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Hamiltonian simulation-based quantum-selected
configuration interaction for large-scale
electronic structure calculations with a
quantum computer

Kenji Sugisaki, *abcd Shu Kanno, ae Toshinari Itoko,af Rei Sakumaag and
Naoki Yamamoto ach

Quantum-selected configuration interaction (QSCI) is an approach for quantum chemical calculations

using current quantum computers. In conventional QSCI, Slater determinants used for the wave

function expansion are sampled by iteratively performing approximate wave function preparation and

subsequent measurement in the computational basis, and then the subspace Hamiltonian matrix is

diagonalized on a classical computer. In this approach, preparation of a high-quality approximate wave

function is necessary to accurately compute total energies. Here we propose a Hamiltonian simulation-

based QSCI (HSB-QSCI) to avoid this difficulty, by sampling the Slater determinants from quantum states

generated by the real-time evolution of approximate wave functions. We provide numerical simulations for

the lowest spin-singlet and triplet states of oligoacenes (benzene, naphthalene, and anthracene), phenylene-

1,4-dinitrene, and hexa-1,2,3,4,5-pentaene. We found that the HSB-QSCI is applicable not only to molecules

where the Hartree–Fock provides a good approximation of the ground state, but also to strongly correlated

systems where preparing a high-quality approximate wave function is hard. Hardware demonstrations of the

HSB-QSCI are also reported for carbyne molecules expressed by up to 36 qubits, using an IBM quantum

processor. The HSB-QSCI captures more than 99.18% of the correlation energies in the active space by

considering about 1% of all the Slater determinants in 36 qubit systems, illustrating the ability of the proposed

method to efficiently consider important electronic configurations.

1 Introduction

Among the diverse topics in the field of quantum computing,
quantum chemical calculations of atoms and molecules have

attracted attention as a promising application of quantum
computers. A method to perform the full-configuration inter-
action (full-CI) calculation using the quantum phase estimation
(QPE) algorithm was proposed in 2005,1 and proof-of-principle
experiments for the full-CI/STO-3G of the H2 molecule were
reported in 2010.2,3 The quantum circuit for QPE-based full-CI
is usually very deep, so highly accurate QPE demonstrations
were limited to small models with a few qubits.4–8 Recently
a QPE-type algorithm was demonstrated in models with up to
33 qubits,9 however, it is still challenging to compute total
energies of larger molecules with chemical precision on quan-
tum computers available today, where chemical precision is
defined as an error from the full-CI energy [or complete active
space configuration interaction (CAS-CI) energy when the active
space approximation is employed] less than 1.0 kcal mol�1.

To reduce the computational load of quantum computers,
several quantum–classical hybrid algorithms have been proposed.
In 2014, the variational quantum eigensolver (VQE) was proposed
for quantum chemical calculations using noisy intermediate-scale
quantum (NISQ) devices.10 In VQE, the quantum state corres-
ponding to an approximate wave function is generated using a
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parameterized quantum circuit, and the energy expectation value
is computed by repeatedly performing state preparation and
measurements. The parameters are then optimized to minimize
the energy expectation value on a classical computer. These steps
are iterated until convergence is reached. VQE has been extensively
studied both theoretically and experimentally,11 but it often suffers
from challenges related to the high sampling cost required to
achieve chemical precision12 and issues with variational optimiza-
tion in the presence of barren plateaus.13

As an alternative approach to quantum chemical calcula-
tions using current quantum devices, the quantum-selected
configuration interaction (QSCI) method has been proposed.14

In the QSCI, quantum computers are used to sample Slater
determinants that are important contributors to the ground
state wave function. This can be done by running a quantum
circuit to prepare an approximate wave function and measuring
the quantum state in the computational basis. The subspace
Hamiltonian matrix is then constructed from the Slater deter-
minants selected via quantum computation and diagonalized
on a classical computer. Note that the concept of the selected
CI has been well investigated in classical computation, and
various selected CI methods have been developed, such as the
CI using a perturbative selection made iteratively (CIPSI),15

heat-bath CI (HCI),16 and adaptive sampling CI (ASCI).17 These
methods are often combined with multi-reference perturbation
theory.18,19 In the quantum domain, QSCI deals with the
variational optimization of the wave function in the selected
subspace, and the effects of the remaining dynamical correla-
tions can be taken into account by combining it with, for
example, auxiliary-field quantum Monte Carlo (AFQMC)20,21

or general multi-configurational quasi-degenerate perturbation
theory (GMC-QDPT),22 although the perturbative energy correc-
tion from the QSCI is outside the scope of this study.

In the QSCI approach, the quantum computer is anticipated
to efficiently sample a polynomial number of important Slater
determinants from an exponentially large Hilbert space, and
the nature of the quantum states used for sampling determines
the accuracy of the calculation. At the stage of preparing an
approximate wave function in QSCI, we may employ VQE or the
adiabatic state preparation method.14 To advance the former
technique, combining an adaptive strategy for ansatz construc-
tion (ADAPT23) to enhance the efficiency of VQE,24 and using a
simpler cost function for VQE parameter optimization25 have
also been proposed. However, these approaches may still face
challenges in variational optimizations when implemented on
quantum hardware. It should also be noted that in the latter
approach,25 the VQE wave function with optimized parameters
does not necessarily correspond to the minimum with respect
to the given Hamiltonian. Another strategy to prepare the
quantum state for QSCI is to perform the coupled cluster
singles and doubles (CCSD) calculation on a classical computer
and embed the CCSD wave function using the local unitary
cluster Jastrow (LUCJ) ansatz.26 By using the LUCJ ansatz and
introducing an error mitigation technique called self-consistent
configuration recovery (SCCR), which is inspired by the struc-
ture of chemistry problems, Robledo-Moreno and coworkers

reported the QSCI calculations on the IBM superconducting
quantum processor and supercomputer ‘‘Fugaku’’ for the nitro-
gen molecule (N2) and the iron–sulfur clusters [2Fe–2S] and
[4Fe–4S] with up to 77 qubits.27 This approach has also been
applied to interaction energy28 and excited state calculations.29,30

The combination of the QSCI with density matrix embedding
theory has also been reported.31 While this approach appears to
be successful, it is not clear whether it is superior to the method of
sampling important Slater determinants from the CCSD wave
function on a classical computer.

