and/or proline are
in gray. Linear fits to the gray (red) appear as gray (red) lines. The inset shows linear fits for distances 4 20Å.
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These slopes are similar to those obtained using the AA model.
For the speed of energy transfer along the helix, we again find it
is faster, 13.5 Å ps�1, when no proline or glycine is present than
if one or both are present, 11.5 Å ps�1. Both these speeds are
close to the corresponding values found using the AA model. As
for the results based on the AA data, we find the impact of the
presence of proline or glycine on the MFPT to be more notice-
able at greater distances between the source and sink, as shown
in the inset.

We now compare the MFPT values as a function of distance
along helices of GLP-1R and b2AR. For b2AR, a rate of 12.7 Å ps�1

was obtained when no glycine or proline is present and is otherwise
10.6 Å ps�1.19 The corresponding values for GLP-1R are 13.7 Å ps�1

when no proline or glycine is present and 12.3 Å ps�1 otherwise.
These values are quite similar, and the difference between the rate
when no proline or glycine is present and when at least one of them
is present is essentially the same. We note that all these rates are
below the speed of sound in a protein, which has been computed40

and measured10 to be about 20 Å ps�1.

Conclusions

Vibrational energy dynamics of GLP-1R and properties of the
protein that control this process were studied computationally
using all atom (AA) and coarse grained (CG) models. In a
previous analysis of GLP-1R,17 information about energy trans-
port in this protein in active and inactive states was obtained
using an AA model. In this report, we computed disconnectivity
graphs representing the vibrational energy landscape using
both AA and CG models and compared vibrational energy
dynamics for them. We recently analyzed the corresponding
landscape for another GPCR, b2AR,19 revealing the impact of
certain residues and some structural properties on energy
transport that had not been seen before. Specifically, prolines
and glycines were found to impede energy flow along the
backbone and redirect energy transfer between helices via
nearby noncovalent contacts. We find the same effect in GLP-
1R, even though the proline and glycine residues are generally
located in different regions of the protein compared to b2AR.
Hence, our conclusions about the role of proline and glycine in
vibrational energy transfer appear to have some generality. By
impeding energy flow along the backbone, prolines and gly-
cines in GPCRs, in combination with nearby noncovalent
contacts such as hydrogen bonds, facilitate energy flow
between helices, helping to create channels of dynamically
coupled residues that can be quite remote in sequence. We
suggest that this observation may have important conse-
quences in understanding how these proteins perform their
cellular functions.

Both energy transport along the backbone and across non-
covalent contacts contribute to the energy transfer dynamics of
GLP-1R. When the protein changes its structure due to activa-
tion by a ligand, some of the noncovalent contacts in the
inactive state are broken, while others form. Even if the non-
covalent contacts remain intact upon activation, changes in

fluctuations in the length of the contact impact the rate of
energy transfer across them. FPT distributions for the energy
transfer time were computed for energy source-energy sink
combinations of residues in different TM helices, where spe-
cific noncovalent contacts facilitate energy flow from the source
to the sink. Differences in the FPT distributions for the active
and inactive states were found when the noncovalent contact
providing a pathway was either broken in the active or inactive
state, or there were differences in the dynamics of the contact
in the two states, in both cases affecting the rate of energy
transfer.

The FPT distributions for both inactive and active states
were found to be similar using data obtained from the AA and
CG models. For energy transport along TM helices, we com-
puted MFPTs between numerous source-sink combinations to
examine the impact of prolines or glycines on energy transport
along the helix. For GLP-1R, we found approximately the same
speeds, as determined by the ratio of the distance between the
residues to the MFPT, when using the AA model and the CG
model. When no glycine or proline is present between the
energy source and sink, the speed is about 2 Å ps�1 faster than
when at least one such residue is present, a consistent result for
the AA and CG models, and for b2AR in previous work using an
AA model.19

The consistent description of energy flow found for GLP-1R,
using the AA and CG models, is encouraging for the use of the
more computationally efficient CG models in studying energy
flow in proteins. Coarse graining has obvious advantages in the
study of larger systems, for instance, if the GPCR is complexed
with the G-protein, as well as other protein complexes. The
present results suggest that appropriate coarse-graining can
preserve the dynamics of interest. It will be particularly inter-
esting to explore the role of proline and glycine in structure–
function relations for related systems. We suspect that the
evolutionary role of these residues, which is well known in
terms of structure, may also be exploited in important func-
tional properties, including allosteric interactions.
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