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Machine learning algorithms often rely on large training datasets to achieve high performance. However,
in domains like chemistry and materials science, acquiring such data is an expensive and laborious
process, involving highly trained human experts and material costs. Therefore, it is crucial to develop
strategies that minimize the size of training sets while preserving predictive accuracy. The objective is to
select an optimal subset of data points from a larger pool of possible samples, one that is sufficiently
informative to train an effective machine learning model. Active learning (AL) methods, which iteratively
annotate data points by querying an oracle (e.g., a scientist conducting experiments), have proven highly
effective for such tasks. However, challenges remain, particularly for regression tasks, which are
generally considered more complex in the AL framework. This complexity stems from the need for
uncertainty estimation and the continuous nature of the output space. In this work, we introduce
density-aware greedy sampling (DAGS), an active learning method for regression that integrates
uncertainty estimation with data density, specifically designed for large design spaces (DS). We evaluate
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DAGS in both synthetic data and multiple real-world datasets of functionalized nanoporous materials,
such as metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs), for separation
applications. Our results demonstrate that DAGS consistently outperforms both random sampling and
state-of-the-art AL techniques in training regression models effectively with a limited number of data
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Introduction

Designing materials with specific properties is a challenging
and time-consuming task, often relying on trial-and-error
(Edisonian) methods.” This traditional approach increases
both the time and cost of experiments. The main difficulty lies
in the complexity of materials design, where the relationship
between a material structure and its properties is poorly
understood.” These challenges are usually addressed using
accumulated chemical intuition, which can be limiting: intui-
tion often struggles to navigate the vast and complex landscape
of modern materials design spaces, especially when those
spaces are high-dimensional, non-linear, or span unfamiliar
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points, even in datasets with a high number of features.

chemistries. This can lead to biased exploration, favoring
familiar structures or compositions and overlooking novel or
counterintuitive candidates that could offer superior properties.
Furthermore, as materials discovery increasingly integrates high-
throughput simulations and data-driven approaches, the scale
and diversity of possible candidates often exceed the capacity of
intuition-based methods to make meaningful selections.

The emergence of artificial intelligence (AI) and machine
learning (ML) offers new opportunities in this area. ML models
excel at finding patterns in data, often surpassing human
capabilities.*® These models can take information about a
material’s characteristics (features) and predict how it will
perform (properties). By doing so, ML can guide researchers
in selecting which materials to study, reducing experimental
effort and cost.” However, reliable ML models require high-
quality data for training, and generating such data is expensive
and labor-intensive. This creates a paradox: while we aim to
reduce experimental costs, creating the large, diverse datasets
needed for training these models remains costly. To address
the limitations of conventional data collection methods,
researchers are exploring strategies that go beyond random

This journal is © the Owner Societies 2025


https://orcid.org/0009-0001-5045-8349
https://orcid.org/0009-0001-0554-175X
https://orcid.org/0000-0001-5538-2497
https://orcid.org/0000-0003-2459-589X
https://orcid.org/0000-0002-2445-6059
http://crossmark.crossref.org/dialog/?doi=10.1039/d5cp02908b&domain=pdf&date_stamp=2025-10-17
https://rsc.li/pccp
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cp02908b
https://pubs.rsc.org/en/journals/journal/CP
https://pubs.rsc.org/en/journals/journal/CP?issueid=CP027043

Open Access Article. Published on 29 September 2025. Downloaded on 1/29/2026 5:30:10 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

sampling (RS)—the simplest approach for selecting candidate
instances to build training datasets in materials science. In RS,
samples are chosen randomly and independently from a larger
pool of possible materials. This pool, once mapped to a vector
space where each dimension represents a structural or compo-
sitional property, is commonly referred to as the design space
of the materials. For each selected sample from this design
space, an experiment—computational or experimental—is
conducted to determine the values of the target (dependent)
variables. The resulting instance, consisting of input features
and corresponding outputs, is then added to the dataset. While
RS is straightforward and easy to implement, it does not
incorporate any prior knowledge about the distribution or
structure of the data. As a result, it may frequently select
samples that are redundant or unlikely to improve the model’s
performance—commonly known as uninformative samples
—particularly in low-data regimes where every labeled point
carries significant weight.

In such cases, active learning (AL) techniques are more
appropriate, as they aim to strategically select the most infor-
mative samples, thereby maximizing model improvement while
minimizing the number of required labeled instances.®° Active
learning is a semi-supervised learning method meaning that
target values of the dataset are partially unknown, and the
machine learning model is trained by selecting data points one
by one and querying their target values to an oracle. This
method uses the acquired knowledge about the data space in
order to effectively guide the selection of the next data point,
usually by evaluating an uncertainty measure. After the query to
the oracle that annotates the data samples, the obtained
feature-value pair is added to the training set thus updating
the model’s knowledge of the data space. Using this technique
allows researchers to focus on the most informative samples,
thus optimizing the process. AL techniques often use concepts
like diversity'® (choosing samples that differ significantly from
each other) and representativeness'' (choosing samples that
best represent the dataset) to guide sample selection.