In this work, we report a Hamiltonian simulation-based
quantum state preparation for QSCI (HSB-QSCI), in which
important Slater determinants are sampled from the quantum
states after the real-time evolutions of initial wave functions.32

Our proposed approach has several advantages over existing
methods: (1) a simple approximate wave function, such as the
HF wave function, can be used as the initial wave function, and
no variational optimization in VQE is required. (2) Different
samples can be obtained by changing the duration of the
evolution time, and higher-order excitations can be considered
even for short-time evolution. (3) The accuracy of the Hamilto-
nian simulation does not need to be very high. As we will show
later, the first-order Trotter decomposition with the time length
of a single Trotter step Dt = 1 in atomic unit is sufficient to
collect important Slater determinants for the organic molecules
under study. In addition, Hamiltonian term truncation based
on operator locality in the localized molecular orbital basis can
help to reduce the computational cost. (4) Feedback of the QSCI
results into quantum computations is possible; that is, Slater
determinants found to be important in the QSCI wave function
can be added to the initial wave functions. (5) Although short-
time evolution can be accurately simulated on a classical
computer, long-time evolution poses significant challenges
for classical simulation.

Note that methods of sampling basis states for Hamiltonian
matrix diagonalization based on Hamiltonian simulation have
already been investigated in the framework of quantum Krylov
subspace (QKS) algorithms.33,34 In the QKS method, the Hamilto-
nian matrix Hkl = hFk|H|Fli and the overlap matrix Skl = hFk|Fli
are computed using a quantum computer via a Hadamard test,
and the generalized eigenvalue problem Hc = ScE is solved on a
classical computer. Here, |Fki = Uk|F0i, where U = e�iHDt and |F0i
is the initial wave function. Since the Taylor expansion of the
time evolution operator yields polynomials of H as follows, time
evolution is expected to help finding electron configurations that
are important for the wave function expansion.

e�iHt ¼ 1� iHtþ ð�iHtÞ2
2

þ ð�iHtÞ3
3!

þ � � � (1)

Unlike HSB-QSCI, QKS is applicable to systems in which the
correlated wave function is supported by an exponentially large
number of Slater determinants. However, the overlap matrix S
becomes ill-conditioned when the subspace basis is nearly linearly
dependent,34,35 and the sampling cost in QKS becomes large in
order to avoid numerical instability. In contrast, HSB-QSCI
requires only measurements in the computational (Pauli-Z) basis
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and therefore the computational cost on a quantum computer is
significantly reduced. HSB-QSCI is also expected to be numerically
more stable, because Slater determinants are orthonormal, while
subspace Hamiltonian diagonalization on a classical computer can
be a bottleneck. In the context of the Monte Carlo simulation, a
quantum dynamics Hamiltonian Monte Carlo (qdHMC) method is
also proposed,36 in which the proposal step is performed on a
quantum computer by sampling after time evolution.

As a proof-of-concept demonstration of the HSB-QSCI method,
we first carried out numerical simulations for the spin-singlet
ground state of the H2O molecule, and compared the results
obtained using different sampling strategies (randomly sampling
Slater determinants preserving spatial symmetry, MS, and nelec,
where MS and nelec represent the spin magnetic quantum number
and the number of electrons, respectively, VQE-based QSCI,14 and
HCI). Then, we performed numerical simulations for the spin-
singlet ground (S0) state and the first excited spin-triplet (T1) state
of oligoacenes [benzene (1; 12 qubits), naphthalene (2; 20 qubits),
and anthracene (3; 28 qubits)], phenylene-1,4-dinitrene (4; 20
qubits), and hexa-1,2,3,4,5-pentaene (5; 20 qubits) in both
planar and twisted geometries. Our numerical simulations
showed that the HSB-QSCI can calculate the total energy with
chemical precision by sampling the Slater determinants with
about 10–20 steps of Hamiltonian simulations. We also report
hardware demonstrations of the HSB-QSCI for the S0 and T1

states of three carbyne (one-dimensional sp-hybridized carbon
atom chain) molecules including 5, octa-1,2,3,4,5,6,7-heptaene
(6; 28 qubits), and deca-1,2,3,4,5,6,7,8,9-nonaene (7; 36 qubits)
using an IBM quantum processor ibm_kawasaki, with the aid
of matrix product operator (MPO)-based classical compression
of the quantum circuit for time evolution. The HSB-QSCI
energies calculated on ibm_kawasaki agree with the CAS-CI
values within 0.6 kcal mol�1 of error in 5. In 6, chemical
precision for the total energy was not achieved with the real
quantum device, but the HSB-QSCI predicted the singlet–triplet
energy gap and the energy difference between planar and
twisted geometries in chemical precision. The energy difference
between planar and twisted geometries in the S0 state of 7 was

also calculated with an error of 0.29 kcal mol�1. In 7, the HSB-
QSCI captures more than 99.18% of correlation energies by
considering only about 1% of all the Slater determinants.

2 Theory

In the ab initio molecular orbital theory, the wave function
taking into account the electron correlation is expressed by a
linear combination of the Slater determinants as follows:

jFi ¼ cHF cHFj i þ
X

n

cn cnj i: (2)

Here, |cHFi is the HF determinant and |cni are electronically
excited determinants from the HF, and cn are the corresponding
expansion coefficients. In the CI method, the number of Slater
determinants included in the wave function expansion increases
rapidly with the number of molecular orbitals and electrons, and
the excitation order. To calculate the total energy with high accuracy
and low computational cost, methods to perform the CI expansion
with selected Slater determinants have been investigated.15–17,37,38

The QSCI method uses a quantum computer to select important
Slater determinants through the approximate wave function pre-
paration and the subsequent computational-basis measurement. In
the HSB-QSCI method, important Slater determinants are sampled
from the measurement of the quantum state obtained from the
time evolution of an approximate wave function.

