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This study presents a novel approach to understanding the structure-property relationships in non-
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stoichiometric materials and interstitial alloys using Graph Neural Networks (GNNs). Specifically,

we apply the Crystal Graph Convolutional Network (CGCNet) to predict the properties of transition-
metal carbides, Mo,C and Ti,C, and introduce the Crystal Graph Explainer (CGExplainer) enabling
model interpretability. CGCNet outperforms traditional human-derived interatomic potential models
(IAPs) in prediction accuracy and data efficiency, with significant improvements in the ability to
extrapolate properties to larger supercells. Additionally, the CGExplainer tool enables detailed analysis
of the relative spatial positioning of atomic ensembles, revealing key atomic arrangements that

govern material properties. This work highlights the potential of GNN-based approaches for rapidly

discovering complex structure-property relationships and accelerating the design of materials with

customized properties, particularly for alloys with variable atomic compositions. Our methodology
offers a robust framework for future materials discovery, extending the applicability of GNNs to a
broader range of materials systems.

1 Introduction

The relationship between atomic arrangements and material
properties plays a fundamental role in materials science. This
is particularly evident in two key types of metal alloys. The first
type, ‘interstitial alloys’, incorporate additional atoms (H, C, N,
or B) into the existing interstitial spaces within the infinite crystal
lattice of the metal while preserving the metallic lattice structure.
Optimal material performance requires identification of optimal
interstitial arrangements. T3 A significant sub-category within in-
terstitial alloys are ‘non-stoichiometric compounds’, where the el-
ement proportions cannot be expressed as ratios of small natural
numbers due to missing atoms, resulting in lattice vacancies. 6
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The distribution of both interstitial atoms and vacancies within
the crystal lattice significantly influences various material prop-
erties, including mechanical strength,”Z magnetic susceptibility,
electrical resistivity,® and catalytic properties.?"! This influence
stems from the pseudo-random distribution of interstitial atoms
among available sites, creating numerous possible solid-state con-
figurations, each exhibiting slightly different properties. 1215

A second material type, substitutional alloys, demonstrate
even more dramatically how atomic positioning influences ma-
terial properties, particularly in emerging materials like two-
dimensional (2D) transition metal carbides, nitrides, and car-
bonitrides (MXenes). These materials, with the general formula
M, 11X, Tx (where M represents early transition metals like Nb,
V, or Ti; X is C and/or N where T, denotes surface functional
groups such as O, OH, or F; and n ranges from 1 to 4), offer
unprecedented opportunities for property manipulation through
atomic arrangement. The ability to incorporate multiple tran-
sition metals at M sites creates solid-solution MXenes with en-
hanced functionalities, making the relationship between atomic
arrangement and resulting properties particularly important. Re-
cent research has demonstrated remarkable control over mate-
rial properties can be achieved through selective metal substi-
tution. For instance, Wang et al. showed that electrochemical
properties in TiyNb,_,CT, and VyNb,_,CT, can be systematically
tuned by adjusting Ti:Nb and V:Nb ratios.2? Yang et al. estab-
lished a strong correlation between Ti content and both electri-
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cal conductivity and carrier mobility in TiyNb,_,CT, MXenes.2L

Additionally, Borge-Duran et al. predicted the emergence of fer-
romagnetic behavior in (Nb;_,Ti,)4C3Ty solid solutions, despite
the non-magnetic nature of their end members, opening new pos-
sibilities for spintronic applications.?? These findings collectively
demonstrate how precise control over atomic composition and
positioning enables the rational design of materials with tailored
characteristics.

To address the complex relationship between atomic arrange-
ments and material properties, researchers developed empirical
interatomic potential models (IAPs) as a systematic approach
to understanding these correlations. IAPs work by identifying
and characterizing specific atomic ensembles that contribute to
desired material properties. Various approaches have been ex-
plored, from combinations of embedded atom method formal-
ism with two-body Lennard-Jones interactions and three-body
Axelrod-Teller potentials for Ti,C systems, to more recent devel-
opments like the work of Borge-Durdn et al., who successfully
developed a potential for non-stoichiometric Mo,C and Ti,C.”%3
However, the development of these potentials presents significant
challenges. The process requires meticulous human expert iden-
tified atomic ensembles that contribute to the material’s poten-
tial energy. While this task remains within human capabilities, it
faces inherent limitations. The human mind, despite its analyti-
cal power, often struggles to perceive all subtle patterns and rela-
tionships within complex atomic arrangements. Furthermore, the
vast number of possible atomic configurations creates an enor-
mous search space. Consequently, the development of a single
effective potential can extend from months to years, making this
traditional approach increasingly impractical for rapid materials
development.