Some active learning methods, known as model-based
approaches, rely on the ML model to guide the identification
of the samples to annotate, focusing on those most likely to
improve predictions. A seminal example is the work by Cohn
et al,"> who proposed selecting samples to reduce model
uncertainty. However, it can be computationally intensive—
particularly for neural networks—and relies on assumptions
(e.g., Gaussian noise, negligible bias) that may not always hold,
limiting its scalability and generality. AL has been extensively
used for classification tasks, where the selection criterion often
relies on entropy-based uncertainty measure,"*' vote entropy"*
and expected model change."® However, in regression tasks,
where the computation of entropy is infeasible, the AL biblio-
graphy is limited, and the main techniques require different
criteria to substitute the uncertainty measure. Regarding
regression tasks, approaches such as greedy sampling (GS),
combine diversity and representativeness to improve predic-
tions by greedily selecting the data sample that maximizes on a
specified criterion: GSx focuses exclusively on the exploration
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of the feature space, while GSy prioritizes target property space
exploration through the model’s predictions.’” Although both
methods manage to adequately learn the design space, their
individual predictive performances are hindered due to their
lack of insight into each other’s data space domain (target
property space for GSx and feature space for GSy). To this end,
the improved GS method (iGS) was devised to combine both
methods, achieving remarkable results.'®'® Another prominent
technique, expected model change maximization (EMCM),>
evaluates the potential impact of annotating a sample on the
current model and selects the sample that leads to the greatest
change in the model’s parameters, measured as the difference
between the current model parameters and the updated para-
meters after training with the enlarged training set. This
method works under the assumption that the greatest para-
meter change is correlated with significant learning opportu-
nities in the design space. While effective, methods like EMCM
can be computationally intensive as the model has to con-
stantly estimate the gradient of the loss and update all model
parameters for each new annotated sample of the space. This
led to the development of batch strategies such as B-EMCM”" to
address these challenges.

Recently, researchers have explored Mondrian trees,”*** which
is a type of regression tree that branches randomly rather than
based on features. While they can achieve modest improvements
over other state-of-the-art methods, the high variance in predicted
values within each leaf node and reliance on scaling datasets to a
fixed range ([0, 1]) can limit their practicality.”® Furthermore,
emerging AL techniques now incorporate advanced tools like
Bayesian models, Gaussian processes (GP), and deep learning.
For example, Gaussian processes can model data uncertainty but
are mainly used for low-dimensional datasets. Similarly, deep
learning-based methods, such as batch model deep active learn-
ing (BMDAL),** are designed for large datasets and may not suit
applications where data annotation is expensive.

In this work, we address a critical limitation of AL which is
that there are problem cases where it struggles to significantly
outperform baseline sampling methods on finding the most
informative data points and efficiently training ML models
using them. This happens when the data space is not homo-
geneous, meaning that the data samples are not uniformly
distributed across the feature space hypercube domain and
form dense and sparse regions resulting in the decrease of pure
exploration AL framework’s performance. This is because a
pure exploratory AL framework such as iGS mainly selects
samples from sparse regions as they are more diverse to the
already explored space, while simpler methods such as RS
follow the underlying density distribution and select more
samples from the denser regions thus optimizing the predic-
tions of the model. To overcome this, we propose an AL
framework for regression tasks that incorporates density-
awareness to the selection process of improved greedy sam-
pling, called density-aware greedy sampling (DAGS). For classi-
fication tasks, modeling the density of the data space is
common as the framework has to ensure that the selected
sample is both informative and representative of its class.>*>®
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However, density-awareness has been largely overlooked in the
active learning literature for regression tasks, and this consti-
tutes the main contribution of our work. Our method explicitly
exploits density as a characteristic of the design space, allowing
us to balance exploration with representativeness and thereby
select more informative samples. In this way, we address the
limitations of iGS, which often overemphasizes outliers and
expends oracle queries on points that contribute little to model
improvement. Our results further show that the proposed
density-aware approach can match or even surpass random
sampling, which implicitly reflects data density to some extent.
Finally, we benchmark DAGS not only against random sam-
pling but also against more sophisticated active learning stra-
tegies, including query-by-committee,> regression tree-based
AL,*® and plain iGS."

