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Explainable GNN-derived structure–property
relationships in interstitial-alloy materials
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J. Ignacio Borge *g

This study presents a novel approach to understanding the structure–property relationships in non-

stoichiometric materials and interstitial alloys using graph neural networks (GNNs). Specifically, we apply

the crystal graph convolutional network (CGCNet) to predict the properties of transition-metal carbides,

Mo2C and Ti2C, and introduce the crystal graph explainer (CGExplainer) enabling model interpretability.

CGCNet outperforms traditional human-derived interatomic potential models (IAPs) in prediction

accuracy and data efficiency, with significant improvements in the ability to extrapolate properties to

larger supercells. Additionally, the CGExplainer tool enables detailed analysis of the relative spatial

positioning of atomic ensembles, revealing key atomic arrangements that govern material properties.

This work highlights the potential of GNN-based approaches for rapidly discovering complex structure–

property relationships and accelerating the design of materials with customized properties, particularly

for alloys with variable atomic compositions. Our methodology offers a robust framework for future

materials discovery, extending the applicability of GNNs to a broader range of materials systems.

1 Introduction

The relationship between atomic arrangements and material
properties plays a fundamental role in materials science. This is
particularly evident in two key types of metal alloys. The first
type, ‘‘interstitial alloys’’, incorporate additional atoms (H, C,
N, or B) into the existing interstitial spaces within the infinite
crystal lattice of the metal while preserving the metallic lattice
structure. Optimal material performance requires identification of
optimal interstitial arrangements.1–3 A significant sub-category
within interstitial alloys are ‘non-stoichiometric compounds’,
where the element proportions cannot be expressed as ratios
of small natural numbers due to missing atoms, resulting in
lattice vacancies.4–6 The distribution of both interstitial atoms and

vacancies within the crystal lattice significantly influences various
material properties, including mechanical strength,7 magnetic
susceptibility, electrical resistivity,8 and catalytic properties.9–11

This influence stems from the pseudo-random distribution of
interstitial atoms among available sites, creating numerous pos-
sible solid-state configurations, each exhibiting slightly different
properties.12–15

A second material type, substitutional alloys, demonstrate
even more dramatically how atomic positioning influences
material properties, particularly in emerging materials like
two-dimensional (2D) transition metal carbides, nitrides, and
carbonitrides (MXenes). These materials, with the general for-
mula Mn+1XnTx (where M represents early transition metals like
Nb, V, or Ti; X is C and/or N where Tx denotes surface
functional groups such as O, OH, or F; and n ranges from
1 to 4),16–19 offer unprecedented opportunities for property manip-
ulation through atomic arrangement. The ability to incorporate
multiple transition metals at M sites creates solid-solution
MXenes with enhanced functionalities, making the relationship
between atomic arrangement and resulting properties particularly
important. Recent research has demonstrated remarkable control
over material properties can be achieved through selective metal
substitution. For instance, Wang et al. showed that electrochemi-
cal properties in TiyNb2�yCTx and VyNb2�yCTx can be system-
atically tuned by adjusting Ti : Nb and V : Nb ratios.20 Yang et al.
established a strong correlation between Ti content and both
electrical conductivity and carrier mobility in TiyNb2�yCTx
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MXenes.21 Additionally, Borge-Durán et al. predicted the emer-
gence of ferromagnetic behavior in (Nb1�xTix)4C3Tx solid solu-
tions, despite the non-magnetic nature of their end members,
opening new possibilities for spintronic applications.22 These
findings collectively demonstrate how precise control over atomic
composition and positioning enables the rational design of
materials with tailored characteristics.

To address the complex relationship between atomic
arrangements and material properties, researchers developed
empirical interatomic potential models (IAPs) as a systematic
approach to understanding these correlations. IAPs work by
identifying and characterizing specific atomic ensembles that
contribute to desired material properties. Various approaches
have been explored, from combinations of embedded atom
method formalism with two-body Lennard-Jones interactions
and three-body Axelrod–Teller potentials for Ti2C systems, to
more recent developments like the work of Borge-Durán et al.,
who successfully developed a potential for non-stoichiometric
Mo2C and Ti2C.23 However, the development of these potentials
presents significant challenges. The process requires meticulous
human expert identified atomic ensembles that contribute to the
material’s potential energy. While this task remains within
human capabilities, it faces inherent limitations. The human
mind, despite its analytical power, often struggles to perceive
all subtle patterns and relationships within complex atomic
arrangements. Furthermore, the vast number of possible atomic
configurations creates an enormous search space. Consequently,
the development of a single effective potential can extend from
months to years, making this traditional approach increasingly
impractical for rapid materials development.

