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Insights into ionic liquid-enhanced membrane
protein stability through machine learning
and molecular simulations

Ju Liu,a Guiming Zhang,bc Cheng Song,d Yanlei Wang, *b Jing Ren*e and
Hongyan He a

Protein stability plays a critical role in structural elucidation, enzyme activity, and the storage of protein

drugs, where ionic liquids (ILs) have emerged as promising protein stabilizers due to their exceptional

biocompatibility and superior solubility. However, the underlying mechanisms by which ILs modulate

protein stability, particularly through the regulation of hydrogen bonding and interfacial structures,

remain inadequately understood. Herein, a machine learning-based framework, integrating molecular

docking, unsupervised learning, molecular dynamics simulations and correlation analysis, is applied to

clarify the mechanism of ILs enhancing membrane protein stability. It is found that ILs form clusters that

are adsorbed on the protein surface, with ILs entering the hydration layer of the protein and forming

intermolecular hydrogen bonds with the protein surface, thereby improving stability, consistent with

experiments. Furthermore, a predictive model for protein stability is established by supervised learning

and verification of the mechanism through interpretability analysis. Our framework quantitatively reveals

the influence of hydrogen bonds and interface structures on membrane protein stability. Overall, these

quantitative results not only deepen our understanding of the interactions between ILs and protein but

also shed light on the rational design of protein stabilizers.

1. Introduction

The structural analysis of membrane proteins remains a pivotal
challenge in the life sciences.1–3 Although advanced prediction
tools like AlphaFold have achieved remarkable accuracy in
determining the three-dimensional structure of proteins,4,5

experimental validation is still needed to establish the struc-
ture–function relationships.6 However, a major obstacle is that
membrane proteins tend to lose their native conformation
during extraction and purification,7 which necessitates opti-
mized methods to preserve their stability. Ionic liquids (ILs)
have emerged as effective agents in the extraction and purifi-
cation of membrane proteins,8–11 owing to their excellent

solubility, biocompatibility, and thermal stability.12,13 ILs not
only enhance extraction efficiency and increase protein yields
but also act as stabilizers.12,14 For instance, Brogan et al.
demonstrated via circular dichroism spectroscopy that the
half-denaturation temperature of myoglobin increased by
55 1C in pyrrole-based ILs, even surpassing water’s boiling
point.15 Similarly, Banerjee et al. found that insulin maintained
its secondary structure in the presence of choline and ILs at
4 1C for up to 4 months.16 These results highlight the signifi-
cant role of ILs in the field of protein stabilization.

Understanding the stabilization mechanism of proteins by
ILs involves investigating two major factors: hydrogen bonding
and protein–IL interface structure (Fig. 1). Some studies, such
as those by Phillips et al., demonstrated using wide-angle X-ray
scattering that imidazolium ILs primarily disrupt internal
hydrogen bonds within the protein, thereby reducing the
structural stability of proteins.17 In contrast, Ghanta et al.
showed through molecular dynamics (MD) simulations that
ILs predominantly break the hydrogen bonds between the
protein and water, while forming new hydrogen bonds with
the protein surface to enhance its stability.18 Moreover, while
certain studies using UV-visible absorption spectroscopy and
far-UV circular dichroism suggested that ILs mainly affect
the hydration layer of proteins by replacing water molecules,
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thereby enhancing protein stability,19–22 other investigations
proposed that the aggregation of cations into ionic clusters
encapsulates the protein surface, thereby reducing structural
fluctuations.8,9,23,24 The interplay between the internal and
interfacial hydrogen bonds, along with the various protein–IL
interfacial interactions, critically determines overall protein
stability. As those interactions can enhance or disrupt struc-
tural integrity, developing a unified quantitative framework
to explain IL-mediated stabilization remains a significant
challenge.