A schematic view of the HSB-QSCI method is shown in
Fig. 1. In the HSB-QSCI, the electronic configurations (Slater
determinants) used as the basis for the Hamiltonian matrix are
sampled from the time-evolved wave functions {|Fki}:

|Fki = e�iHkDt|F0i. (3)

To simulate the real time evolution on a quantum computer,
the second quantized Hamiltonian given as

H ¼
X

pq

hpqa
y
paq þ

1

2

X

pqrs

gpqrsa
y
pa
y
qasar (4)

Fig. 1 Schematic view of the HSB-QSCI algorithm.
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is transformed to a qubit Hamiltonian

Hq ¼
XJ

j

wjPj ; (5)

using a fermion-qubit mapping method. Here, hpq and gpqrs in
eqn (4) are one- and two-electron integrals, respectively, and a†

p

and ap are the creation and annihilation operators, respectively,
acting on the p-th spin orbital. Pj is a tensor product of Pauli
operators referred to as a Pauli string, and wj is its corres-
ponding coefficient computed from hpq and gpqrs. In this work,
we used the Jordan–Wigner transformation (JWT)39 as the
fermion-qubit mapping, where each qubit stores the occupa-
tion number of the corresponding spin orbital: 1 if the spin
orbital is occupied, and 0 otherwise. In the JWT, the number of
qubits required for wave function mapping is equal to the
number of spin orbitals in the active space. The quantum
circuit for the time evolution operator U = e�iHDt can be
constructed using conventional approximate approaches such
as the Trotter–Suzuki decomposition40,41 and qDRIFT,42 or
prepared through classical optimization9 or via variational
quantum algorithms.43

The initial wave function |F0i should have an overlap with
the target electronic state. The HF wave function |cHFi is a
reasonable choice for |F0i in the electronic ground state
calculations of typical closed-shell singlet molecules in their
equilibrium geometries, but |F0i need not be a single Slater
determinant. By defining the initial wave function as

F0j i ¼
X

l

cl Clj i; (6)

where |Cli is the l-th eigenfunction of the Hamiltonian, the
quantum state after the time evolution is written as follows:

Fkj i ¼
X

l

cle
�iElkDt Clj i: (7)

It is clear that the total evolution time length kDt controls
the magnitude of the interferences between the eigenstates,
and the measurements of the quantum states in the computa-
tional basis with different k can yield different Slater determi-
nants. The information of the sampled Slater determinants is
transferred to the classical computer, and the Hamiltonian
matrix with the selected configurations is constructed and then
diagonalized to obtain the QSCI wave functions and energies.

The effectiveness of sampling in the HSB-QSCI is mainly
controlled by the evolution time length Dt, the number of time
steps k, and the initial wave function |F0i. Note that from
eqn (7), we expect that kDt must be set longer for systems with
smaller energy gaps with the excited states. In the HSB-QSCI,
we can reconstruct |F0i using the information of the QSCI wave
function by constructing a multiconfigurational wave function
consisting of several Slater determinants that have large con-
tributions in the QSCI wave function in the previous step.
Performing Hamiltonian simulations with different initial wave

functions F0j i; F00
�� �

; F000
�� �

; . . . and merging the measurement

results to perform the QSCI is another option. The availability

of such feedback from the subspace Hamiltonian diagonaliza-
tion part on a classical computer to the state preparation part
on a quantum computer is one of the important features of the
HSB-QSCI method.

Note that the wave functions are simultaneous eigenfunc-
tions of the Hamiltonian and electron spin S2 operator in the
non-relativistic regime, but Slater determinants are not always
eigenfunctions of the S2 operator (spin eigenfunctions). In fact,
open-shell Slater determinants with spin-b unpaired electron(s)
are not spin eigenfunctions. Here we have assumed that
na Z nb, where na and nb are the numbers of spin-a and spin-
b electrons, respectively. In order to make the QSCI wave
function being spin eigenfunctions, we introduced a symmetry
completion step before constructing the subspace Hamiltonian
matrix. In the symmetry completion step, open-shell Slater
determinants that are missing to span the spin eigenfunction
are added. For example, in the spin-singlet state calculations, if
the bit string corresponding to the Slater determinant |2aabb0i
is sampled (2, a, b, and 0 mean that the corresponding
molecular orbital is doubly occupied, singly occupied by a
spin-a electron, singly occupied by a spin-b electron, and
unoccupied, respectively), then we add |2abab0i, |2abba0i,
|2bbaa0i, |2baba0i, and |2baab0i, if they are not sampled.
Similarly for the spin-triplet state, if |2aaab0i is measured,
then we add |2aaba0i, |2abaa0i, and |2baaa0i.

In a case when the Hamiltonian simulations are carried out
on a current noisy quantum hardware, the measurements of
the quantum state give bit strings that correspond to the Slater
determinants with different numbers of electrons. The SCCR
proposed recently27 can be adopted to recover the Slater deter-
minants with a correct number of electrons. In the SCCR, if the
bit string obtained from the measurement has the wrong
number of electrons, bits are flipped to recover the desired
number of electrons, and the probability of bit flipping is
determined from the occupation number of the molecular
orbital calculated from the QSCI wave function of the previous
step. This process is iterated until convergence or the iteration
step reaches the predefined maximum steps. The SCCR is
performed before symmetry completion.

3 Computational conditions

To demonstrate the HSB-QSCI, we performed numerical simu-
lations on a classical computer. The target systems are the S0

state of the H2O molecule, the S0 and T1 states of oligoacenes
(1, 2, and 3), 4 as a representative system of the open-shell
singlet ground state, and 5, as shown in Fig. 2. We also
performed hardware demonstrations using an IBM Quantum
processor for carbyne molecules 5, 6, and 7. For the H2O
molecule, we used the same geometry as in the original QSCI
paper.14 Geometry optimizations of oligoacenes and carbynes
in planar geometry were performed at the B3LYP44,45/6-31G*46,47

level of theory. In all DFT calculations, we used default settings
in Gaussian 16.48 The SCF convergence thresholds were set
to 10�8 and 10�6 for the RMS and maximum density changes,
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respectively, and 10�6 Hartree for the energy changes. For geo-
metry optimizations, the convergence criteria were 0.000450 and
0.000300 Hartree Bohr�1 for the maximum and RMS forces, and
0.001800 and 0.001200 Bohr or Radian for the maximum and RMS
displacements, respectively. We used an UltraFine grid with a
pruned (99 590) grid, having 99 radial shells and 590 angular
points per shell. The twisted geometry of carbynes is generated by
rotating one of the CH2 moieties 90 degrees from the equilibrium
geometry. The geometry optimization of 4 was carried out at the
CASSCF(10e,10o)/6-31G* level. Here, (Ne, Mo) represents the active
space consisting of N electrons and M molecular orbitals. For the
CASSCF geometry optimization, we used a gradient convergence
threshold of 10�4 Hartree Bohr�1, which is the default setting in
the GAMESS-US49 software. Convergence is achieved when the
largest gradient component is below the specified threshold and
the root mean square gradient is less than 1/3 of the threshold.
Cartesian coordinates of all molecules are given in the SI.