Computational approaches based on graph neural networks
(GNNs) offer potential solutions to these analytical limitations.24

These advanced algorithms have shown remarkable success in
decoding structure–activity relationships in various materials
systems25–32 by efficiently identifying correlations between
graph-based structural representations and target properties.33,34

However, despite their proven capabilities in various materials
science applications, the potential of GNNs for understanding
and predicting how relative atomic positioning modulates mate-
rial properties remains largely unexplored compared to materials
with well-defined structures and stoichiometry.

Existing GNN explainability methods focus primarily on
understanding the relationship between material composition
and properties through various analytical approaches. One nota-
ble implementation appears in crystal graph convolutional neural
networks, where the separation of convolutional and pooling
layers35 enables analysis of how specific atom types in given
positions influence model predictions. Additional methodologies
for explaining GNN-based materials property predictions have
emerged in recent studies.36–38 However, these current appro-
aches are fundamentally limited by their assumption of fixed
atomic arrangements, analyzing only the impact of atom types at
predetermined positions. This limitation becomes particularly
significant when studying non-stoichiometric materials and solid
solutions, where atoms distribute pseudo-randomly throughout
the crystal lattice. A critical gap exists in current methodologies.

No method has been developed to explain models based on the
relative three-dimensional positioning of atoms within crystal
lattices. Addressing this gap is essential for understanding
structure–property relationships in materials with complex atomic
arrangements, particularly those where atomic positioning
directly modulates material properties.

In this work, we evaluate the crystal graph convolutional
neural network (CGCNet),35 a specialized GNN architecture
designed to predict the properties of materials, in the context
of non-stoichiometric materials, with Mo2C serving as our
primary case study with further validation using Ti2C. Both
Mo2C and Ti2C belongs to the family of transition-metal
carbides, interstitial alloys in which carbon atoms occupy
interstitial spaces within a metallic lattice defined by metal atoms.
This material system was selected due to its recent significant
importance in materials science research39–44 and its structural
similarity to MXenes, suggesting the potential transferability of
our methodological approach. To complement CGCNet, we devel-
oped the crystal graph explainer (CGExplainer), a new tool that
quantifies the contribution of specific atomic subassemblies and
their relative spatial positions to material properties, enabling
systematic analysis of structure–property relationships in three-
dimensional space. Our investigation addresses three fundamen-
tal objectives: (1) assessment of CGCNet capabilities in predicting
properties of novel atomic configurations within solid solutions;
(2) evaluation of GNN performance in extrapolating properties for
larger supercells with previously unobserved atomic configura-
tions; and (3) demonstration of CGExplainer’s ability to interpret
GNN models trained on crystal graph data, revealing correlations
between atomic ensembles and target properties.

2 Methods

We aim to accurately predict the ground-state energies of
transition-metal carbides using graph representations, targeting
results close to those obtained from high-level DFT calculations.
To achieve this goal, we have followed the workflow outlined in
Fig. 1.

This workflow consisted of five main steps: (1) generation of
the Mo2C dataset by creating 1065 Mo2C 2 � 2 � 2 structures
and calculating their energy using DFT; (2) creation of a graph
representation of these structures; (3) training and evaluating
the GNN model in comparison to the human-derived IAP for
the Mo2C and Ti2C dataset; (4) assessment of the models’
performance and ability to extrapolate using a dataset of
2 � 2 � 4 Mo2C structures; and (5) explanation of the CGCNet
models using our newly proposed method, the crystal graph
explainer (CGExplainer), and comparison of its explanations
between the Mo2C and Ti2C dataset.

2.1 The Mo2C and Ti2C dataset

The Mo2C dataset was built from scratch, starting with a 1� 1� 1
cubic cell of MoC as the foundation for constructing 2 � 2 � 2
supercells with a 1 : 1 stoichiometry. To achieve a 2 : 1 stoichio-
metry, half of the carbon atoms were removed from the supercells.
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The special quasi-random structures (SQS) algorithm45 was
employed to reproduce the local atomic disorder arrangements
typically found in random solid solutions. This method generated
a diverse collection of carbon/vacancy configurations within the
Mo2C supercells, effectively emulating the varied atomic arrange-
ments present in real materials. Further details are provided in SI
under ‘generating C/vacancy configurations in Mo2C supercells
for database creation’.