To evaluate the performance of our proposed framework
against the aforementioned techniques, we first constructed
synthetic datasets based on four distinct formulas. Each for-
mula is examined in two versions: (a) homogeneous and (b)
non-homogeneous distributions of data points. Following this
controlled evaluation, we apply the framework to a real-world
scenario involving complex sample spaces of materials with
high correlation complexities and heterogeneity. Specifically,
we focus on metal-organic frameworks (MOFs),*" a class of
functionalized materials whose structures can be modulated at
the molecular level. MOFs exhibit exceptional potential as
adsorbent/storage materials®> or components in separation
membranes.** However, understanding how their design influ-
ences performance remains a complex challenge, often requir-
ing either labor-intensive experiments or computationally
demanding in silico simulations. Our proposed framework aims
to address these challenges by improving the efficiency and
accuracy of predictive modeling in such complex material
systems. In both the synthetic data and MOF datasets, our
approach consistently outperforms the other methods demon-
strating superior performance compared to them.

Methodology

In this section, we present our proposed density-based active
learning method, called density-aware greedy sampling (DAGS),
designed as an improvement of the iGS method by incorporating
density-based sample selection.

Problem formulation

We consider a process f: U — Y generating data y; = f(u;), where
u; € U and y; € Y are vectors with dimensions n and m,
respectively. This process may represent an experiment or a
simulation that returns accurate target values y; for a given
input u;, but at a high cost, for example, in terms of time,
computation, or other resources. The set U denotes the design
space, that is, all possible u; elements that can be represented
in the n-dimensional space.

To obtain the target values y; for a specific input u;, the user
must run one iteration of the expensive process f. However,
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when the locations of inputs yielding desirable outputs are
unknown within the design space, the user may need to
evaluate many such inputs, resulting in high overall cost.

To address this, we propose to train a machine learning
model M that approximates the mapping f: U — Y. In this way
the user can have a good estimation of target values of each u;
and thus will be able to run targeted iterations of f, for those u;
predicted to have a target value y; closer to the desired. Training
the model M also means acquiring target values for each w; that
will be used as the training dataset. In order to create an
efficient model, we want to find the balance between maximiz-
ing the model performance and minimizing the dataset crea-
tion cost. A low cost means that M should use the least amount
of training data, so that the number of iterations of f performed
is reduced as much as possible without significant loss of
estimation performance. For this reason, we assume a limited
budget of N available iterations. Let L < U be the subset of
inputs selected for training, such that:

L={ly, by ... In}, i €U (®)

Initially, L will contain £ < N randomly selected samples.
For each randomly selected sample, an iteration of f is per-
formed and its target value is acquired, and the machine
learning model is trained with L as the training dataset. Then,
we define a selection process, s, which given the current state of
the model and the training dataset, identifies the next element
that should be used for training

Liv1 = 8(Liy M) (2)

The elements are sampled one by one; for each one, an
iteration of fis performed, and after its target value has been
acquired, the machine learning model is retrained with L, as
the training dataset.

Our goal in this research work is the creation of an algo-
rithm serving as a selection process s, which will efficiently
achieve this balance between model performance and data
creation cost.

Fig. 1 provides a graphical representation of the problem
case that we are exploring.

State-of-the-art methods

In this section, we overview current state-of-the-art methods,
highlighting strengths and weaknesses that have led to the
proposal of our DAGS algorithm.

Random sampling. Random sampling is a very simple
selection strategy which, as the name suggests, selects each
new sample in a random manner.>**** The lack of a compli-
cated mechanism for sample selection makes it a rather fast
approach. Although it is not a sophisticated method, it has the
unique ability to often outperform other state-of-the-art
methods.*® This observation constitutes random sampling as
a nontrivial baseline method for evaluating AL frameworks.

Query-by-committee. Query-by-committee (QBC) is an AL
technique that uses the disagreements among a committee of
predictors to select informative samples.®” For a given training
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Fig. 1 (A) Given a design space of possible candidates, a researcher selects k random samples to conduct experiments and evaluate the value of their

target property. (B) Our proposed sampling method iteratively selects the next candidate for experimentation, based on the current state of the dataset,

until the budget N is completed.

set L and an unlabeled set U, the method trains k diverse
predictors fi, fo, ..., fr on L and evaluates their predictions f(l)
for [ € L. The sample with the maximum disagreement,
quantified as the variance among the predictor’s outputs, is
selected for annotation. Specifically, the variance for a sample x
is computed as follows:

k
Var(x) = %Z (fi(x) *f_(x))z (3)
i=1
where
_ 1&
F6) = i) (@)

is the mean prediction of the committee. The sample x*
selected for querying the oracle is thus:

x* =arg max Var(x) (5)
xeU

This strategy assumes that areas of disagreement represent
regions with high uncertainty, making them valuable for improv-
ing the model’s performance. While QBC minimizes overfitting
when predictors are diverse, such as using models from different
learning paradigms, it suffers from limitations in regression tasks.
Specifically, its focus on the target property alone for query
selection often leads to suboptimal performance in cases with
complex feature-target correlations, such as MOF datasets. In our