Since the computational cost of numerical simulations
of quantum circuits scales exponentially with the number of
qubits, we adopted the active space approximation. For the H2O
molecule, we used the (6e,5o) active space, consistent with the
QSCI study by Kanno and coworkers.14 We used the (6e,6o),
(10e,10o), and (14e,14o) active spaces for 1, 2, and 3, respec-
tively, which consist of the valence p and p* orbitals. The one-
and two-electron integrals of H2O and oligoacenes are calcu-
lated at the RHF/STO-3G50 level. The active space of 4 contains
the valence p and p* orbitals and the in-plane 2p orbital of the
nitrogen atoms, and the size is (10e,10o). The CASSCF(10e,10o)/
6-31G* molecular orbitals are used to construct the second
quantized Hamiltonian of 4. In the case of carbyne molecules 5,
6, and 7 with (10e,10o), (14e,14o), and (18e,18o) active spaces,
respectively, the RHF/6-31G* calculation is performed and then
the occupied molecular orbitals are localized using the Pipek–
Mezey method.51 For the virtual orbitals, we first formed
the singular value decomposition (SVD) quasi-atomic external

orbitals using an SVD with respect to the accurate atomic
minimal basis functions, and then formed the ordered external
orbitals using exchange integrals (using a keyword EXTLOC =
ATMNOS in GAMESS-US software49). Localizing the occupied
and unoccupied orbitals separately is essential to maintain the
invariance of the HF wave function. The active orbitals of all
molecules are provided in Fig. S1–S10 in the SI. One- and two-
electron atomic orbital integrals are obtained from GAMESS-
US, and the AO–MO integral transformations were performed
using our own Python3 program. The one- and two-electron MO
integrals in the FCIDUMP format are provided in the SI. The
qubit Hamiltonian is then generated using the OpenFermion
library.52 All the DFT calculations were done with the Gaussian
16 package,48 and the RHF and CASSCF calculations were
carried out with the GAMESS-US software.49

As we mentioned in the previous section, the time evolution
operation in the HSB-QSCI does not have to be exact, and we
can introduce various approximations. In this work, we inves-
tigated the effect of Hamiltonian truncation on the sampled
Slater determinants in the Hamiltonian simulation and on
the QSCI energies. We investigated Hamiltonian truncation
based on the locality of the qubit Hamiltonian terms. In this
approach, we first generate the localized molecular orbitals
(LMOs), and then rearrange the LMOs according to their
relative spatial distances. During the qubit Hamiltonian con-
struction using the reordered LMOs, we calculate the locality of
the Pauli string (number of Pauli-X, Y, and Z operators in the
Pauli string). If the locality of the Pauli string exceeds the
threshold, then we exclude it from the qubit Hamiltonian.
We investigated this method in 5, keeping in mind to perform
the Hamiltonian simulations on a superconducting quantum
device with MPO-based classical compression of the time
evolution quantum circuit. The procedure of this step is illu-
strated in Fig. 3.

To sample the Slater determinants based on the real-time
evolution of the initial wave function, we set the evolution time
for U to be Dt = 1 in atomic unit and k = 1, 2, . . ., 10, unless
otherwise noted. To construct the quantum circuit for U,
we adopt the first-order Trotter decomposition with a single
Trotter slice. Magnitude ordering53 is used for the Trotterized
term ordering. The quantum circuit simulations were done
using the qsim library,54 which allows us to use GPGPU. The
subspace Hamiltonian matrix construction and diagonalization
was done using the PyCI library,55 and the SCCR for hardware
demonstrations was carried out using the qiskit-addon-sqd
library.56 It should be noted that the subspace Hamiltonian
diagonalization can also be done using qiskit-addon-sqd, but it
uses a selected CI kernel_fixed_space subroutine in PySCF57

where the spin a and b occupancies are stored separately, and
the Slater determinants constructed from all possible combina-
tions of spin a and b strings are used as the basis for the wave
function expansion. In this implementation, Slater determi-
nants not sampled by the quantum computer can be included
in the subspace Hamiltonian diagonalization, resulting in a
quadratic increase in the dimension of the Hamiltonian matrix.
This can be seen as a kind of subspace enlargement at the

Fig. 2 Target molecules being studied.
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expense of compactness of the QSCI wave function. We also
performed a subspace Hamiltonian diagonalization using
PySCF, and the results are given in the SI, Section III. Quantum
circuit simulations and the subspace Hamiltonian diagonaliza-
tion in the QSCI part were performed on the NVIDIA DGX H100
system.

4 Results and discussion

Sections 4.1–4.4 are devoted to showing numerical simulations
for the S0 state of H2O, S0 and T1 states of oligoacenes,
phenylene-1,4-dinitrene, and hexa-1,2,3,4,5-pentaene, respec-
tively. Section 4.5 gives a hardware demonstration for the S0

and T1 states of carbyne molecules.

4.1 The S0 state of the H2O molecule

In this subsection, we discuss the performance of the sampling
strategies for Slater determinants in the QSCI, using the H2O
molecule. We compare the HSB-QSCI, QSCI with randomly
sampled Slater determinants that preserve spatial symmetry,
MS, and nelec, VQE-based QSCI,14 and HCI. HSB-QSCI calcula-
tions were performed with k = 10, and the number of shots per
time step was set to 1 � 104. For the random sampling-based
QSCI, we always included the HF configuration in the subspace
Hamiltonian, and excited determinants belonging to the same
irreducible representation of the S0 state and having the correct

MS and nelec. The number of excited determinants satisfying
these conditions is 99. We performed five independent simula-
tions. The HCI is performed using the PyCI package.55 The
results are summarized in Fig. 4. In HSB-QSCI with k = 1,
the energy error is already less than 6 � 10�4 Hartree
(0.36 kcal mol�1). Chemical precision is achieved with only
one time evolution step, considering only 20 Slater determi-
nants. This is in contrast to the VQE-based QSCI,14 which
requires about 50 VQE iterations and 32 Slater determinants
to achieve an energy error below 1 � 10�3 Hartree. Note that
they also reported that 16 Slater determinants are enough to
achieve chemical precision, after VQE convergence. It is worth
noting that the probability of sampling the HF configuration in
the first time step of HSB-QSCI is approximately 0.942. In
contrast, in the perfect state preparation limit of VQE-based
sampling, this probability is calculated to be 0.978. This
indicates that HSB-QSCI has a higher chance of sampling
excited determinants than the VQE-based approach. Of course,
the quantum circuit is deeper in HSB-QSCI than in the VQE-
based one. However, improvements in the overall number of
required shots and the compactness of the QSCI wave function
are significant. HCI yields slightly lower energy than HSB-QSCI
with 20 Slater determinants, DEHCI–CAS-CI = 5 � 10�5 Hartree =
0.032 kcal mol�1. However, as the number of Slater determi-
nants increases, the difference in energy errors between HSB-
QSCI and HCI diminishes, and the two methods give identical
energies when 28 Slater determinants are used. It is important

Fig. 3 Procedure of orbital transformations for the Hamiltonian term truncations based on the locality of the Pauli strings, in the case of 5 in its planar
geometry. Red arrows indicate the electron occupancies in the RHF wave function.
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to note that HSB-QSCI yields energies comparable to HCI,
although starting from an approximate wave function in HSB-
QSCI may lead to sampling Slater determinants that are more
relevant to excited states than to the ground state. The compar-
ison with the random sampling-based implementation is even
more illuminating. In this case, the energy error remains large

even when 80% of the Slater determinants are included in the
subspace Hamiltonian diagonalization.