In this study, the membrane was not included in the MD
simulations, as our focus was on the storage process of the
protein after extraction from the membrane. Nevertheless, our
previous studies demonstrated that ionic liquids preferentially
insert at the protein–lipid interface while preserving protein
structural stability.9,22 Building on these results, we develop a
machine learning (ML)-based framework to quantitatively elu-
cidate how ILs enhance membrane protein stability (Fig. 1).
Our approach encompasses five major steps: (i) dataset gen-
eration: we compile a dataset of 317 different anions paired
with imidazolium cations and perform molecular docking
simulations with aquaporin-2 (AQP2) and sodium channel
protein (Nav) to calculate binding energies between anions
and protein (EB). (ii) Classification: an unsupervised learning
model is used to classify the anions into nine clusters, integrat-
ing their structural features with the EB data to construct a ML
model. (iii) Screening of IL candidates: we sample and evaluate
ILs using more rigorous MD simulations based on EB and
clusters. In contrast to every sample investigated, we screen-
edby focusing on anions with the highest EB and representative
candidates from each cluster. (iv) Mechanistic analysis: key

descriptors related to hydrogen bonding and interface structure
are extracted from the trajectories of MD simulations, and
correlation analysis is performed to identify the key factors
influencing protein stability. (v) Model verification: finally, we
verify the proposed mechanism by constructing a supervised
learning model utilizing an extra trees regressor, with inter-
pretability provided by the Shapley additive explanation (SHAP)
analysis.

2. Results and discussion
2.1. Dataset for ionic liquids and binding energies with
protein

Initially, we compiled a dataset of 317 anions, including their
SMILES codes and structural files (Fig. S1), obtained from the
ionic liquid database.25 We then selected aquaporin 2 (AQP2)
and sodium channel protein (Nav) as our model proteins
because they play crucial roles in cellular water and ion trans-
port (Fig. S2), making their stability essential for both physio-
logical functions and biomedical research. Subsequently, we
performed molecular docking studies of these anions with the
target proteins AQP2 and Nav to obtain binding energies (EB)
and identify the corresponding binding sites,26 thereby estab-
lishing a comprehensive dataset (Fig. 2a and Fig. S3). This
dataset includes the SMILES codes of the anions, their respec-
tive PDB structural files, EB, and the corresponding binding
sites. Anions that exhibit stronger binding energies to AQP2

also display stronger binding energies to Nav. Accordingly, we
selected AQP2 for further analysis. Given that the EB is closely
related to the specific binding site,27 an analysis of these sites

Fig. 1 The dominant stability mechanism of protein in IL-containing aqueous solution is considered from two main perspectives: hydrogen bonding and
interface structure. The general workflow includes five major steps: (i) dataset generation, (ii) classification, (iii) screening of IL candidates, (iv) mechanistic
analysis, and (v) model verification.
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(Fig. 2b) revealed four distinct regions: the outside cavity,
channel center, inside cavity, and hydrophobic surface. Nota-
bly, the outside and inside cavities of AQP2 are characterized
by predominantly carrying negative and positive charges,
respectively.28 Among these, the inside cavity accounts for
73.7% of all binding sites (Fig. 2c), which can be attributed to
the fact that under electrostatic interactions, anions tend to
bind to the positively charged inside cavity of AQP2.

We next performed hierarchical clustering analysis on the
317 anions using the Ward algorithm, resulting in 9 distinct
clusters containing 19, 19, 34, 21, 38, 13, 68, 18, and 87 anions,
respectively (Fig. S1). Notably, anions grouped within the same
cluster exhibit similar structural motifs, indicating a rational
basis for this classification. When correlating these structural
features with their corresponding EB, we found that anions
within the same cluster exhibit comparable EB values, indicat-
ing that we have established a robust structure–activity model
that validates the rationality of our classification.

To further refine the structure–activity model of the anions, we
analyzed both the functional groups of the anions and the
distribution of their EB values (Fig. 2d). Anions in clusters I to III
all contain carboxyl groups but differ in their overall composition.