Computational approaches based on Graph Neural Networks
(GNNs) offer potential solutions to these analytical limitations. 24
These advanced algorithms have shown remarkable success in
decoding structure-activity relationships in various materials sys-
tems2>"32 by efficiently identifying correlations between graph-
based structural representations and target properties.>334 How-
ever, despite their proven capabilities in various materials science
applications, the potential of GNNs for understanding and pre-
dicting how relative atomic positioning modulates material prop-
erties remains largely unexplored compared to materials with
well-defined structures and stoichiometry.

Existing GNN explainability methods focus primarily on un-
derstanding the relationship between material composition and
properties through various analytical approaches. One notable
implementation appears in Crystal Graph Convolutional Neural
Networks, where the separation of convolutional and pooling
layers=2 enables analysis of how specific atom types in given
positions influence model predictions. Additional methodolo-
gies for explaining GNN-based materials property predictions
have emerged in recent studies.2%738 However, these current ap-
proaches are fundamentally limited by their assumption of fixed
atomic arrangements, analyzing only the impact of atom types
at predetermined positions. This limitation becomes particularly
significant when studying non-stoichiometric materials and solid
solutions, where atoms distribute pseudo-randomly throughout
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the crystal lattice. A critical gap exists in current methodologies.
No method has been developed to explain models based on the
relative three-dimensional positioning of atoms within crystal lat-
tices. Addressing this gap is essential for understanding structure-
property relationships in materials with complex atomic arrange-
ments, particularly those where atomic positioning directly mod-
ulates material properties.

In this work, we evaluate the Crystal Graph Convolutional
Neural Network (CGCNet),2 a specialized GNN architecture de-
signed to predict the properties of materials, in the context of non-
stoichiometric materials, with Mo,C serving as our primary case
study with further validation using Ti,C. Both Mo,C and Ti,C be-
longs to the family of transition-metal carbides, interstitial alloys
in which carbon atoms occupy interstitial spaces within a metallic
lattice defined by metal atoms. This material system was selected
due to its recent significant importance in materials science re-
search2%4 and its structural similarity to MXenes, suggesting the
potential transferability of our methodological approach. To com-
plement CGCNet, we developed the Crystal Graph Explainer (CG-
Explainer), a new tool that quantifies the contribution of specific
atomic subassemblies and their relative spatial positions to mate-
rial properties, enabling systematic analysis of structure-property
relationships in three-dimensional space. Our investigation ad-
dresses three fundamental objectives: (1) assessment of CGC-
Net capabilities in predicting properties of novel atomic config-
urations within solid solutions; (2) evaluation of GNN perfor-
mance in extrapolating properties for larger supercells with previ-
ously unobserved atomic configurations; and (3) demonstration
of CGExplainer’s ability to interpret GNN models trained on crys-
tal graph data, revealing correlations between atomic ensembles
and target properties.

2  Methods

We aim to accurately predict the ground-state energies of
transition-metal carbides using graph representations, targeting
results close to those obtained from high-level DFT calculations.
To achieve this goal, we have followed the workflow outlined in
Fig.

This workflow consisted of five main steps: 1) generation of
the Mo, C dataset by creating 1065 Mo,C 2x2x2 structures and
calculating their energy using DFT; 2) creation of a graph repre-
sentation of these structures; 3) training and evaluating the GNN
model in comparison to the human-derived IAP for the Mo,C and
Ti,C dataset; 4) assessment of the models’ performance and abil-
ity to extrapolate using a dataset of 2x2x4 Mo, C structures; and
5) explanation of the CGCNet models using our newly proposed
method, the Crystal Graph Explainer (CGExplainer), and compar-
ison of its explanations between the Mo, C and Ti,C dataset.

2.1 The Mo,C and Ti,C Dataset

The Mo, C dataset was built from scratch, starting with a 1x1x1
cubic cell of MoC as the foundation for constructing 2x2x2 su-
percells with a 1:1 stoichiometry. To achieve a 2:1 stoichiome-
try, half of the carbon atoms were removed from the supercells.
The special quasi-random structures (SQS) algorithm“> was em-
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Fig. 1 Procedure followed herein. a) Creation of the Mo,C dataset and

interatomic potentials for non-stoichiometric materials and further understa
Explainer.

ployed to reproduce the local atomic disorder arrangements typ-
ically found in random solid solutions. This method generated
a diverse collection of carbon/vacancy configurations within the
Mo, C supercells, effectively emulating the varied atomic arrange-
ments present in real materials. Further details are provided in
Supplementary Information under ‘Generating C/vacancy config-
urations in Mo, C supercells for database creation’.