This journal is © the Owner Societies 2025

implementation, the models used were XGBoost,*® random forest,
and Gaussian process regressors — studies have shown that two or
three predictors are generally sufficient.*® Despite its conceptual
appeal, QBC’s performance is often inferior to more balanced
exploration-exploitation approaches like iGS and density-based
methods, particularly in high-dimensional regression problems. It
is also worth mentioning that the need for multiple regressors
(those forming the committee) may make this approach more
expensive than others, since each time a new data point is
sampled we need to re-train them all. The query-by-committee
code used in this work was developed by the authors.

Improved greedy selection across the feature space (iGS). iGS'”
is an improved version of GS which is a combination of methods
known in the literature as GSx and GSy. GSx is greedy selection
performed across the feature space x. In this method, the learner
iteratively selects to query the unlabeled sample x; that maximizes
the minimum distance from the samples that exist in the training
set x,,. If the training set L contains k labeled samples, and the
design space contains in total /U/ samples, then the learner
selects the k + 1 sample from the remaining /U/ — k as:

Xiy1 = argmax dx(x) (6)

where

di(x) =

v — x| @)

min
n=1,...k;i=k+1,...,|U]|
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GSy is greedy selection across the target value space, Y. Predictions of
the target property are produced for all unlabeled data, and the
sample y, whose predicted target value is most “foreign” compared
to the evaluated target values in the training set y, is selected:

Xi1 = argmax d,,(x) (8)
xeU

where

dy(x) = |

n:l,..,4k§£?+144..,\o'\ Vo= vl ©)
While these methods are effective in their respective domains, they
are limited in scope: GSx focuses solely on the feature space, and GSy
focuses only on the target space. Both approaches ignore the
correlation between the two spaces, which is critical for representing
the underlying process. The iGS method combines GSx and GSy by
incorporating information from both the feature and target spaces.
It selects the next sample using the following criterion:'”

Xir1 = argmax d.(x)dy (x) (10)
where d,(x) and d,(x) are computed by (7) and (9), respectively. By
using the product of these metrics, iGS is immune to scaling
differences between the feature and target spaces. The main draw-
back of this method is that it does not inherently guarantee that the
selected samples follow the design space distribution, which
increases the sensitivity of the method in querying outliers, thus
creating sets of samples that are not representative of the design
space. The iGS code used in this work was developed by the authors,
based on the work of Wu et al."”

Regression-tree based active learning. The regression tree-
based active learning (RT-AL) method, introduced by Jose
et al,*® focuses on constructing optimal training sets for
regression tasks where labeling data is expensive. This
approach employs regression trees to partition the feature-
response space into homogeneous regions, using a splitting
criterion that minimizes response variance within each parti-
tion. Specifically, the variance reduction is calculated using the
following equation:

A(r) = Var(t) — ('(TL”Var(ZL) +||tTR||Var(tR))
where ¢ represents a node, and ¢, and ¢z are its left and right
child nodes. Following tree construction, RT-AL selects samples
based on their representativeness and diversity using a
diversity-based query, which balances exploration of the feature
response spaces.>”

Extensive benchmarking demonstrates the ability of RT-AL
to achieve lower error rates with reduced sample sizes com-
pared to other state-of-the-art methods, particularly in datasets
with complex distributions. The method’s robustness and low
variance make it a reliable choice for regression tasks across
diverse application domains. For our implementation of RT-AL,
we have adapted and used the code provided by Jose et al.*°

The aforementioned methods work well in scenarios
where data are uniformly distributed across the design space.
However, many real-world datasets exhibit imbalances, with
dense and sparse regions in the design space. In such cases,

(11)
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purely explorational AL techniques may underperform, and
even random sampling can outperform these methods.

Our proposed method: density-aware greedy sampling

To address the aforementioned limitation of the state-of-the-art
AL approaches, we propose a density-based AL method, called
density-aware greedy sampling (DAGS), that combines iGS with a
weighting factor representing space density. The density factor for
an unlabeled sample x is calculated using the following equation:

D(x) = (12)
> dist(x;, x)
i=1
n

where x, ..., x, are the n-nearest unlabeled neighbors of x, and
dist(x; x) is the Euclidean distance between x and x;. This density
factor measures the average proximity of a sample to its
neighbors.

Using this factor, the next sample is selected by:

N1 = argmax iIGS(x)D(x) (13)
where iGS(x) is the uncertainty produced by the iGS method for
the unlabeled sample x.