Specifically, cluster I anions are primarily monocarboxylic
compounds, exhibiting EB values ranging from �3 to

�5 kcal mol�1. In contrast, cluster III anions not only contain
carboxyl groups but also incorporate other functional groups
such as ether, amine, and hydroxyl groups. Particularly, cluster
VII anions generally exhibit higher EB, ranging from �4 to
�10 kcal mol�1. This cluster mainly comprises fluorinated
anions with sulfonic acid groups, which can form hydrogen
bonds with the protein (Fig. S4), suggesting the significant role
of hydrogen bonding in these interactions.7 Additionally, clus-
ter IX anions, characterized by a wide structural diversity that
includes sulfonate groups, imidazole rings, azides, halogens,
etc., exhibit a broad distribution of EB values spanning from
�1 to �8 kcal mol�1.

2.2. High-throughput screening through molecular dynamics
simulations

To investigate the effects of ILs on protein stability through MD
simulations, we selected imidazolium cations with varying alkyl
chain lengths [Cnmim]+ (n = 4–14)13,29 and chloride as the
counter ion due to its high water solubility.8 As shown in
Fig. S5, with the increase in alkyl chain length, the adsorption
state of ILs on the protein surface evolves from disordered
adsorption to membrane-like adsorption, while the clustering
structures in solution gradually transition from free ions to large
clusters. Protein stability was characterized by root-mean-square

Fig. 2 (a) Hierarchical clustering dendrogram. The leaf nodes show the position where all anions are partitioned into 9 clusters, marked as I–IX from left
to right and distinguished by different colors, and representative structures of each cluster are displayed in the blank spaces. Mapping the dendrogram to
the binding energy reveals the structure–property relationships of the anions. (b) Structure of AQP2, where I, II, III, and IV represent the most stable
binding sites for anions. (c) Probability distribution of binding sites. (d) Binding energy distribution of anions within each cluster; bar colors correspond to
cluster categories in (a).
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deviation (RMSD) and a-helix content; as shown in Fig. 3a and b,
the two-dimensional plot of a-helices and RMSD shifts from the
center to the bottom-left corner, before returning to the center as
the side chain of the cation elongates. This trend suggests an
initial enhancement in stability, followed by a decline, peaking
at [C6mim]+. Consequently, [C6mim]+ was chosen for further
investigation.

Subsequently, representative ILs were selected for MD simu-
lations based on EB and classification. The criteria involved
selecting the anion with the highest EB across all structures,
followed by gradient selection of anions with varying EB within
the same cluster, and choosing anions with identical EB from
different clusters. Firstly, we chose the top 7 anions with
the highest EB (Fig. 3, named T1 to T7), all exceeding

�6.9 kcal mol�1. These anions typically have large molecular
masses and contain fluorine and oxygen groups, and were
paired with [C6mim]+. As shown in Fig. 3c, the ILs with the
highest EB all enhanced protein stability, with RMSD values of
1.53, 1.95, and 2.15 Å for T4, T3, and control groups, respec-
tively. Simulation snapshots reveal that these ILs form large
clusters and adsorb on the protein (Fig. S6). Additionally, due to
the hydrophilic sulfonic acid groups and hydrophobic fluori-
nated alkyl chains present in T2, T4, and T7 anions (Fig. 3d),
they resemble phospholipid structures,30 promoting the for-
mation of an ordered membrane-like structure around the
protein and further stabilizing it.

To assess the influence of anions from the same cluster with
different EB, 7 anions with different EB from cluster IX (E1 to E7)

Fig. 3 (a) Time evolution of the RMSD of the protein in aqueous solutions containing [Cnmim]Cl. (b) Effects of cationic alkyl chain length on protein
stability, reflected by a-helicity and RMSD. (c) Average RMSD of the protein in solutions with [C6mim]+ based ILs containing different anions, selected
based on top EB and varying clusters of the same EB. The inset plots represent the model of the MD simulation, with the protein positioned at the center.
The [C6mim]+ are orderly arranged around the protein, while the anions are randomly distributed and not shown. (d) Structures of representative anions
corresponding to the conditions in (c).
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were selected, as shown in Fig. S7. The EB values for E1, E5, and
E7 were �2.7, �5.3, and �7.4 kcal mol�1, respectively, with the
corresponding protein RMSD values of 1.71, 1.59, and 1.58 Å
(Fig. S8), indicating that the effect of anions from the same
cluster on protein stability is not linearly correlated with the
change of EB. In systems containing E1 to E3, ILs limited
adsorption on the protein surface (Fig. S9), resulting in mini-
mal stabilization effects. However, ILs in systems with E4 to E7

form clusters around the protein, leading to marked improve-
ments in stability. Therefore, anions with higher EB within the
same cluster significantly enhance protein stability.