To investigate the energetics of the diverse cubic Mo2C
configurations, we performed first-principles calculations using
density functional theory (DFT) as implemented in the quantum
ESPRESSO package.46 The exchange–correlation energy was com-
puted using the Perdew–Burke–Ernzerhof (PBE) functional47

within the generalized gradient approximation (GGA) framework.
Ultra-soft pseudopotentials from the Rutgers University GBRV
database48 were employed to describe the interactions between
valence and core electrons. The Kohn–Sham orbitals were
expanded using a plane-wave basis set with an energy cutoff of
40 Ry. Brillouin zone integration was performed using a 4� 4� 4
Monkhorst–Pack49 k-point grid.

In the case of the Ti2C dataset, this was taken from the work
by Borge-Durán et al.23

2.2 Graph representation

To generate the graph representation that serves as input to the
GNN, we used the DFT-relaxed structures of Mo2C and Ti2C.
In our graph representation, each node represents an atom,
while edges represent atom–atom interactions. To define the

connectivity between atoms, we employed a cut-off radius
centered on each atom, where all atoms within this boundary
are considered to share an edge with the central atom (see
Fig. S1a in SI). To accurately model the infinite lattice of the
material, we applied periodic boundary conditions (PBC) to the
graph. This ensures that nodes located on opposite faces of
the crystal are appropriately connected (see Fig. S1b in SI).

As node features, we used the chemical element each node
represents, one-hot-encoded. As edge features, we used the
solid angle, defined in eqn (1), where r is the distance between
an atom and a surface and A is the area of such surface. The
surfaces result from the faces of the polyhedrons were created
by applying a Voronoi tessellation algorithm50,51 considering
each atom as a point in space (see Fig. S1c and d in SI). The solid
angle is an ideal descriptor, as this quantity changes depending
on the relative positioning of carbide atoms around molybde-
num atoms (see Fig. S2 and Crystal graph section in SI). We used
a Gaussian expansion to increase the dimensionality of the solid
angle (eqn (1)) to improve the performance of the model, as done
before by Gu et al. to model perovskites.30

O ¼ A

r2
(1)

To train the GNN, each graph has been labeled with it’s
corresponding DFT ground state energy. In the case of the
transition metal carbides, the most stable structure is known
(i.e. lowest energy structure). We used the energy of this
structure as baseline (E = 0) and predicted the difference of

Fig. 1 Procedure followed herein. (a) Creation of the Mo2C dataset and computational cost of calculation of energy for 2 � 2 � 4 supercells.
(b) Conventional paradigm to create atomic potentials based on atomic ensembles discovered by human trial and error. (c) Automatically GNN created
interatomic potentials for non-stoichiometric materials and further understanding of those contributing atomic ensembles by using the crystal graph
explainer.
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energy between the given structure and this baseline. This
decision was made as usually this calculation is usually per-
formed to quantify differences in energy between structures
rather than to attain absolute energies. Our final target variable
is therefore defined as follows:

Etarget = EDFT � E0
DFT (2)

2.3 Model architecture

GNNs are a type of artificial neural network that can be trained
on graphs, which allows understanding of relations of graph
structured data and outcome variables. The CGCNet consists of
two phases: (1) message passing and (2) readout. The first
phase is a node-level operation block, which explores the
topology of the graph to capture the complex relations between
neighboring nodes. This operation is known as convolution.
The convolutional operator used for this network is the ‘crystal
graph convolution’,35 which is defined in eqn (3), where xi is the
node feature vector of the central node i, zi,j = [xi, xj, ei,j] denotes
the concatenation of features of the central node i, neighbor
node j, and the edge between them, s represents the sigmoid
function, g represents the softplus function, and Wf, bf, Ws, and
bs are learnable parameters.

x0 i ¼ xi þ
X

j2NðiÞ
s zi;jWf þ bf
� �

� g zi;jWs þ bs
� �

(3)

The second phase is a prediction occurring at the graph
level. Its first step is to summarize the information from all the
nodes contained within the graph into a single graph-level
feature vector. This is achieved by an operation called pooling.
This operation is usually an element-wise operation that runs

for all the node’s feature vectors contained within the graph.
Pooling ensures that all the graphs within the database attain a
single fixed-size vector representing them. As we are predicting
an extensive property and the models are all trained with a fixed
size supercell (2 � 2 � 2), we adopted a sum pooling operation.
Using another type of pooling, such as max or average, would
deliver predictions within the range of values of training data,
regardless of the number of nodes (atoms) in the graph. In sum
pooling, the GNN is effectively learning the energetic contribu-
tion of each atom, thus making the model aware of the relation
between energy and quantity of atoms. Finally, this latter vector
is the input into a multilayer perceptron (MLP) that outputs
a final prediction. Our GNN steps from graph input to
prediction are:
� The node features are taken (length of two) and are