To investigate the energetics of the diverse cubic Mo,C con-
figurations, we performed first-principles calculations using Den-
sity Functional Theory (DFT) as implemented in the Quan-
tum ESPRESSO package.4® The exchange-correlation energy was
computed using the Perdew-Burke-Ernzerhof (PBE) functional 47
within the generalized gradient approximation (GGA) frame-
work. Ultra-soft pseudopotentials from the Rutgers University
GBRV database® were employed to describe the interactions be-
tween valence and core electrons. The Kohn-Sham orbitals were
expanded using a plane-wave basis set with an energy cutoff of
40 Ry. Brillouin zone integration was performed using a 4x4x4
Monkhorst-Pack#? k-point grid.

In the case of the Ti,C dataset, this was taken from the work
by Borge et al.’%3
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2.2 Graph representation

To generate the graph representation that serves as input to the
GNN, we used the DFT-relaxed structures of Mo,C and Ti,C. In
our graph representation, each node represents an atom, while
edges represent atom-atom interactions. To define the connec-

importance scores

computational cost of calculation of energy for 2x2x4 supercells. b)

Conventional paradigm to create atomic potentials based on atomic ensembles discovered by human trial and error. c¢) Automatically GNN created

nding of those contributing atomic ensembles by using the Crystal Graph

tivity between atoms, we employed a cut-off radius centered on
each atom, where all atoms within this boundary are considered
to share an edge with the central atom (see Fig. Sla in Supple-
mentary Information). To accurately model the infinite lattice of
the material, we applied periodic boundary conditions (PBC) to
the graph. This ensures that nodes located on opposite faces of
the crystal are appropriately connected (see Fig. S1b in Supple-
mentary Information).

As node features, we used the chemical element each node rep-
resents, one-hot-encoded. As edge features, we used the solid an-
gle, defined in Eq. |1} where r is the distance between an atom
and a surface and A is the area of such surface. The surfaces
result from the faces of the polyhedrons were created by apply-
ing a Voronoi Tessellation Algorithm%>1 considering each atom
as a point in space (see Fig. Slc and d in Supplementary Infor-
mation). The solid angle is an ideal descriptor, as this quantity
changes depending on the relative positioning of carbide atoms
around molybdenum atoms (see Fig. S2 and Crystal Graph sec-
tion in Supplementary Information). We used a Gaussian expan-
sion to increase the dimensionality of the solid angle (Equation
to improve the performance of the model, as done before by
Gu et al. to model perovskites. =0

Q=

A
=) €}

To train the GNN, each graph has been labeled with it’s corre-

sponding DFT ground state energy. In the case of the transition
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metal carbides, the most stable structure is known (i.e. lowest en-
ergy structure). We used the energy of this structure as baseline
(E = 0) and predicted the difference of energy between the given
structure and this baseline. This decision was made as usually
this calculation is usually performed to quantify differences in en-
ergy between structures rather than to attain absolute energies.
Our final target variable is therefore defined as follows:

Emrget = Eprr — EgFT 2

2.3 Model architecture

GNNss are a type of artificial neural network that can be trained on
graphs, which allows understanding of relations of graph struc-
tured data and outcome variables. The CGCNet consists of two
phases: 1) message passing and 2) readout. The first phase
is a node-level operation block, which explores the topology of
the graph to capture the complex relations between neighboring
nodes. This operation is known as convolution. The convolu-
tional operator used for this network is the ‘Crystal Graph Convo-
lution’2, which is defined in Eq. 3| where x; is the node feature
vector of the central node i, z; ; = [x;,x},¢; ;] denotes the concate-
nation of features of the central node i, neighbor node j, and the
edge between them, o represents the sigmoid function, g repre-
sents the softplus function, and Wy, by, Wy, and by are learnable
parameters.