4.2 The S0 and T1 states of oligoacenes

There is no doubt that aromatic rings are one of the most
important molecular skeletons in chemistry, and the study of
the electronic structures of oligoacenes is very important. It is
known that the zigzag edge of graphene fragments exhibits
strong open-shell characters,58 and the contribution of the HF
electronic configuration to the full-CI wave function decreases
for larger oligoacenes. Electronic excited states of oligoacenes
are also of interest because of their potential for various
applications such as singlet fission photovoltaics.59

The results of the HSB-QSCI simulations of oligoacenes are
shown in Fig. 5. The RHF and ROHF-like single configurational
wave functions are used as the starting wave functions for the
Hamiltonian simulations of the S0 and T1 states, respectively,
and the number of shots for each time step was set as 1 � 105.
The number of Slater determinants in the CAS-CI wave function
is 104 (S0) and 61 (T1) for 1, 15 912 (S0) and 11 076 (T1) for 2, and
2 945 056 (S0) and 2 255 121 (T1) for 3, in the D2h point group.
Our numerical simulations revealed that the Slater determi-
nants that are important to describe the target electronic states
are efficiently sampled from the Hamiltonian simulations.
In 1, the system size is very small, and all possible Slater
determinants are sampled up to the fifth steps. In 2, chemical
precision (DE o 1.0 kcal mol�1) was achieved with three steps

Fig. 4 HSB-QSCI, random sampling-based QSCI, and HCI results of the
H2O molecule.

Fig. 5 HSB-QSCI results of oligoacenes. The number of Slater determinants included in the Hamiltonian diagonalization is given in (a), (b) and (c) for 1, 2,
and 3, respectively. Red and blue indicate the S0 and T1 states, respectively. Dotted lines represent the number of Slater determinants in the CAS-CI wave
function. The difference of the HSB-QSCI energy from the CAS-CI values in units of kcal mol�1 are given in (d)–(f) on the logarithmic scale.
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of the Hamiltonian simulations. In 3, we found that 10 steps of
time evolution with 1 � 105 shots are not enough to achieve
chemical precision. We expect that the number of important
Slater determinants increases with O(M4), which is the same as
the scaling of Hamiltonian terms, when the target state wave
function is well approximated by the single determinant as in
the ground state of oligoacenes and the energy gap between the
ground and the first excited states is unchanged. Considering
the fact that the energy gap is smaller in 3 than in 2, we need
more than 3.81 times more shots than in the calculation of 2 to
obtain the HSB-QSCI energy of 3 with the same accuracy.
We have also studied the dependence of the HSB-QSCI energy
on the number of shots and the number of time steps in 3.
By increasing the number of shots from 1 � 105 and simulating
more time steps, the number of Slater determinants sampled
from the Hamiltonian simulation increases, and the HSB-QSCI
energy decreases systematically (see Fig. S14 in the SI).
Although we need more steps and shots to achieve chemical
precision for larger systems, it should be noted that up to
7-electron excited determinants were sampled in a Hamiltonian
simulation with kDt = 1 in 3. It is known that higher-order
excitations are important to compute the energy in a quantita-
tive manner, especially in strongly correlated systems.19 The
ability of Hamiltonian simulations to capture higher-order
excitations is remarkable and is an important feature for
applications to large and strongly correlated systems. These
results illustrate the ability of the Hamiltonian simulation to
sample a polynomial number of important Slater determinants
from exponentially large Hilbert space. Note that a similar
trend has also been reported by other groups.60,61 When the
kernel_fixed_space subroutine in PySCF is used for subspace
Hamiltonian diagonalization, chemical precision was achieved
with only three steps of time evolutions with 1 � 105 shots in 3.
However, the HSB-QSCI wave function considers about 57%
and 46% of the Slater determinants, hence the HSB-QSCI wave
function is less compact (see Fig. S11 in the SI).

4.3 The S0 and T1 states of phenylene-1,4-dinitrene

4 has two major resonance structures, the diradical with a
quinonoid skeleton as shown in Fig. 2, and the dinitrene with
an aromatic ring. Its electronic ground state is an open-shell
spin-singlet state with two unpaired electrons in in-plane 2p
orbitals of the nitrogen atoms. The thermally excited spin-
triplet state of 4 has been observed by ESR spectroscopy,62–64

and the singlet–triplet energy gap is determined to be
�0.82 kcal mol�1 from the Curie analysis of the ESR signal.65

The experimentally determined zero-field splitting parameter in the
excited spin-triplet state is |D| = 0.171 cm�1,62 which is about 10
times larger than the value estimated from a point-dipole approxi-
mation. This deviation was explained by the lack of electron
correlation effect in the point-dipole approximation,66 insisting
that sophisticated consideration of electronic correlation is essen-
tial to describe its electronic structure.

In the CASSCF optimized orbital basis, the CAS-CI wave
function of the S0 state is mainly described by the HF configu-
ration (|cHFi) and the HOMO–LUMO two-electron excited

configuration from the HF configuration (|c2ei) (see Table S7
in the SI). In the HSB-QSCI simulations of the S0 state, we
performed Hamiltonian simulations with three different initial
wave functions, |cHFi, |c2ei, and the CAS-CI(2e,2o) wave func-
tion |CCAS22i = 0.7138|cHFi � 0.7003|c2ei, to investigate the
dependence of the initial wave function on the energies and the
convergence behavior of the HSB-QSCI method. The QSCI
simulations were performed under four different conditions:
(1) use the |cHFi results with 1 � 105 shots for each time step,
(2) use the |c2ei with 1 � 105 shots, (3) use the samples from
|CCAS22i with 1 � 105 shots, and (4) merge the samples from
|cHFi and |c2ei with 5 � 104 shots for each step. For the T1

state, we used the ROHF-like single determinant as the initial
wave function for the Hamiltonian simulation. The HSB-QSCI
results are summarized in Fig. 6. Our numerical simulations
suggest that almost the same number of Slater determinants
are sampled when |cHFi and |c2ei are used. Interestingly, the
number of Slater determinants sampled from the Hamiltonian