expanded to a final length of 16 by a fully connected layer with
no activation function, Rnodes�2 - Rnodes�16.
� The crystal graph convolution operator updates the node

states in of all nodes a total of two times, Rnodes�16 - Rnodes�16,
� Sum pooling is applied to all the node feature vectors to

get a graph-level feature vector, Rnodes�16 - R1�16.
� A fully connected layer with leakyReLU activation function

takes the graph-level vector and maps it to half of its original
length, R1�16 - R1�8.
� A last fully connected layer with no activation function

transforms the feature vector into a single scalar number, this
being the prediction of the model, R1�8 - R.

2.4 Crystal graph explainer

Human-derived interatomic potentials have the advantage
of being highly interpretable, while GNNs usually are not.

Fig. 2 Crystal graph explainer algorithm. (a) The algorithm takes an input graph representation of a material and fits it into a pre-trained GNN model.
(b) Before the sum pooling, the algorithm creates a copy of the graph with the embeddings obtained during the message passing phase (MPP in the
figure). (b) The algorithm then masks the substructure which an attribution score is to be assigned to, and (c) then the pooling operation occurs. (d) Lastly,
the new graph embedding is fitted into the readout phase which leads to a prediction. (e) We define the attribution score of such fragment as the
difference between the prediction of the complete graph and the prediction of the masked graph, as done before by Wu et al.52 (f) Shows the fragments
that is possible to mask in the Mo2C structures.
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To overcome such a problem, we designed a unique crystal
graph explainer (CGExplainer). The CGExplainer is a graph
perturbation method designed to explain GNN models that
predict properties of solid-state crystal structures. As proposed
by Wu et al. for organic molecules,52 the algorithm works by
masking certain fragments of the structure just before the
pooling operation. A scheme of this approach is shown in Fig. 2.

As the GNN (CGCNet, in our case) learns during training, it
identifies the most important nodes required for making
accurate predictions. In other words, if the network recognizes
that an ensemble of atoms plays an important role in determin-
ing the target property, the pooling operation will prioritize
gathering information from those atoms.

Consequently, if a specific atomic ensemble is masked, the
resulting graph embedding will likely differ from that of the
complete graph—provided those atoms were indeed important
for the prediction (see the SI, Crystal graph explainer section,
for further details). This difference in embeddings leads to a
change in the model’s prediction.

We define the attribution (importance) of a masked fragment
as the difference between the prediction made with the complete
graph and the prediction made with the masked graph. As the
perturbation made to get an attribution score is done at graph
level, the methodology presented is model agnostic, meaning
that CGExplainer can be applied to any trained GNN model.

When attempting to mask a substructure in a crystal graph,
several problems may arise because of the high degree of
repetitive patterns throughout the cell. The issues we found
and the proposed solutions are discussed in SI Crystal graph
explainer section.

2.5 The interatomic potential benchmark

As benchmark, the interatomic potential by Borge-Durán et al.23

was used. This potential consists of a multiple linear regression
fitted to the internal energy of Mo2C or Ti2C materials, which
consisted of three parameters. This potential was chosen because it
was specifically designed to describe the energetics of the materials
studied herein, thus being the most accurate model found in the
literature. Notably, this IAP was previously validated against experi-
ment by reproducing order–disorder transition temperatures for
Mo2C and Ti2C (pred. 1430/1430 1C; exp. 1030/1024 1C), see ref. 23.

The first parameter is the bond valence parameter. This
parameter responds to the fact that, in a stable structure, the
total valence of each atom will be equal to or close to its
preferred valence. In the case of molybdenum, the preferred
valence is 6, and for titanium it’s 4. The deviation of this ideal
behavior was quantified by eqn (4), where n is the total number
of transition metal atoms in the structure, i represents the i-th
transition metal atom in the structure, Vi is the valence of the
atom i, and V0 is the preferred valence of of the atom i.23

Ebv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1
�
X
i

Vi � V0ð Þ2
s

(4)

The second parameter quantifies how homogeneous the
carbon atoms are distributed within the lattice. The rationale

behind this parameter is that a stable structure will favor a
homogeneous distribution of atoms (3 carbon atoms per metal
atom) over conglomerates of carbides. This term is calculated
as shown in eqn (5), where the number of carbons around the
i-th metal atom is calculated, and then elevated to the power
of two. The resulting parameter consists of the sum of this
number for all metal atoms in the system.