X§=Xi+ Z o(z,-ﬁij+bf)@g(z,;,jW5+bs) 3)
JEN (i)

The second phase is a prediction occurring at the graph level.
Its first step is to summarize the information from all the nodes
contained within the graph into a single graph-level feature vec-
tor. This is achieved by an operation called pooling. This oper-
ation is usually an element-wise operation that runs for all the
node’s feature vectors contained within the graph. Pooling en-
sures that all the graphs within the database attain a single fixed-
size vector representing them. As we are predicting an extensive
property and the models are all trained with a fixed size supercell
(2x2x2), we adopted a sum pooling operation. Using another
type of pooling, such as max or average, would deliver predic-
tions within the range of values of training data, regardless of the
number of nodes (atoms) in the graph. In sum pooling, the GNN
is effectively learning the energetic contribution of each atom,
thus making the model aware of the relation between energy and
quantity of atoms. Finally, this latter vector is the input into a
multilayer perceptron (MLP) that outputs a final prediction. Our
GNN steps from graph input to prediction are:

* The node features are taken (length of two) and are ex-
panded to a final length of 16 by a fully connected layer
with no activation function, R"0desx2 _y grodesx16_

* The crystal graph convolution operator updates the node

states in of all nodes a total of two times, R"0desx16 _
Rm)desxlé
b

* Sum pooling is applied to all the node feature vectors to get
a graph-level feature vector, R"4¢sx16 _y RIx16

4] Journal Name, [year], [vol.],
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* A fully connected layer with leakyReLU activation function
takes the graph-level vector and maps it to half of its original
length, R'*16 — RIx8

* Alast fully connected layer with no activation function trans-
forms the feature vector into a single scalar number, this be-
ing the prediction of the model, R'*8 — R.

2.4 Crystal Graph Explainer

Human-derived interatomic potentials have the advantage of be-
ing highly interpretable, while GNNs usually are not. To over-
come such a problem, we designed a unique Crystal Graph Ex-
plainer (CGExplainer). The CGExplainer is a graph perturbation
method designed to explain GNN models that predict proper-
ties of solid-state crystal structures. As proposed by Wu et al.
for organic molecules2, the algorithm works by masking certain
fragments of the structure just before the pooling operation. A
scheme of this approach is shown in Fig.

As the GNN (CGCNet, in our case) learns during training, it
identifies the most important nodes required for making accurate
predictions. In other words, if the network recognizes that an en-
semble of atoms plays an important role in determining the target
property, the pooling operation will prioritize gathering informa-
tion from those atoms.

Consequently, if a specific atomic ensemble is masked, the re-
sulting graph embedding will likely differ from that of the com-
plete graph—provided those atoms were indeed important for the
prediction (see the Supporting Information, Crystal Graph Ex-
plainer Section, for further details). This difference in embed-
dings leads to a change in the model’s prediction.

We define the attribution (importance) of a masked fragment
as the difference between the prediction made with the complete
graph and the prediction made with the masked graph. As the
perturbation made to get an attribution score is done at graph
level, the methodology presented is model agnostic, meaning that
CGExplainer can be applied to any trained GNN model.

When attempting to mask a substructure in a crystal graph, sev-
eral problems may arise because of the high degree of repetitive
patterns throughout the cell. The issues we found and the pro-
posed solutions are discussed in Supporting Information Crystal
Graph Explainer Section.

2.5 The Interatomic Potential Benchmark

As benchmark, the Interatomic Potential by Borge-Durén et al.23

was used. This potential consists of a multiple linear regression
fitted to the internal energy of Mo,C or Ti,C materials, which
consisted of three parameters. This potential was chosen be-
cause it was specifically designed to describe the energetics of
the materials studied herein, thus being the most accurate model
found in the literature. Notably, this IAP was previously vali-
dated against experiment by reproducing order—disorder transi-
tion temperatures for Mo,C and Ti,C (pred. 1430/1430 °C; exp.
1030/1024°C), see Ref.%.

The first parameter is the bond valence parameter. This pa-
rameter responds to the fact that, in a stable structure, the total
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Fig. 2 Crystal Graph Explainer algorithm. a) The algorithm takes an input graph representation of a material and fits it into a pre-trained GNN
model. b) Before the sum pooling, the algorithm creates a copy of the graph with the embeddings obtained during the message passing phase (MPP
in the figure). b) The algorithm then masks the substructure which an attribution score is to be assigned to, and c) then the pooling operation occurs.
d) Lastly, the new graph embedding is fitted into the readout phase which leads to a prediction. e) We define the attribution score of such fragment
as the difference between the prediction of the complete graph and the prediction of the masked graph, as done before by Wu et alB2 f) Shows the

fragments that is possible to mask in the Mo, C structures.

valence of each atom will be equal to or close to its preferred
valence. In the case of molybdenum, the preferred valence is 6,
and for titanium it’s 4. The deviation of this ideal behavior was
quantified by Equation [4, where n is the total number of transi-
tion metal atoms in the structure, i represents the i-th transition
metal atom in the structure, V; is the valence of the atom i, and
V is the preferred valence of of the atom i23

nil L (Vi Vo)? )

Epy, =

The second parameter quantifies how homogeneous the car-
bon atoms are distributed within the lattice. The rationale behind
this parameter is that a stable structure will favor a homogeneous
distribution of atoms (3 carbon atoms per metal atom) over con-
glomerates of carbides. This term is calculated as shown in Equa-
tion[5] where the number of carbons around the i-th metal atom is
calculated, and then elevated to the power of two. The resulting
parameter consists of the sum of this number for all metal atoms
in the system.