This approach has been inspired by the work of Zhu et al.,”
where a similar strategy was proposed for classification tasks.
Specifically, the authors devise an uncertainty-based active
learning framework named sampling by uncertainty and den-
sity (SUD), where the selection criterion consists of the multi-
plication of an uncertainty and a density factor. In this method,
the uncertainty for each unlabeled sample is modeled as the
entropy of the estimated probabilities for the sample to belong
in each class. The density factor is computed as the average
cosine similarity of the sample x with its K-nearest neighbors.
The two factors are then multiplied to produce the final
selection metric for the unlabeled set. The main drawback of
this approach when implemented for regression tasks is that
calculating the entropy for each sample is challenging as there
are no well defined classes (we can either model each sample as
a separate class or rely on clustering methods which make the
entropy computation inefficient and inaccurate).

To tackle this problem, in our method, we substitute the
entropy with the iGS factor which adequately represents the
uncertainty of a design space and is suitable for regression
applications. Another difference between the two methods is
that we define density as the average inverse of the sample’s
Euclidean distances with its neighbors and not the average of
their cosine similarities. This decision has been made based on the
assumption that, after querying a sample, the model gains knowl-
edge of the target property’s behaviour on a small area around it, as
samples with almost identical feature space values will probably
exhibit approximate target property’s values. Conforming with this
assumption, a dense area should consist of samples that have
absolute proximity and not necessarily the same direction of
feature vectors. In general, the Euclidean distance provides a more
intuitive and reliable measure of the density “neighborhood”,
particularly in continuous spaces where absolute distances are
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critical as it directly measures spatial proximity. In conclusion, our
density-based method selects samples that maximize exploration
while prioritizing dense areas, ensuring the selected samples
provide the most significant knowledge about the design space.
This helps reduce the average prediction error, as sparse areas
often represent outliers with little relevance.

Computational experimental evaluation work-flow

Our experimental evaluation methodology can be described as
follows. First, we train the XGBoost model using the current
training dataset L; and we evaluate its performance. Second, we
employ the density aware greedy sampling (DAGS) method to
select the next sample. DAGS calls the improved greedy sam-
pling (iGS) method to compute uncertainty values (v) and the
density factor (d) for each unlabeled element in U. Third, the
selection method selects the element which maximizes the
product of v and d and adds it to the training dataset thus
creating L;.;. The workflow of DAGS is shown in Fig. 2. These
three steps are repeated until we reach the end of our N query
budget (the maximum number of samples we can query to the
oracle). We refer to this entire process as one experiment.

In order to mitigate concerns that the final results are due to
dataset peculiarities, we use a k-fold routine where we shuffle
and divide the design space in k consecutive folds. Then, we
select k — 1 folds as the training set while the remaining fold
becomes the test set. In our work-flow, we set k = 10.

As mentioned before, the training set L;,, is built by evaluating
the model on the previous training set Z; and then adding the next
sample proposed by the selection method. To bootstrap this
process, we initialize L, by randomly selecting 5 samples from
the design space. We ensure that, throughout our experiments,
the five initially selected random samples remain the same for
each dataset. Maintaining this consistency prevents random
chance from significantly influencing our results.

The five selection methods are evaluated using the mean
absolute error (MAE) metric, which is expressed as follows:

(14)

1 n R
MAE = n(Z i — yi)
i=1
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where y; is the ground truth and y; is the prediction of the
model, on a test set of size n.

The whole evaluation workflow as described above is per-
formed 10 times. Finally, we plot the average MAE across the
10 experiments for increasing training dataset sizes. The code
used for the experiments is openly accessible in our GitHub
repository.t

The predictive model being used in our experiments is the
XGBoost regressor.*® Details regarding the Python libraries and
the hyperparameters of these ML regression models are pro-
vided in the SI. For density calculations in the feature space, we
used Euclidean distances without applying prior normaliza-
tion. We acknowledge that omitting normalization can be
problematic in very high-dimensional spaces or when feature
values differ by several orders of magnitude. In our datasets,
however, the number of features is modest (up to 20), and their
ranges vary only within a few orders of magnitude. Under these
conditions, we chose to focus on demonstrating the impact of
incorporating density itself into sampling strategies. Nonethe-
less, feature normalization remains an important considera-
tion for future work, particularly within a more generalized
framework.

Results

The Results section is divided into two subsections: in the first
subsection, we compare the selected sampling methods on
synthetic data spaces, while in the second subsection we move
to actual design spaces, in the setting of MOFs.