EC2 ¼
X
Mo

X
i

Ci

 !2

(5)

The last parameter is an empiric parameter related to the
distribution of carbide atoms in the lattice. It was found that
structures with numerous C–Mo–C at a 1801 arrangement
exhibit higher energies than those structures that did not have
such structure. This way, the last parameter is calculated as
shown in eqn (6).

E180
� ¼

X
i

N180
� (6)

The resulting potential consisted in a multiple linear regres-
sion of these three parameters, as shown in eqn (7)

E = a�Ebv + b�EC2 + g�E1801 (7)

3 Results and discussion
3.1 Model performance for the 2 � 2 � 2 supercells

To evaluate both approaches robustness and ability to general-
ize, we applied a nested cross validation approach (further
details in section Model training and Fig. S3 in SI). We created
five-folds, which led to a total of five test sets, each being
evaluated by four different training and validation sets. This
generated a total of 20 training test processes. This exhaustive
splitting strategy reduces the possibility of testing the models at
a set of points where they perform particularly well. Both IAP
and CGCNet were trained and evaluated using the same set of
folds. For CGCNet, the training set was used to learn weights
and biases and the validation set to update the learning rate
and early stop. For IAP, the training set was used to determine
the linear regression coefficients; the validation set had no
impact on the training for this method. The test sets provided
an unbiased evaluation of the performance of both models.

To present the results, we aggregated the predictions from
all outer test folds of the nested cross-validation. For each data
point, we calculated the mean predicted value across folds.
These mean predictions are shown in the parity plot in Fig. 3,
for both Mo2C and Ti2C datasets, and Table 1 shows the
performance metrics for both datasets. A detailed analysis of
the performance in each individual test fold is provided in the
SI in Fig. S5 and S6.

From the metrics in Table 1, it is clear that CGCNet performs
better in the predictive tasks than the human expert derived IAP
of Borge-Durán et al.23 To test this, we applied a Wilcoxon test
and found that there is statistical difference between CGCNet
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and IAP for both Mo2C (p-value = 0.036) and Ti2C (p-value =
4.77 � 10�5) datasets. This behavior is expected as Borge-
Durán’s potential consists of only three variables which are
combined linearly, while the CGCNet model consists of hun-
dreds of learnable parameters that adjust in a data-driven way
and are combined non-linearly, better modeling the real beha-
vior of the material.

From the parity plots in Fig. 3, it is noticeable that the
energy values of the two materials are very different, ranging
from 0 to 5 eV for Mo2C and from 0 to 3 eV for the case of Ti2C.
Also, in the case of the Mo2C, the DFT energy values are well
populated in the whole energy range, while in the case of Ti2C
there is a gap from 0 to 2 eV and from 2.7 to 3 eV, suggesting
that the latter is a less diverse dataset than the former. The
reason for these differences is that the datasets were created
using random generators. As the Mo2C dataset is more popu-
lated (1065 structures), the probability of having more diverse
structures (and therefore better sampled energy values) is
higher compared to the Ti2C dataset. As the Mo2C is well
sampled, it is expected that the trained models, for IAP and
CGCNet, are robust in predicting the energy of potentially any
unseen structure. In the case of models trained on the Ti2C

dataset, it is expected that the generalization is more limited, as
the models have seen fewer material configurations. However,
it is reassuring the fact that both IAP and CGCNet are accurate
predicting the least and most stable structure (higher and lower
energy value, respectively), demonstrating that even in extreme
cases where the models have not seen structures with similar
values of energy, they are still able to deliver acceptable
predictions, indicating that it is likely that materials with
energies in the whole range from 0 to 3 eV will have an accurate
prediction.

To assess the data efficiency of the models, we created a
learning curve for the Mo2C dataset. This plot shows the
performance of the model when changing the size of the
dataset. The results are shown in Fig. 4, where each point
represents the mean absolute error through the 20 train test
processes and the error bars the standard deviation (plots
showing the performance based on RMSE and R2 is shown in
Fig. S5 in SI). We found that when the total size of the Mo2C
dataset is reduced to only 300 structures and split in a 3 : 1 : 1
ratio, CGCNet outperforms IAP. This suggests that our metho-
dology still achieves a satisfactory result with 180 data points
for training, demonstrating that the workflow is data efficient.