Fig. 6 HSB-QSCI results of 4. (a) The number of Slater determinants
sampled from Hamiltonian simulations. The red and blue dotted lines
indicate the number of Slater determinants in the CAS-CI wave function.
(b) The difference of the HSB-QSCI energy from the CAS-CI values in units
of kcal mol�1, on the logarithmic scale.
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simulation is smaller when |CCAS22i is used as the initial wave
function. The accuracy of the HSB-QSCI energy with |CCAS22i is
about an order of magnitude worse than the HF-reference one,
but still chemical precision was achieved in 2 steps of time
evolution. Thus, using the CAS-CI wave function with a smaller
active space can help generate a more compact HSB-QSCI wave
function for strongly correlated systems. However, preparing
the CAS-CI reference state itself may become a bottleneck when
the number of quasi-degenerate orbitals is large. One possible
solution to this challenge is to adopt a technique for construct-
ing a multiconfigurational wave function without performing
post-HF calculations.67 The singlet–triplet energy gap is calcu-
lated to be �1.11 kcal mol�1, in good agreement with the CAS-
CI value (�1.06 kcal mol�1) and the experimental one.65 Using
PySCF for the subspace Hamiltonian diagonalization slightly
increases the number of Slater determinants and yields lower
HSB-QSCI energies. The trends of the initial wave function
dependence are similar between PyCI- and PySCF-based imple-
mentations (see Fig. S12 in the SI).

4.4 The S0 and T1 states of hexa-1,2,3,4,5-pentaene

Our last example of numerical simulations is the S0 and T1

states of 5. From the DFT calculations, the carbyne withQCH2

termination is predicted to have a helical p conjugation in the
non-planar geometries.68,69 In the S0 state, the planar structure
is the energy minimum, but in the T1 state, the planar geometry
is a saddle point and the twisted geometry becomes stable. As a
result, the singlet–triplet energy gap strongly depends on the
dihedral angle between twoQCH2 terminations. In this study,
we calculated the S0 and T1 states of the geometries with the
dihedral angles of 01 and 901.

Because carbyne is a one-dimensional molecule, using
LMOs and adopting Hamiltonian truncation by maximum
locality may be a good option to reduce the computational cost
of Hamiltonian simulation. In this work, we investigated
Hamiltonian term truncation by operator locality of the Pauli
string in the qubit Hamiltonian. By reordering the LMOs by
relative distances before constructing a qubit Hamiltonian,
operator locality-based truncation is roughly equivalent to
Hamiltonian term truncation based on spatial distances.
To assess the effect of Hamiltonian truncation with the locality,
we first calculated the number of Hamiltonian terms in the
second quantized Hamiltonian and the fidelity of the ground state
wave function, |hC0(truncated)|C0(full)i|2, where |C0(truncated)i
and |C0(full)i are the ground state wave functions with the
truncated and untruncated Hamiltonians, respectively. The results
are summarized in Tables 1 and 2 for planar and twisted geo-
metries, respectively.

Note that the number of Hamiltonian terms is larger in the
twisted geometry than in the planar one, which is due to the
difference in the spatial distribution of p orbitals. In planar
geometry, the one-electron MO integrals between the nearest
neighbor p orbitals (e.g., p1 and p2 in Fig. 3) are zero, while in
twisted geometry, they are non-zero due to helical p conjuga-
tions. As can be seen from Tables 1 and 2, the number of
Hamiltonian terms is reduced by about 40% when considering

up to 10-local terms, with the fidelity of the ground state wave
function being about 0.99. The rapid decrease of the fidelity
for the maximum locality smaller than 10 can be explained by
the fact that the px–px and py–py interactions (here we assumed
that the one-dimensional carbon atom chain is parallel to the
z-axis) with the next nearest neighbor CQC bond (for example,
p1–p3 in Fig. 3) described as 10-local operators in the qubit
Hamiltonian.

The results of the HSB-QSCI simulations are shown in Fig. 7.
The number of shots for each time step is 1 � 105. In the T1

state calculations, we set the starting wave function to carry two
unpaired electrons in the central p bonds (p3 and p�8 in Fig. 3). It
is clear that the number of Slater determinants sampled from
the Hamiltonian simulations and the convergence behavior of
the HSB-QSCI energies are almost the same for m Z 10, where
m is the maximum locality of the qubit Hamiltonian terms.
These results are consistent with the trend of the S0 state
fidelity value. The singlet–triplet energy gap DES–T = ES � ET

calculated using the real-time evolution with the untruncated
Hamiltonian (m = 20) is �53.96 and �20.33 kcal mol�1 for
planar and twisted geometries, respectively, and the differ-
ence from the CAS-CI singlet–triplet energy gap is less than
0.1 kcal mol�1 (DES–T(CAS-CI) = �53.93 and �20.26 kcal mol�1

for planar and twisted geometry, respectively). The number of
sampled Slater determinants is larger for twisted geometry than
for planar geometry, reflecting the spatial distribution of the p
orbitals, as discussed above. When the maximum locality is set
to be m = 6 or 8, the error in the HSB-QSCI energy becomes
larger. However, our numerical simulations revealed that
chemical precision can be achieved even with the maximum
locality m = 6, by increasing the number of shots to more than
3 � 106 and setting the number of maximum time steps to k =
20 (see Fig. S15 in the SI). In this case, we observed an abrupt
improvement in energy convergence. Since we did not observe
such behavior when the untruncated Hamiltonian was used for
the time evolution, we suspect that Hamiltonian truncation is
responsible for this. When a Hamiltonian truncated to max-
imum locality is used for time evolution, the probability of
measuring excited determinants with long-range excitations
becomes smaller, because long-range interaction terms are
discarded by the truncation. Consequently, the use of the
truncated Hamiltonian in the time evolution operator causes
an imbalance in the description of short-range and long-range

Table 1 Number of terms in the second quantized Hamiltonian and
fidelity of the electronic ground state wave function of 5 in planar
geometry

Maximum locality m #Terms Fidelity

20 20 072 1.0
18 19 676 0.999816
16 18 596 0.998764
14 17 592 0.998571
12 16 248 0.996394
10 12 708 0.992327
8 7836 0.946569
6 4840 0.941506
4 3048 0.912734
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interactions, which is likely responsible for the observed
behavior.