Synthetic data spaces

Four synthetic data spaces were prepared, each one with a
homogeneous and a heterogeneous version of the distribution
of its points across the same range of available data points.
We examine the DAGS method and compare it with the base-
line models in order to highlight the effect of heterogeneity on
the performance of the pure exploration AL methods. For each
synthetic dataset (homogeneous and heterogeneous), we

T https://github.com/insane-group/Density_Aware_Greedy_Sampling.
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provide a plot of the data points which depicts the density
across the design space, meaning how close the samples are
located to each other. In the case of 1-d design spaces, we used
the kernel density estimation (KDE) method to create the color
bar which intuitively shows dense and sparse areas of the
dataset. For 2-d design spaces, where it is easier to show
distances between data points, we plotted the two dimensions
along with a color bar showing the variability of values of the
target property.

The first space is modelled after the 1d Forrester
benchmark®® (Fig. 3), which is commonly used for evaluating
Bayesian optimization methods, as we want to examine the
learning capabilities of the AL frameworks on a continuous yet
complex data space, where we select 1000 x samples within the
range [0, 1]. The target property can be calculated using the
following formula:

Y(x) = (6x — 2)*sin(12x — 4) (15)

The next space is a variation of the first, called 1d Jump
Forrester (Fig. 4) which inserts a discontinuity at the target
function as we want to capture the effect of non-continuous
target properties on the performance of the AL frameworks.

0<x<05

(16)

x —2)?si X —
y(x){(& 2)*sin(12x — 4),

(6x —2)?sin(12x —4) +10, 0.5<x<1

The third one is modelled after a 2d Gaussian (Fig. 5) in
order to simulate an area of interest at the center of the space
and evaluate the degree that each method effectively learns the
space when data samples are uniformly scattered or create an
extremely dense area at the center, with x;, x, € [—3, 3], and the

Homogeneous Forrester

15

10

0.0 0.2 0.4

X

0.6 0.8 1.0

Fig. 3 Plots of homogeneous and heterogeneous Forrester datasets.
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target value is produced by:

17)

X12 + X22
202

y(x) = exp (—

Finally, the last space has xy, x, € [0, 1] and y is an exponential
form of x (Fig. 6) as we want to model a design space that has
(complementary to the Gaussian space) the area of interest at the
border of the space, examining if a pure exploration AL method
performs well in this context. The y is expressed through:

Y(x) =1 — exp(—0.6((x; — 0.5)* + (x, — 0.5))) (18)

In the following figures, we showcase the performance of
various sampling methods, measuring the mean absolute error
(MAE) as a function of the number of samples annotated (we
designate this number as “# of queries” in the figures, since
these annotations are essentially queries towards an ‘“oracle”).
The results show that the iGS and DAGS methods outperform
random sampling in all homogeneous spaces (Fig. 7(a), 8(a),
9(a) and 10(a)), because they operate in a strategic and explora-
tory manner, efficiently identifying the most informative data
points based on their position in the design space. An impor-
tant observation is that in homogeneous spaces, where the
density of data points is nearly uniform across the entire space,
our method effectively reduces to iGS, as the density factor is
almost identical for every unknown point.

In heterogeneous spaces, however, the performance of AL
frameworks compared to random sampling is less straightfor-
ward. Notably, AL methods that disregard the density distribu-
tion of the design space, such as iGS, often fail to outperform
RS. Specifically, iGS exhibits reduced performance in the
Forrester space (Fig. 7(b)) when compared to the density-
based method, shows nearly identical performance to RS in

Heterogeneous Forrester
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Fig. 5 Plots of homogeneous and heterogeneous Gaussian datasets.

the Jump Forrester benchmark (Fig. 8(b)), and suffers complete
performance degradation in the Gaussian space (Fig. 9(b)). The
poor performance of iGS in the Gaussian benchmark can be
explained by its tendency to select points far from the center, as
it prioritizes coverage of the entire design space. This approach
neglects the fact that, in the heterogeneous case, more than
half of the data samples are concentrated in the central region,
where selecting points is critical for achieving a significant
reduction in mean absolute error (MAE). The only heteroge-
neous design space where iGS performs well is the exponential
space (Fig. 10(b)), where it predominantly selects samples
from the edges of the space, focusing on modeling the area
of interest rather than the central region.