Although CGCNet only needs 300 structures to achieve
comparable performance to the IAP, the latter exhibits more

Table 1 Predictive performance of CGCNet and IAP for 2 � 2 � 2
supercells. Reported are the coefficient of determination (R2), mean
absolute error (MAE), and root-mean-square error (RMSE) obtained for
all the testing points from the nested-CV; higher R2 and lower MAE/RMSE
indicate better accuracy

Model

Mo2C Ti2C

R2 MAE (eV) RMSE (eV) R2 MAE (eV) RMSE (eV)

CGCNet 0.956 0.087 0.115 0.862 0.056 0.109
IAP 0.916 0.126 0.160 0.756 0.089 0.146

Fig. 3 Parity plot of the predictions of internal energy of transition metal carbides using the IAP and CGCNet methods. (a) Shows the parity plot for Mo2C
and (b) shows the parity plot for Ti2C.

Table 2 Predictive accuracy of CGCNet versus IAP on Mo2C supercells.
Listed are test-set means for R2, MAE, and RMSE; higher R2 and lower MAE/
RMSE denote better performance

Model

1 � 1 � 2 2 � 2 � 4

R2 MAE (eV) RMSE (eV) R2 MAE (eV) RMSE (eV)

CGCNet 0.776 0.085 0.172 0.789 0.697 0.904
IAP 0.329 0.242 0.297 0.135 1.617 1.831
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stable performance regardless of the number of points in the
database (Fig. 4). This behavior is expected, as the IAP consists
only of three variables fitted into a multiple linear regression.
As only three parameters are learned in the training process,
just a few structures are necessary to optimize them. Therefore,
even from a small number of structures, very accurate models
can be achieved using the IAP. This demonstrates that, in case
of modeling databases with a limited number of structures, the
IAP still presents the advantage of delivering accurate predic-
tions. However, when mid-size databases are modeled (from
300 or more), CGCNet can be used to get models at least as
accurate as the human-derived IAP.

3.2 Generalizing energy prediction models to supercells of
unseen sizes

The ultimate goal of atomic potentials is to predict properties
of unstudied atomic configurations or accurately model larger
systems where DFT calculations are computationally expensive.
To test this here, we predict the internal energy of 1 � 1� 2 and
2 � 2 � 4 Mo2C supercells. Although DFT calculations for

1 � 1 � 2 supercells can be performed, we included this as a
final test set to evaluate the ability of both approaches to
extrapolate to both larger and smaller supercells. The internal
energy of the most stable supercell for each size was calculated
and set as the new reference point. As the energy of these new,
more stable cells differs in magnitude from the energy of the
most stable cell on which the models were trained, it was
necessary to normalize both the IAP and CGCNet predictions.
Therefore, we define our target variable as the difference
between the energy of the ith cell and the energy of the most
stable Mo2C supercell of the same size. Since 20 models arose
from the nested cross-validation approach, we adopted an aver-
aging system where each model predicted the energy difference
of each cell, and the reported result was the mean of the
predictions from the different models. The results are shown
in Fig. 5, and the metrics obtained are presented in Table 2.

Fig. 5a shows the parity plot for the 1 � 1 � 2 supercells.
Both models deliver predictions with satisfactory accuracy;
however, the metrics in Table 2 show that CGCNet achieves
higher accuracy with statistical difference (p-value = 0.002). For
the case of 2 � 2 � 4 supercells (Fig. 5b), both models tend to
underestimate the energy difference; however, the human-
derived IAP predicts it less accurately, as shown in Table 2.
We also found statistical difference for this dataset as well
(p-value = 0.011). The reason for the poorer performance of the
IAP may be that the prediction scaling grows linearly with
the size of the cell, which does not represent the nature of
the material. An additional limitation of IAP is that it is based
only on ensembles that consider direct neighbors of atoms. For
GNNs, although our graph representation considers only direct
neighbors, the convolutions in the message-passing phase
allow the model to capture long-range interactions, which are
ignored in IAP. While our experiment does not demonstrate the
practical application of these extrapolations to real-life scenar-
ios (i.e. predict more complex properties such as band gaps),
the proof of concept demonstrates that such modeling is
possible and should be explored in future studies.

Fig. 4 Learning curve for CGCNet and IAP. The y-axis shows the mean
absolute error, while the x-axis shows the total quantity of points in the
database.