Since E5 with a binding energy of 5.3 kcal mol�1 demon-
strated the most significant enhancement in protein stability,
we further selected anions with EB values around 5.3 kcal mol�1

from different clusters (CI to CIX), as shown in Fig. 3d. Among
these, anions from clusters CVIII, CV, and CIV exhibited the
lowest RMSD values of 1.48, 1.48, and 1.52 Å, respectively.
These ILs form clusters adsorbed on the protein surface
(Fig. S10), contributing to enhanced stability. To further eval-
uate their performance, the five screened ILs with the lowest
RMSD were compared to three conventional protein stabilizers:
polysorbate 20 (Tw20),31 polyethylene glycol (PEG),32 and Non-
idet P-40 (NP-40).12 As shown in Fig. 3c and Fig. S11 and S12,
the screened ILs outperformed commercial stabilizers, reduc-
ing RMSD by 12–18%. We further evaluated structural stability
using root mean square fluctuation (RMSF) and solvent acces-
sible surface area (SASA) of the hydrophobic core. As shown in
Fig. S13a, the CVIII system shows a markedly reduced RMSF
relative to the control, with fluctuations ranging from 10 to 40 Å
for the control and 0 to 10 Å for CVIII. Consistently, the
hydrophobic core is less exposed in CVIII, with a SASA of
12 953 Å2 versus 24 005 Å2 for the control (Fig. S13b). These
metrics corroborate that the candidate ILs enhance the struc-
tural stability of the membrane protein. Additionally, these ILs
exhibited low synthetic accessibility score33 (SAscore) (Fig. S14),
with the Cv anion scoring 2.19, indicating favorable synthetic
feasibility. Consequently, these ILs are potential protein
stabilizers.

2.3. Machine learning revealing the mechanism of ionic
liquids stabilizing membrane proteins

To elucidate the mechanism by which ILs enhance protein
stability, two categories of descriptors were extracted from the
simulation results: hydrogen bond and interface structure. As
shown in Fig. 4a, hydrogen bond descriptors include the
number of internal hydrogen bonds within the protein (HBpro),
the number of hydrogen bonds between the protein surface and
ILs (HBpro-IL), and the number of hydrogen bonds between the
protein and water (HBpro-wat). Interface structure descriptors
include the number of water molecules in the first and second
hydration layers (CI-wat, CII-wat), anions (CI-an, CII-an), cations
(CI-ca, CII-ca) near the protein surface, as well as the overall
radius of gyration of the ILs (RIL). Through correlation analysis,
the Pearson correlation coefficients (r) between these descrip-
tors were calculated to quantify their influence on protein
stability (Fig. 4b). The sign of r indicates the direction of

correlation: a positive sign for a positive correlation and a
negative sign for an inverse correlation.