2
Eq = Z (ZC,‘) )
Mo i

The last parameter is an empiric parameter related to the distri-
bution of carbide atoms in the lattice. It was found that structures
with numerous C-Mo-C at a 180° arrangement exhibit higher en-
ergies than those structures that did not have such structure. This
way, the last parameter is calculated as shown in Equation[6]

Eigo =Y Nigo (6)
i

The resulting potential consisted in a multiple linear regression
of these three parameters, as shown in Equation[7]

E=0 Ep+B-Ec2+7-Eig @)

3 Results and discussion

3.1 Model performance for the 2x2x2 supercells
To evaluate both approaches robustness and ability to generalize,
we applied a nested cross validation approach (further details in
Section Model Training and Fig. S3 in Supporting Information).
We created five-folds, which led to a total of five test sets, each be-
ing evaluated by four different training and validation sets. This
generated a total of 20 training test processes. This exhaustive
splitting strategy reduces the possibility of testing the models at a
set of points where they perform particularly well. Both IAP and
CGCNet were trained and evaluated using the same set of folds.
For CGCNet, the training set was used to learn weights and biases
and the validation set to update the learning rate and early stop.
For IAP, the training set was used to determine the linear regres-
sion coefficients; the validation set had no impact on the training
for this method. The test sets provided an unbiased evaluation of
the performance of both models.

To present the results, we aggregated the predictions from all
outer test folds of the nested cross-validation. For each data point,
we calculated the mean predicted value across folds. These mean
predictions are shown in the parity plot in Figure for both Mo, C
and Ti,C datasets, and Table |2| shows the performance metrics
for both datasets. A detailed analysis of the performance in each
individual test fold is provided in the Supporting Information in
Fig. S5 and S6.
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Fig. 3 Parity plot of the predictions of internal energy of transition metal carbides using the IAP and CGCNet methods. a) shows the parity plot for

Mo, C and b) shows the parity plot for Ti,C.

Table 1 Predictive performance of CGCNet and IAP for 2x2x2 supercells.
Reported are the coefficient of determination (R?), mean absolute error
(MAE), and root-mean-square error (RMSE) obtained for all the testing
points from the nested-CV; higher R? and lower MAE/RMSE indicate
better accuracy.

Mo,C Ti,C
Model R? MAE (V) RMSE (V) R? MAE (¢V) RMSE (eV)
CGCNet 0.956  0.087 0.115 0.862  0.056 0.109
IAP 0.916 0.126 0.160 0.756  0.089 0.146

From the metrics in Table [2] it is clear that CGCNet performs
better in the predictive tasks than the human expert derived IAP
of Borge et al. %3 To test this, we applied a Wilcoxon test and found
that there is statistical difference between CGCNet and IAP for
both Mo,C (p-value = 0.036) and Ti,C (p-value = 4.77 x 1075)
datasets. This behavior is expected as Borge’s potential consists
of only three variables which are combined linearly, while the
CGCNet model consists of hundreds of learnable parameters that
adjust in a data-driven way and are combined non-linearly, better
modeling the real behavior of the material.

From the parity plots in Figure[3] it is noticeable that the energy
values of the two materials are very different, ranging from O to
5 eV for Mo, C and from 0 to 3 €V for the case of Ti,C. Also, in the
case of the Mo,C, the DFT energy values are well populated in the
whole energy range, while in the case of Ti,C there is a gap from
0 to 2 €V and from 2.7 to 3 €V, suggesting that the latter is a less
diverse dataset than the former. The reason for these differences
is that the datasets were created using random generators. As the
Mo, C dataset is more populated (1065 structures), the probabil-
ity of having more diverse structures (and therefore better sam-

6| Journal Name, [year], [vol.],

1

pled energy values) is higher compared to the Ti,C dataset. As
the Mo, C is well sampled, it is expected that the trained models,
for IAP and CGCNet, are robust in predicting the energy of poten-
tially any unseen structure. In the case of models trained on the
Ti, C dataset, it is expected that the generalization is more limited,
as the models have seen fewer material configurations. However,
it is reassuring the fact that both IAP and CGCNet are accurate
predicting the least and most stable structure (higher and lower
energy value, respectively), demonstrating that even in extreme
cases where the models have not seen structures with similar val-
ues of energy, they are still able to deliver acceptable predictions,
indicating that it is likely that materials with energies in the whole
range from O to 3 eV will have an accurate prediction.