Fig. 5 Parity plot of the predicted difference of energy between each supercell and the most stable supercell. The points are plot considering the mean
of the prediction of all the models trained in Section 3.1 and the error bars represent the standard deviation. (a) Shows the results of the 1� 1� 2 supercell
test set and (b) shows the results of the 2 � 2 � 4 supercell test set.
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3.3 Explainability of the CGCNet models

While Fig. 3 demonstrates that CGCNet outperforms the IAP,
the latter has the advantage of being highly interpretable. We
used our CGExplainer to rationalize which relative position in
the atomic arrangements modulates the properties of the
interstitial alloys studied herein (both Mo2C and Ti2C). To
perform these analyses, a random model from the 20 developed
was taken and the analysis was performed using the test set for
all atom ensembles shown in Fig. 2f. The attribution scores of
the CGExplainer for each material were normalized between
0 and 1 to allow comparison, where values closer to 0 are
assigned to ensembles with lower attributions (lower impact on
the target property). The results are shown in Fig. 6.

Our graph-neural-network evaluation of local coordination
environments shows that both Mo2C and Ti2C strongly favour
the trigonal-pyramidal (‘pyr’) motif: it attains the lowest nor-
malised attribution score (0.00), indicating the highest stability
in both carbides.

The lowest-energy arrangement in both Mo2C and Ti2C is a
trigonal-pyramidal coordination (C3 symmetry) in which the
three carbon ligands form an equilateral base with C–C–C angles
of E1201, while one metal s orbital mixes with two d orbitals to
create three equivalent sd2 hybrids that point directly toward the
carbon atoms and maximise M–C s overlap.53 Although
mutually orthogonal sd2 hybrids would impose ideal C–M–C
angles of 901, ligand–ligand repulsion within the extended lattice
distorts them toward B1201, a characteristic feature of many
’non-VSEPR’ d0 transition-metal compounds.54 Motifs that can-
not sustain this hybridisation (e.g. flat-T or linear) display weaker
s interactions and are thus higher in energy. Despite formal
oxidation states approaching +4, M–C bonding remains partly
covalent and partly metallic, with substantial electron sharing
and delocalisation rather than full charge transfer.55 Residual
(non-hybridised) d orbitals participate in secondary interactions
or remain non-bonding, further stabilising the electronic struc-
ture, and the preference for the pyramidal motif is accentuated
in Mo2C because the more diffuse 4d orbitals of molybdenum
enhance medium-range overlap relative to the compact 3d
orbitals of titanium, which favour tighter coordinations.56

The secondary coordination preferences of Mo2C and Ti2C
are governed by intrinsic differences between 4d and 3d valence
shells. In Mo2C, geometries ranked after the pyramidal mini-
mum (0.00) are the ‘L’ (0.27) and ‘cross’ (0.44) motifs, whereas
Ti2C stabilises ‘L’ (0.05) and then ‘tetra’ (0.18; see Fig. 2
for ensemble labels). These trends arise because 4d orbitals
possess an additional radial node and are more spatially diffuse
than their 3d counterparts, enlarging the radial extent of Mo
valence density and enabling longer-range metal–carbon
overlap.57 Conversely, the compact 3d set of Ti enhances
short-range s interactions, favouring tighter coordinations
such as the tetrahedral environment. The much higher attribu-
tion score of ‘tetra’ in Mo2C (0.80) relative to Ti2C underscores
how orbital diffuseness modulates relative stability.

The least favourable motifs in both carbides, namely, ‘fT’
(flat-T) and ‘lin’ (linear), induce d-orbital splitting patterns
poorly matched to either 3d or 4d electron distributions,
leading to pronounced destabilisation. Overall, the CGExplainer
attribution hierarchy mirrors established electronic-structure
principles: the greater radial extension and lower pairing ener-
gies of second-row (4d) metals shift their coordination prefer-
ences away from the compact geometries preferred by first-row
(3d) analogues.58 This consistency between machine-learning
explanations and ligand-field expectations validates the physical
soundness of the model.

As the importance of atomic ensembles is estimated by
CGExplainer, these could potentially be used as a guide to
create traditional IAPs. For example, from Fig. 6, it is clear that
fragments containing carbon–metal–carbon subunits in a 1801
position are considered to contribute more to the energetics of
the material than those fragments with the same number of
carbide atoms without such conformation (see the attributions
of ‘‘lin’’ compared to ‘‘L’’ and the attributions of ‘‘fT’’ compared
to ‘‘pyr’’). This observation is in agreement with the empiric
discovery of Borge-Durán et al. that carbide atoms in a 1801
conformation lead to higher energy materials.23

Beyond guiding IAP design, this agreement also serves as an
experimentally anchored validation of what CGCNet learns. In
our prior work,23 a human-designed IAP based on three motifs,
namely, a low-energy trigonal-pyramidal C–M–C units, penal-
ized 1801 C–M–C arrangements, and an approximately homo-
geneous carbon distribution captured by EC2, reproduced
order–disorder transition temperatures for Mo2C (pred.
1430 1C; exp. 1430 1C) and Ti2C (pred. 1024 1C; exp. 1030 1C).
Here, CGCNet + CGExplainer independently recovers the same
rules from the DFT data (low attribution for pyramidal C–M–C,
high for 1801 C–M–C, and consistency with the EC2 trend),
indicating that two independent approaches converge on
motifs tied to measurable observables. Thus, the IAP compar-
ison is not merely a computational baseline but a bridge to
experiment that supports the physical validity of the learned
representations.