As shown in Fig. 4b and c, HBpro-IL exhibits a moderate
negative correlation with RMSD (r = �0.39), indicating that an
increased hydrogen bonds between the protein surface and ILs
is associated with enhanced structural stability. This aligns
with previous experiments.34,35 However, HBpro has a negligible
correlation (r = �0.05), indicating that the ILs have limited
influence on the internal hydrogen bonds of the protein and
mainly affects surface interactions, consistent with reports that
the structure of membrane proteins is stable and that ILs have
difficulty disrupting their internal interactions.22 On the other
hand, for the interface structure, the CI-wat, CII-wat, CI-an, and
CII-an have moderate correlations with RMSD, with all |r| values
exceeding 0.36, indicating the importance of the hydration
layer in protein stability. Notably, CII-an is strongly negatively
correlated with CII-wat (r = �0.94), suggesting that IL anions can
stabilize proteins by replacing water in the hydration layer.
Moreover, the correlation between CII-ca and RMSD (|r| = 0.27)
is weaker than that of CII-an (|r| = 0.39), indicating that anions
play a more significant role in stabilizing proteins, consistent
with previous studies.36 Additionally, RIL shows a moderate
positive correlation with RMSD (Fig. 4a) (r = 0.31), implying that
more compact IL structures are associated with greater protein
stability.24,25

In addition, to comprehensively analyze the impact of
hydrogen bonds and interface structures on protein stability,
canonical correlation analysis was performed. The strength of
correlations between the two descriptor sets was evaluated
using the first canonical correlation coefficient (rc) in Fig. 4d,
which ranges from 0 (no linear relationship) to 1 (perfect linear
relationship). The hydrogen bond set (HBcom) and the inter-
face structure set (Scom) exhibit moderate correlations with
RMSD, with rc = 0.44 and 0.41, respectively, indicating that
both contribute to protein stability, aligning with previous
findings.7 Additionally, a strong correlation was observed
between HBcom and Scom, with rc = 0.88, further emphasizing
the close relationship between hydrogen bonds and interface
structures. Based on the above analysis, the results suggest that
ILs enhance protein stability by forming ionic clusters
adsorbed onto the protein surface, penetrating the hydration
layer, and establishing intermolecular hydrogen bonds with the
surface. Moreover, the role of anions is more pronounced than
that of cations.

To validate the proposed mechanism, supervised learning
was employed to predict the RMSD of protein using the extra
trees regressor. Descriptors selected from MD simulations and
correlation analysis were used as input features. The model was
optimized to minimize the root-mean-squared error (RMSE)
between predicted and actual RMSD values. A Pearson correla-
tion coefficient of 0.913 was achieved on the test set (Fig. 4e and
Fig. S15), indicating high predictive accuracy and supporting
the relevance of the selected descriptors to protein stability.
SHAP analysis indicated that the top four most influential
features are RIL, CII-wat, HBpro-IL and CII-an (Fig. 4f). Particularly,
decreased RIL and CII-wat, along with increased HBpro-IL and
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CII-an, were associated with enhanced predicted stability. These
results provide strong support for the proposed mechanism.

This study systematically elucidates the mechanisms by
which ILs influence protein stability. A notable strength lies
in the broad selection of ILs with diverse chemical properties,
enhancing the generalizability of the findings. Building on
prior work, we integrated multiple stability-related factors and
applied statistical analyses to quantitatively evaluate their contri-
butions. The proposed mechanisms are consistent with experi-
mental observations. However, as the analysis focused on
membrane proteins with inherently strong internal interactions,
future studies should extend to other protein classes, such as
globular and fibrous proteins, to establish a more comprehensive
understanding of IL-induced stabilization effects.

3. Conclusions

In conclusion, we developed a machine learning-integrated
framework combining molecular docking, unsupervised learn-
ing, MD simulations, and correlation analysis to elucidate how
ILs enhance membrane protein stability. This framework was
successfully applied to elucidate the mechanisms by which ILs
enhance membrane protein stability, focusing on hydrogen
bonds and interface structures. Initially, we employed molecu-
lar docking and unsupervised learning to develop a structure–
activity model that correlates IL structures with EB. The
screened ILs showed a 12–18% improvement in performance
compared to conventional stabilizers. Next, correlation analysis
reveals the mechanism that ILs form ionic clusters that are
adsorbed on the protein surface, with ILs penetrating into the