To assess the data efficiency of the models, we created a learn-
ing curve for the Mo,C dataset. This plot shows the performance
of the model when changing the size of the dataset. The results
are shown in Fig. |4, where each point represents the mean abso-
lute error through the 20 train test processes and the error bars
the standard deviation (plots showing the performance based on
RMSE and R? is shown in Fig. S5 in Supporting Information). We
found that when the total size of the Mo, C dataset is reduced to
only 300 structures and split in a 3:1:1 ratio, CGCNet outperforms
IAP. This suggests that our methodology still achieves a satisfac-
tory result with 180 data points for training, demonstrating that
the workflow is data efficient.

Although CGCNet only needs 300 structures to achieve compa-
rable performance to the IAP, the latter exhibits more stable per-
formance regardless of the number of points in the database (Fig.
4]). This behavior is expected, as the IAP consists only of three
variables fitted into a multiple linear regression. As only three pa-
rameters are learned in the training process, just a few structures
are necessary to optimize them. Therefore, even from a small
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Fig. 4 Learning curve for CGCNet and IAP. The y-axis shows the mean
absolute error, while the x-axis shows the total quantity of points in the
database.

number of structures, very accurate models can be achieved us-
ing the IAP. This demonstrates that, in case of modeling databases
with a limited number of structures, the IAP still presents the ad-
vantage of delivering accurate predictions. However, when mid-
size databases are modeled (from 300 or more), CGCNet can be
used to get models at least as accurate as the human-derived IAP.

3.2 Generalizing energy prediction models to supercells of
unseen sizes

The ultimate goal of atomic potentials is to predict properties
of unstudied atomic configurations or accurately model larger
systems where DFT calculations are computationally expensive.
To test this here, we predict the internal energy of 1x1x2 and
2x2x4 Mo, C supercells. Although DFT calculations for 1x1x2
supercells can be performed, we included this as a final test set
to evaluate the ability of both approaches to extrapolate to both
larger and smaller supercells. The internal energy of the most sta-
ble supercell for each size was calculated and set as the new ref-
erence point. As the energy of these new, more stable cells differs
in magnitude from the energy of the most stable cell on which the
models were trained, it was necessary to normalize both the IAP
and CGCNet predictions. Therefore, we define our target variable
as the difference between the energy of the ith cell and the energy
of the most stable Mo, C supercell of the same size. Since 20 mod-
els arose from the nested cross-validation approach, we adopted
an averaging system where each model predicted the energy dif-
ference of each cell, and the reported result was the mean of the
predictions from the different models. The results are shown in
Fig. |5} and the metrics obtained are presented in Table

Table 2 Predictive accuracy of CGCNet versus IAP on Mo, C supercells.
Listed are test-set means for R, MAE, and RMSE; higher R? and lower
MAE/RMSE denote better performance.

1x1x2 2x2x4
Model R? MAE (V) RMSE (V) R? MAE (V) RMSE (eV)
CGCNet 0.776  0.085 0.172 0.789  0.697 0.904
IAP 0.329  0.242 0.297 0.135 1.617 1.831
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Fig. shows the parity plot for the 1x1x2 supercells. Both
models deliver predictions with satisfactory accuracy; however,
the metrics in Table [2| show that CGCNet achieves higher accu-
racy with statistical difference (p-value = 0.002). For the case of
2x2x4 supercells (Fig. ), both models tend to underestimate
the energy difference; however, the human-derived IAP predicts
it less accurately, as shown in Table |2} We also found statistical
difference for this dataset as well (p-value = 0.011). The reason
for the poorer performance of the IAP may be that the prediction
scaling grows linearly with the size of the cell, which does not rep-
resent the nature of the material. An additional limitation of IAP
is that it is based only on ensembles that consider direct neighbors
of atoms. For GNNs, although our graph representation considers
only direct neighbors, the convolutions in the message-passing
phase allow the model to capture long-range interactions, which
are ignored in IAP. While our experiment does not demonstrate
the practical application of these extrapolations to real-life sce-
narios (i.e. predict more complex properties such as band gaps),
the proof of concept demonstrates that such modeling is possible
and should be explored in future studies.