This journal is © the Owner Societies 2025
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In contrast, the DAGS method performs robustly across both
homogeneous and heterogeneous spaces. In homogeneous
spaces, it operates in a purely exploratory manner, similar to
iGS. In heterogeneous spaces, however, it effectively captures
the underlying density distribution of the design space. This
adaptability enables our method to consistently outperform RS
across all synthetic benchmarks. In rare cases, such as the
exponential space (Fig. 10(b)), its performance is comparable to
iGS which indicates that at extreme data space heteroge-
neity scenarios where the area of interest requires a purely
exploration criterion, and the density factor in our method
leads to the selection of some suboptimal points. Overall, the
density-based AL framework demonstrates superior versatility
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Fig. 7 MAE as a function of the number of queries for Forrester (a) homogeneous and (b) heterogeneous datasets. A lower MAE means better predictive

capabilities of the model.

and effectiveness, making it a more reliable choice for diverse
design spaces.”* In all cases we set our query budget N at 150
data points, at which point we stopped the sampling. Out of
those, 5 were initially randomly selected and 145 selected by
each method. For design spaces of 1000 or 2000 samples,
150 queries represent 15% and 7.5% of the whole space,
respectively, as we opt for simulating realistic training size -
design space size ratios in order to test the efficiency of the
proposed method.

MOF design spaces

In this section, we evaluate the performance of all the sampling
methods in real-world scenarios drawn from materials chem-
istry, specifically focusing on functionalized nanoporous mate-
rials known as metal-organic frameworks (MOFs). This domain
is particularly relevant due to the well-recognized challenge of

23160 | Phys. Chem. Chem. Phys., 2025, 27, 23152-23165

establishing accurate structure-performance correlations,*?
which hinders the development of MOFs for applications such
as separation membranes and storage materials.

We utilize five datasets from the literature, each comprising
thousands of MOFs characterized by structural and chemical
descriptors (or attributes) as input features for model training.
These datasets were chosen not only for their size and avail-
ability but also because they address the relatively under-
explored property of gas diffusivity, as opposed to the more
commonly studied sorption capacity or uptake. The target
property, diffusivity (D;), typically measured in either m* s~*
or cm® s, represents the rate at which penetrants (guest
molecules) of species i (commonly gases such as CO,, CH,,
N,, and O,) propagate through the porous structure of a
material. Target values for diffusivity were obtained through
in silico experiments, specifically molecular simulations.

This journal is © the Owner Societies 2025
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capabilities of the model.

Gas diffusivity is underrepresented in high-throughput
simulation schemes due to its higher computational cost
relative to sorption properties. This is primarily because calcu-
lating diffusivity requires smaller time steps for numerical
integration of the equations of motion, resulting in signifi-
cantly longer simulation times.** By addressing this property,
we aim to highlight the applicability and efficiency of active
learning frameworks in domains with high computational
complexity.

N, and O, diffusion in MOFs (two datasets)

The first two real-world datasets used in our study are drawn
from the work of Orhan et al.,** where the authors employed
high-throughput computational screening and machine learn-
ing to predict O,/N, selectivity in 5632 metal-organic frame-
works (MOFs). These datasets, derived from the CoRE MOF
2019 database, includes detailed geometric and chemical
descriptors alongside the simulated target properties of

This journal is © the Owner Societies 2025

diffusivity of oxygen (O,) and nitrogen (N,), respectively (infor-
mation about the features of the datasets in our work can be
found in Tables S2 and S3 of the SI). It represents a robust and
well-characterized collection for exploring structure-perfor-
mance relationships in MOFs. By querying a total of 145 data
samples, we acquire the 2.6% of the data space which simu-
lates a realistic scenario of experimental setup with expensive
annotated samples as we want to highlight the importance
of performance improvement with minimum data space
knowledge.

Similarly to the synthetic dataset, in Fig. 11, we showcase the
mean absolute error score as a function of the number of
samples annotated for O, and N, datasets. A general observa-
tion across both datasets (N, and O,) is that random sampling,
despite its simplicity, performs surprisingly well and serves as a
challenging competitor for many state-of-the-art methods.
Among the tested methods, query-by-committee struggles to
perform well, showing higher MAE values throughout. The iGS
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model.
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method performs better than QBC but still lags behind both
random and RT, with the latter closely matching the perfor-
mance of random. The moderate performance of RT can be
attributed to its reliance on randomness for sample selection,
which assumes that points with similar characteristics (MOFs
with similar chemical and structural properties) will exhibit
similar diffusion performance. However, this assumption does
not appear to hold true for diffusivity.

In contrast, the DAGS method demonstrates a clear advan-
tage over all other methods. It not only achieves significantly
lower MAEs in the early stages of sampling but also reaches a
much lower plateau. For example, with 145 samples, RT and
random both achieve a MAE of approximately 0.55 (N,) and
0.45 (0O,). In comparison, our approach reaches the same MAE
values with only approximately 60 samples (N,) and 90 samples
(0y), drastically reducing the number of queries required to
achieve similar accuracy by a factor of 2.4 and 1.6, respectively.

This efficiency translates directly to significant time and cost
savings in the lab. By requiring fewer annotations to achieve the
same prediction accuracy, DAGS minimizes experimental effort
and resource use, making it a powerful and practical choice for
active learning in materials science applications.