Note that when using the PySCF kernel_fixed_space subrou-
tine for subspace Hamiltonian diagonalization, chemical pre-
cision was achieved with up to five steps of time evolution with
105 shots (see Fig. S13 in the SI), but this is a consequence of
the quadratic increase of the Slater determinants in PySCF.

It should be emphasized that the ROHF-like single config-
urational wave function in the LMO basis used in the T1 state
calculation has a rather small overlap with the CAS-CI wave

function, because the LMOs were generated according to the
occupation numbers of the RHF wave function for the S0 state.
The squared overlap values |hF0|CCAS-CIi|2 in the T1 state are
0.1691 and 0.1240 for planar and twisted geometries, respec-
tively (see Tables S10 and S12 in the SI for the CAS-CI wave
function). The fact that the HSB-QSCI provides accurate energy
with such a small overlap is promising because the overlap
between the HF and the full-CI wave functions decreases with
system size, and the preparation of a sophisticated approximate
wave function becomes challenging for larger molecules.

4.5 Hardware demonstration of the HSB-QSCI calculations of
the S0 and T1 states of carbyne molecules

Since the Hamiltonian term truncation based on the locality of
the qubit Hamiltonian terms works excellently in 5, we per-
formed the HSB-QSCI calculations of 5, 6, and 7 on an IBM
Quantum Eagle processor, namely ibm_kawasaki. To reduce
the quantum circuit depth of the Hamiltonian simulation, we
performed the MPO-based classical compression of the quan-
tum circuit. This approach was demonstrated in our previous
study on the quantum phase difference estimation-based
energy gap calculations.9 The details of the MPO-based quan-
tum circuit optimization are given in ref. 9. In this study, we

Table 2 Number of terms in the second quantized Hamiltonian and
fidelity of the electronic ground state wave function of 5 in twisted
geometry

Maximum locality m #Terms Fidelity

20 40 200 1.0
18 39 772 0.999576
16 38 244 0.997395
14 35 232 0.996860
12 30 640 0.995021
10 24 660 0.987597
8 17 772 0.898829
6 10 744 0.891525
4 4632 0.843284

Fig. 7 HSB-QSCI results of 5 in its planar and twisted geometries with different maximum locality values m. The number of Slater determinants included
in the Hamiltonian diagonalization is given in (a)–(d). The red and blue dotted lines represent the number of Slater determinants in the CAS-CI wave
function of the S0 and T1 states, respectively. The difference of the HSB-QSCI energy from the CAS-CI values in units of kcal mol�1 are given in (e)–(h) on
the logarithmic scale.
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used a Hamiltonian truncated by the maximum locality (m =
10), and the 10-layer brick wall type quantum circuit is gener-
ated for the time evolution operator of Dt = 1 in atomic unit.
The number of sweeps on the optimizations was set to 10 000.
In constructing the MPOs, the second-order Trotter decomposi-
tion with a single Trotter slice was employed, and the singular
value cutoff for the SVD was set to 10�4. The order of terms in
the Trotter decomposition is set as follows. First, we generate
the truncated second quantized Hamiltonian by checking the
one- and two-electron integrals in the lexicographic order: q
after p in hpq, and p, r, q, s, in that order in gpqrs. Then
the truncated second-quantized Hamiltonian is transformed
into a qubit Hamiltonian while retaining the order of the terms,
and the Trotterized time evolution operator is constructed
subsequently.

We first checked the Hamming weight distribution of the bit
strings obtained in the measurements and compared it to the
uniform distribution. The Hamming weight distributions at
kDt = 10 are plotted in Fig. 8. We confirmed that the Hamming
weight distributions of the bit strings obtained from the
Hamiltonian simulation with kDt = 10 are significantly different
from the uniform distribution. However, due to hardware
noise, only 11–23% of the measured bit strings have correct
Hamming weights (10, 14, and 18 for 5, 6, and 7, respectively).

The HSB-QSCI results of 5 are summarized in Fig. 9. Here,
the Hamiltonian simulations were carried out with k = 10, and
the number of shots was set from 1 � 105 to 1 � 106. The depth
of the quantum circuit after transpilation with optimization
level = 3 in qiskit is 21, regardless of the evolution time steps.
The SCCR27 was adopted to recover configurations with a
correct number of electrons, before constructing the subspace
Hamiltonian matrix. In the first five to eight steps of time
evolution, the number of Slater determinants sampled
increases rapidly, but thereafter the number of additionally
sampled Slater determinants becomes gradual. When the

HSB-QSCI is performed up to ten steps of time evolution
and 1 � 105 shots for each time step, the energy error is about
2 kcal mol�1. Increasing the number of shots further improves
the energy, and the error in the total energy with 1 � 106 shots
were 0.37, 0.56, 0.33, and 0.43 kcal mol�1 for planar (S0), planar
(T1), twisted (S0), and twisted (T1), respectively, achieving
chemical precision.

The dimensions of the Hamiltonian matrix and the total
energies of the HSB-QSCI and the CAS-CI methods are sum-
marized in Table 3. We used k = 10 and performed 3� 106 shots
for each time step in the HSB-QSCI for 6 and 7. In 6, the HSB-
QSCI considered about 50–64% of the entire Slater determi-
nant, and it calculated the total energy with an error of about
2.0–2.9 kcal mol�1. Although chemical precision for the total
energy was not achieved, the HSB-QSCI provides the singlet–
triplet energy gap with an error of 0.93 and 0.12 kcal mol�1 for
planar and twisted geometries, respectively, of 6. The energy
difference between the planar and twisted geometries is also
calculated with an error of about 0.72 and 0.09 kcal mol�1 for
the S0 and T1 states, respectively. These results exemplify the
ability of the HSB-QSCI to accurately calculate energy differ-
ences between two electronic states and two geometries. We
expect that the total energy can be further improved by increas-
ing the number of shots in the Hamiltonian simulation. In 7,
the error of the HSB-QSCI energy is about 14 kcal mol�1 for the
S0 state, and it increases to 23.36 and 25.79 kcal mol�1 for
planar and twisted geometries, respectively, of the T1 state.
Again, chemical precision for the total energy was not achieved
in 7. In addition, the HSB-QSCI overestimated the singlet–
triplet energy gap, about 9–12 kcal mol�1. As we pointed out
above, the CAS-CI wave function of the T1 state in the localized
orbital basis shows an inherent multiconfigurational charac-
ter, and the single Slater determinant used as the initial wave
function of the time evolution has small overlap with the CAS-
CI wave function. As a result, it is expected that the number of

Fig. 8 Hamming weight distribution of the bit strings obtained from measurements after Hamiltonian simulation of carbyne molecules with kDt = 10,
using ibm_kawasaki. (a) 5, (b) 6, and (c) 7.
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time steps or the number of shots will have to be increased
to account for more Slater determinants in order to accurately

describe the electronic structure of the T1 state. Nevertheless, it
is worth noting that the HSB-QSCI is able to compute the

Fig. 9 HSB-QSCI results of 5 obtained with a Hamiltonian truncated by the maximum locality m = 10 and ibm_kawasaki, with SCCR. The number of
Slater determinants included in the Hamiltonian diagonalization are given in (a)–(d), and the difference of the HSB-QSCI energy from the CAS-CI values in
units of kcal mol�1 are given in (e)–(h) on the logarithmic scale.