3.3 Explainability of the CGCNet models

While Fig. demonstrates that CGCNet outperforms the IAP,
the latter has the advantage of being highly interpretable. We
used our CGExplainer to rationalize which relative position in the
atomic arrangements modulates the properties of the interstitial
alloys studied herein (both Mo,C and Ti,C). To perform these
analyses, a random model from the 20 developed was taken and
the analysis was performed using the test set for all atom ensem-
bles shown in Fig. [2f. The attribution scores of the CGExplainer
for each material were normalized between 0 and 1 to allow com-
parison, where values closer to O are assigned to ensembles with
lower attributions (lower impact on the target property). The re-
sults are shown in Figure[6]

Our graph-neural-network evaluation of local coordination en-
vironments shows that both Mo,C and Ti,C strongly favour the
trigonal-pyramidal (‘pyr’) motif: it attains the lowest normalised
attribution score (0.00), indicating the highest stability in both
carbides.

The lowest-energy arrangement in both Mo,C and Ti,C is
a trigonal-pyramidal coordination (C3 symmetry) in which the
three carbon ligands form an equilateral base with C-C-C an-
gles of ~ 120°, while one metal s orbital mixes with two d or-
bitals to create three equivalent sd? hybrids that point directly to-
ward the carbon atoms and maximise M-C ¢ overlap.3 Although
mutually orthogonal sd> hybrids would impose ideal C-M-C an-
gles of 90°, ligand-ligand repulsion within the extended lattice
distorts them toward ~ 120°, a characteristic feature of many
"non-VSEPR" d° transition-metal compounds.2% Motifs that can-
not sustain this hybridisation (e.g. flat-T or linear) display weaker
o interactions and are thus higher in energy. Despite formal
oxidation states approaching +4, M-C bonding remains partly
covalent and partly metallic, with substantial electron sharing
and delocalisation rather than full charge transfer.>® Residual
(non-hybridised) d orbitals participate in secondary interactions
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Fig. 6 Comparison of importance of atomic ensembles found in the non-
stoichiometric materials Mo, C and Ti,C estimated using the CGExplainer
(see Fig. [2f for ensemble abbreviations).

or remain non-bonding, further stabilising the electronic struc-
ture, and the preference for the pyramidal motif is accentuated
in Mo, C because the more diffuse 4d orbitals of molybdenum en-
hance medium-range overlap relative to the compact 3d orbitals
of titanium, which favour tighter coordinations.=°

The secondary coordination preferences of Mo,C and Ti,C are
governed by intrinsic differences between 4d and 3d valence
shells. In Mo, C, geometries ranked after the pyramidal minimum
(0.00) are the ‘I’ (0.27) and ‘cross’ (0.44) motifs, whereas Ti,C
stabilises ‘I’ (0.05) and then ‘tetra’ (0.18; see Fig. 2 for ensemble
labels). These trends arise because 4d orbitals possess an addi-
tional radial node and are more spatially diffuse than their 3d
counterparts, enlarging the radial extent of Mo valence density
and enabling longer-range metal-carbon overlap.2Z Conversely,
the compact 3d set of Ti enhances short-range ¢ interactions,
favouring tighter coordinations such as the tetrahedral environ-
ment. The much higher attribution score of ‘tetra’ in Mo, C (0.80)
relative to Ti,C underscores how orbital diffuseness modulates
relative stability.

The least favourable motifs in both carbides, namely, €T’

]

8| Journal Name, [year], [vol.],

(flat-T) and ‘lin’ (linear), induce d-orbital splitting patterns poorly
matched to either 3d or 4d electron distributions, leading to pro-
nounced destabilisation. Overall, the CGExplainer attribution hi-
erarchy mirrors established electronic-structure principles: the
greater radial extension and lower pairing energies of second-row
(4d) metals shift their coordination preferences away from the
compact geometries preferred by first-row (3d) analogues.>®
This consistency between machine-learning explanations and
ligand-field expectations validates the physical soundness of the
model.

As the importance of atomic ensembles is estimated by CGEx-
plainer, these could potentially be used as a guide to create tra-
ditional IAPs. For example, from Fig. [6] it is clear that fragments
containing carbon-metal-carbon subunits in a 180° position are
considered to contribute more to the energetics of the material
than those fragments with the same number of carbide atoms
without such conformation (see the attributions of “lin” compared
to “L” and the attributions of “fT” compared to “pyr”). This obser-
vation is in agreement with the empiric discovery of Borge-Duran
et al. that carbide atoms in a 180° conformation lead to higher
energy materials.23