CH,4, H, and He diffusion in MOFs (three datasets)

The next three datasets used in our study are drawn from the
work of Daglar et al,*® where the authors calculated the
diffusivity of CH4, H, and He in 5215, 2715 and 677 MOFs,
respectively. By querying 150 training samples, the training size
- design space size ratios are 2.9%, 5.5% and 22% which adds
another experimental parameter for our results. Our XGBoost is
trained on descriptors carrying chemical and structural infor-
mation about each MOF, as shown in Table S2.

The results for CH,, H, and He datasets (Fig. 12) largely
align with the trends observed in the N, and O, datasets,
as described previously. Random sampling continues to
exhibit strong performance, proving itself as a robust baseline
method. Query-by-committee (QBC), however, consistently

This journal is © the Owner Societies 2025
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underperforms, showing the highest MAE values across all
datasets. The iGS and RT methods again demonstrate improved
performance, with RT closely matching random in most cases.
Notably, the He dataset is the only scenario where iGS outper-
forms all other methods, achieving the lowest MAE, while our
density-based method comes second, alongside random.

For the CH, and H, datasets, our method consistently out-
performs all other approaches. It achieves a significantly lower
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MAE in the early stages of sampling and maintains its advan-
tage throughout. For example, for CH,4, with 145 samples, RT
and random reach a MAE of approximately 0.59 and 0.58,
respectively, whereas the DAGS method achieves the same
MAE with just 100 and 120 samples. This is a reduction of
queries by 1.5 and 1.2 times, respectively. Similarly, for H,, RT
and random both achieve final MAEs of 0.41 at 145 samples,
while our method reaches these values with only 90 samples,
reducing the number of queries performed by a factor of 1.6.
This significant reduction in required annotations translates
directly to time and cost savings in the lab.

In the He dataset, however, iGS achieves the best perfor-
mance, highlighting that certain methods may excel in specific
scenarios. Nevertheless, the DAGS method still performs com-
petitively, achieving a MAE score of 0.31 at approximately
90 samples, while RT and random achieve the same score with
145 samples and the iGS method gets the same score at
65 samples. These results rank DAGS second among the
state-of-the-art methods as it requires 1.6 times less queries
than RT and random and 1.5 times more queries than iGS for
this specific task. We note that the He dataset has the highest
ratio of training size to design space, with the training set
covering nearly one quarter of the space. In such cases, a purely
explorational method like iGS can afford to query all outliers
and still have sufficient budget to cover the denser regions.
In smaller design spaces, therefore, incorporating outlier
information can improve performance relative to methods that
prioritize dense regions. Overall, these findings highlight the
robustness and versatility of the density-based approach, especially
in datasets with high complexity and imbalanced distributions.

Conclusions

In this paper, we introduced DAGS, a density-aware active
learning (AL) method designed to account for the heterogeneity
of the design space during data selection. We compared DAGS
against state-of-the-art AL frameworks that do not consider the
underlying density distribution, as well as the non-trivial base-
line of random sampling (RS). We first evaluated our method in
four synthetic data spaces, demonstrating that while AL tech-
niques significantly outperform RS in homogeneous spaces,
their effectiveness diminishes when feasible data points are
unevenly distributed. In heterogeneous synthetic spaces, DAGS
exhibited consistent performance improvements over other
frameworks due to its ability to prioritize sampling from denser
regions. After establishing the importance of incorporating
density distribution awareness in AL frameworks through
synthetic datasets, we tested DAGS on real-world datasets.
Specifically, we applied it to multiple MOF design spaces,
which are characterized by pronounced non-uniformity in the
distribution of feasible material feature points. Our method
achieved remarkable results in four out of five design spaces,
yielding lower mean absolute error (MAE) values compared to
both random sampling and exploratory techniques like iGS.
However, in smaller design spaces, such as that of He, DAGS
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exhibited slightly reduced performance. In such cases, infor-
mative data points may reside in sparser regions, which are less
frequently explored by our method by design. This explains why
other methods produced marginally better results in this
specific scenario.

The objective of this work was to highlight the importance of
incorporating spatial characteristics, such as heterogeneity,
into the selection criterion of AL frameworks and to provide
an initial step in this direction. As future work, we propose the
development of density metrics for design spaces to better
capture and exploit inherent heterogeneity. Such metrics could
serve as valuable tools for selecting the most suitable AL
framework for a given problem, ultimately improving predictive
performance and data efficiency. We also propose further
experimentation with our proposed method in new areas of
application as well as in real experimental campaigns.
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github.com/hdaglar/MOF-basedMMMs_ML/blob/main/rawdata.
zip with [accession number], for the CH,, H, and He diffusion in
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