Table 3 The HF energy, number of Slater determinants and total energies of the CAS-CI, and the number of selected Slater determinants and the error
of the HSB-QSCI energy calculated using ibm_kawasaki

System

HF CAS-CI HSB-QSCI

E/Hartree #Dets E/Hartree %#Detsa DE/kcal mol�1 %ECorr
b

5 (planar, S0) �226.4832222338 63 504 �229.5024030030 82.21 0.37 99.98
5 (planar, T1) �226.4299826264 44 100 �229.4164659619 90.91 0.56 99.97
5 (twisted, S0) �226.4033087159 63 504 �229.4452184415 85.96 0.33 99.98
5 (twisted, T1) �226.4440971899 44 100 �229.4129399110 92.84 0.43 99.99
6 (planar, S0) �301.1974823957 11 778 624 �305.2359857689 52.20 2.00 99.92
6 (planar, T1) �301.1536301615 9 018 009 �305.1666727092 63.80 2.93 99.88
6 (twisted, S0) �301.1365655879 11 778 624 �305.1941677868 49.57 2.71 99.89
6 (twisted, T1) �301.1634490372 9 018 009 �305.1698864405 60.33 2.84 99.89
7 (planar, S0) �375.9128437860 2 363 904 400 �380.9720622554 0.95 14.26 99.55
7 (planar, T1) �375.8222817220 1 914 762 564 �380.9133659533 0.77 23.36 99.27
7 (twisted, S0) �375.8635891161 2 363 904 400 �380.9394312061 1.09 13.97 99.56
7 (twisted, T1) �375.8817559215 1 914 762 564 �380.9186151034 0.87 25.79 99.18

a Percentage of the number of Slater determinants calculated as 100�#DetsðHSB-QSCIÞ
#DetsðCAS-CIÞ . b Percentage of the correlation energy in the active

space considered in the HSB-QSCI, calculated as 100� EðHFÞ � EðHSB-QSCIÞ
EðHFÞ � EðCAS-CIÞ .

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/2
9/

20
26

 4
:1

4:
19

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cp02202a


This journal is © the Owner Societies 2025 Phys. Chem. Chem. Phys., 2025, 27, 20869–20884 |  20881

energy difference between the planar and twisted geometries of
the S0 state with chemical precision. Note that when PySCF
is used for the subspace Hamiltonian diagonalization, the
HSB-QSCI provided the total energy of the S0 state with about
0.3 kcal mol�1 of an error, by considering 46–48% of the Slater
determinants, but it failed to compute the total energy of the T1

state with chemical precision (see Table S13 in the SI for
details).

Table 3 also summarizes the percentages of the number of
Slater determinants and the correlation energies covered by the
HSB-QSCI method in 5–7. Here, we calculated the correlation
energies as the energy difference between HF (RHF and ROHF
for the S0 and T1 state, respectively, in the canonical orbital
basis) and the HSB-QSCI energies. It is worth emphasizing that
the HSB-QSCI covers more than 99.18% of the correlation
energies in the active space in 7, by considering only ca. 1%
of all the Slater determinants.

5 Conclusion

In this study, we proposed an HSB-QSCI, which uses a quantum
computer to perform Hamiltonian simulation and subsequent
measurement of the quantum state in the computational basis
to sample the important Slater determinants used to span the
subspace Hamiltonian to be diagonalized on a classical com-
puter. Compared to the reported VQE-based state preparation
approaches for the QSCI,14,24,25 the HSB-QSCI is free from
variational optimizations of the quantum states, and it works
with the simple initial wave function like the HF. Since long-
time evolution is in general difficult to simulate on a classical
computer, we expect this approach to become powerful as the
system size increases. The fact that higher-order excitations can
be incorporated even in a short time evolution also makes HSB-
QSCI suitable for simulation of large and strongly correlated
systems. Proof-of-concept simulations were performed for the
S0 and T1 states of organic molecules 1–5, and we achieved
chemical precision in all molecules studied. The quantum
hardware demonstrations of the HSB-QSCI for the S0 and T1

states of three carbyne molecules 5–7 were also reported using
ibm_kawasaki with 20, 28, and 36 qubits, respectively, with the
aid of MPO-based classical optimization of the quantum circuit
for the time evolution operator. The HSB-QSCI achieved
chemical precision for the total energy in 5, for the singlet–
triplet energy difference in 6, and for the energy difference
between planar and twisted geometries of the S0 state in 7. In 7,
by considering about 1% of the Slater determinants, the HSB-
QSCI captured more than 99.18% of correlation energies in the
active space. The largest system studied in this work is 7 with 36
qubits, which is the largest system capable of performing the
CAS-CI calculation in a typical computational environment
without a supercomputer.57,70 We expect that the HSB-QSCI
can handle the system larger than 36 qubits, by introducing
batch-based implementations in the Hamiltonian matrix diag-
onalization part, and calculating the variance of the energy
expectation value DH = hC|H2|Ci � hC|H|Ci2 as explored in

ref. 27. Note that, as discussed by Reinholdt and coworkers in
their recent paper,71 the QSCI wave function is in some cases
less compact than that obtained by classical heuristics. From
eqn (7), the probability that a particular Slater determinant is
measured in the HSB-QSCI depends not only on the CI coeffi-
cient of the ground state, but also on the gap to the excited state
and the CI coefficient of the excited state, and screening out
unimportant Slater determinants from the subspace is very
important in the application to larger systems. Applying the
auxiliary-field quantum Monte Carlo (AFQMC) method with
the QSCI wave function as the input can be another direction
towards larger-scale quantum chemical calculations with a
quantum computer, as suggested in recent studies.20,21 Applica-
tion of the HSB-QSCI to larger systems is currently in progress.
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