Beyond guiding IAP design, this agreement also serves as an
experimentally anchored validation of what CGCNet learns. In
our prior work??, a human-designed IAP based on three mo-
tifs, namely, a low-energy trigonal-pyramidal C-M-C units, pe-
nalized 180° C-M-C arrangements, and an approximately ho-
mogeneous carbon distribution captured by E, reproduced or-
der-disorder transition temperatures for Mo,C (pred. 1430°C;
exp. 1430°C) and Ti,C (pred. 1024 °C; exp. 1030 °C). Here, CGC-
Net+CGExplainer independently recovers the same rules from
the DFT data (low attribution for pyramidal C~-M-C, high for 180°
C-M-C, and consistency with the E. trend), indicating that two
independent approaches converge on motifs tied to measurable
observables. Thus, the IAP comparison is not merely a computa-
tional baseline but a bridge to experiment that supports the phys-
ical validity of the learned representations.

However, the derivation of more complex variables that explain
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the energetics of the material are not as easy to obtain. For exam-
ple, from Figure [6] there is no trend between the importance of
the fragment and the total number of carbide atoms in such frag-
ment, making the derivation of the E~» parameter (Equation
nearly impossible from the explanations. This way, while the esti-
mated importance of ensembles may help guiding the selection of
variables for the construction of traditional IAPs, the derivation of
a complete potential from these estimations is very difficult, and
should be complemented by knowledge of the system to attain
complete and accurate traditional potentials.

Conclusions

GNN models present a significant advantage over conventional
IAPs as they allow the finding of key atomic ensembles automat-
ically. Although traditional IAPs have been widely used in mate-
rials sciences, 272 their construction is slowed by the complexity
and the large number of possible key ensembles that may corre-
late to a property of interest, which arises a very challenging task
for humans experts. GNNs can find such ensembles from a graph
representation of a material efficiently and rapidly. Particularly,
CGCNet models, compromising the GNN architecture and crystal
graph representation, are powerful new tools affording property
predictions more rapidly than the best human experts.

A typical limitation identified in GNNs is that it lacks inter-
pretability, but is overcome with the CGExplainer. This tool allows
assigning an attribute score to a given fragment contained within
the material. The tool shows excellent agreement with known be-
havior of the materials. This demonstrates that the GNN is able to
rank important lattice fragments similarly or better than human
experts. The differences found in calculated importance between
CGExplainer and human methodologies can be the reason why
the IAP performs worst than the GNN. Furthermore, the CGEx-
plainer tool allows rapid analysis of general trends in quantita-
tive structure-property relationships for a wide range of materials
considering the 3D disposition of atoms in the cell, which is not
possible yet for current methods. Our method can especially be
useful for interstitial alloys or materials where the atomic compo-
sition is of high variety, such as high entropy materials.

The prediction of energy in 2x2x4 cells demonstrated that
CGCNet allows for more accurate extrapolations to larger systems
where DFT calculations are not yet computationally feasible. As
the creation of IAPs is usually motivated by the lack of computa-
tional power to calculate properties of larger systems, our results
demonstrated that GNNs are capable of predicting properties of
unknown atomic configurations and those from larger cell sizes.
The results obtained encourage the use of these algorithms in
combination with CGExplainer to attain high accuracy potentials
while enabling model interpretability.

Our workflow, combining the Crystal Graph Network (CGC-
Net) and the Crystal Graph Explainer (CGExplainer), shows
great promise in defining structure-property relationships in non-
stoichiometric materials and interstitial alloys. CGCNet out-
performed the traditional human-derived Interatomic Potential
Model (IAP) in terms of accuracy and generalizability, while
CGExplainer provided interpretable explanations for the GNN
model’s predictions. The automated discovery of key atomic en-
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sembles and the ability to explain their influence on material
properties pave the way for a more efficient and insightful ma-
terials design process.

Future research will focus on applying this approach to a wider
range of materials, such as MXenes and high-entropy alloys, to
validate its generalizability and potential impact on materials sci-
ence. By extending this methodology to diverse material systems,
we can accelerate the development of novel materials with tai-
lored properties and unlock new possibilities in the field of mate-
rials engineering.

Computational Tools

CrysGNet was built on PyTorchGeometric 2.3.1%3 running over

PyTorch 2.0.1.%% The graphs were built using PyTorchGeometric
2.3.163 and PyMatGen 2023.8.10.22 We have developed a mod-
ified version of the stratification and cross-validation procedure
developed by Garcia et al.®® Masking procedure was developed
exclusively for this work using PyTorchGeometric 2.3.193 and
NetworkX 3.0.7 All the plots were built using Matplotlib 3.7.308
and Seaborn 0.13.0.6? Structure images were generated using
Ovito?% and Vesta.”L
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