However, the derivation of more complex variables that
explain the energetics of the material are not as easy to obtain.
For example, from Fig. 6, there is no trend between the
importance of the fragment and the total number of carbide

Fig. 6 Comparison of importance of atomic ensembles found in the non-
stoichiometric materials Mo2C and Ti2C estimated using the CGExplainer
(see Fig. 2f for ensemble abbreviations).
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atoms in such fragment, making the derivation of the EC2

parameter (eqn (5)) nearly impossible from the explanations.
This way, while the estimated importance of ensembles may
help guiding the selection of variables for the construction of
traditional IAPs, the derivation of a complete potential from
these estimations is very difficult, and should be complemen-
ted by knowledge of the system to attain complete and accurate
traditional potentials.

4 Conclusions

GNN models present a significant advantage over conventional
IAPs as they allow the finding of key atomic ensembles auto-
matically. Although traditional IAPs have been widely used
in materials sciences,59–62 their construction is slowed by the
complexity and the large number of possible key ensembles
that may correlate to a property of interest, which arises a very
challenging task for humans experts. GNNs can find such
ensembles from a graph representation of a material efficiently
and rapidly. Particularly, CGCNet models, compromising the
GNN architecture and crystal graph representation, are power-
ful new tools affording property predictions more rapidly than
the best human experts.

A typical limitation identified in GNNs is that it lacks
interpretability, but is overcome with the CGExplainer. This
tool allows assigning an attribute score to a given fragment
contained within the material. The tool shows excellent agree-
ment with known behavior of the materials. This demonstrates
that the GNN is able to rank important lattice fragments
similarly or better than human experts. The differences found
in calculated importance between CGExplainer and human
methodologies can be the reason why the IAP performs worst
than the GNN. Furthermore, the CGExplainer tool allows rapid
analysis of general trends in quantitative structure–property
relationships for a wide range of materials considering the 3D
disposition of atoms in the cell, which is not possible yet for
current methods. Our method can especially be useful for
interstitial alloys or materials where the atomic composition
is of high variety, such as high entropy materials.

The prediction of energy in 2 � 2 � 4 cells demonstrated
that CGCNet allows for more accurate extrapolations to larger
systems where DFT calculations are not yet computationally
feasible. As the creation of IAPs is usually motivated by the lack
of computational power to calculate properties of larger systems,
our results demonstrated that GNNs are capable of predicting
properties of unknown atomic configurations and those from
larger cell sizes. The results obtained encourage the use of these
algorithms in combination with CGExplainer to attain high
accuracy potentials while enabling model interpretability.

Our workflow, combining the crystal graph network
(CGCNet) and the crystal graph explainer (CGExplainer), shows
great promise in defining structure–property relationships in
non-stoichiometric materials and interstitial alloys. CGCNet
outperformed the traditional human-derived interatomic
potential model (IAP) in terms of accuracy and generalizability,

while CGExplainer provided interpretable explanations for the
GNN model’s predictions. The automated discovery of key
atomic ensembles and the ability to explain their influence
on material properties pave the way for a more efficient and
insightful materials design process.

Future research will focus on applying this approach to a
wider range of materials, such as MXenes and high-entropy
alloys, to validate its generalizability and potential impact on
materials science. By extending this methodology to diverse
material systems, we can accelerate the development of novel
materials with tailored properties and unlock new possibilities
in the field of materials engineering.

5 Computational tools

CrysGNet was built on PyTorchGeometric 2.3.163 running over
PyTorch 2.0.1.64 The graphs were built using PyTorchGeometric
2.3.163 and PyMatGen 2023.8.10.65 We have developed a mod-
ified version of the stratification and cross-validation procedure
developed by Pablo-Garcı́a et al.66 Masking procedure was
developed exclusively for this work using PyTorchGeometric
2.3.163 and NetworkX 3.0.67 All the plots were built using
Matplotlib 3.7.368 and Seaborn 0.13.0.69 Structure images were
generated using Ovito70 and Vesta.71
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