Fig. 4 (a) Descriptors representing hydrogen bonds and interface structures in IL–protein systems. (b) Pearson’s correlation coefficients among
descriptors. (c) Pearson’s correlation coefficients between RMSD and individual descriptors. (d) Canonical correlation analysis between RMSD and
descriptor sets for hydrogen bonds (HBcom) and interface structures (Scom), with the first canonical correlation coefficients indicated. (e) Predictive
performance of the machine learning model for RMSD. (f) Feature importance based on SHAP values, with mean SHAP values shown on the right.
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protein hydration layer. These ILs form intermolecular hydro-
gen bonds with the protein surface, thereby stabilizing the
protein. Finally, the model predicts the RMSD of the protein
using an extra trees regressor, and SHAP values were utilized to
identify the key explanatory variables influencing RMSD, which
verified the mechanism. This work reveals the mechanism by
which ILs improve protein stability, which is of great signifi-
cance for understanding the interaction between ILs and
proteins and developing new membrane protein extraction
and storage systems.

4. Models and methods
4.1. Molecular docking

The molecular docking between aquaporin-2 (AQP2), sodium
channel protein (Nav) and ILs was conducted using the Auto-
Dock Vina program.37 The crystal structure of AQP2 (PDB:
4nef28) and Nav (PDB: 5vb8) were utilized, and the protein
and ILs’ input files were prepared by merging non-polar hydro-
gen atoms and adding charges. The target protein remained fixed.
The docking results were visualized using PyMOL, while the
protein–ligand interaction was calculated using the protein–
ligand interaction profiler web service.38

4.2. Unsupervised learning

The dendrogram function in the SciPy package is used to
implement agglomerative hierarchical clustering (AHC).39

In this method, each sample begins as its own individual
cluster and progressively merges with others based on similar-
ity as it moves up the hierarchy. The result of AHC is a bottom-
up hierarchical tree diagram. In this diagram, the Euclidean
distance between branches serves as the measure of similarity,
while the Ward algorithm is employed to calculate the dissim-
ilarity between nodes.40

4.3. Molecular dynamics simulations

The IL–AQP2 system was constructed as shown in Fig. 3c,
[Cnmim]+ (n = 4–14) cations were orderly arranged around
AQP2,41 and anions were randomly placed using Packmol.42

Water molecules surrounded the protein and ILs. The simula-
tion box dimensions were set to 13.6 � 13.6 � 13.6 nm3.
Periodic boundary conditions were applied in all three direc-
tions. The MD simulations were performed using Amber22
software.43 The time step was 2 fs. The protein was described
using the protein.ff14SB force field, while the second-
generation General AMBER Force Field (GAFF2) was employed
to describe the ILs,44,45 which has been shown to reliably
reproduce their structural and dynamical behaviors.8,46–48 The
TIP3P force field was used for water molecules.46 Non-bonded
interactions included electrostatic and van der Waals terms.
The former was computed using the particle-mesh Ewald
algorithm,47,48 while the latter was described using the
Lennard-Jones potential with a cutoff distance of 1.0 nm. The
SHAKE algorithm was employed to constrain high-frequency
vibrations of hydrogen atoms.49 Temperature and pressure

were controlled using the Berendsen thermostat50 and the
Berendsen barostat,51 respectively, with a coupling constant
of 1.0 ps. The system was first equilibrated for 10 ns under the
NPT ensemble at 310 K and 1 bar, followed by 300 ns of
equilibration under the NVT ensemble at 310 K. The last
50 ns trajectory was used to analyze the impact of ILs on
protein stability.

4.4. Correlation analysis and the supervised learning model

Correlation analysis was performed using the Statistical Pack-
age for the Social Sciences (SPSS)52 to correlate the number of
internal hydrogen bonds within the protein (HBpro), the num-
ber of hydrogen bonds between the protein surface and ILs
(HBpro-IL), the number of hydrogen bonds between the protein
and water (HBpro-wat), and the number of water molecules in the
first and second hydration layers of the protein surface (CI-wat

and CII-wat), the number of anions in the first and second
hydration layers of the protein surface (CI-an and CII-an), the
number of cations in the first and second hydration layers of
the protein surface (CI-ca and CII-ca), and the overall radius of
gyration of the ILs (RIL) for the root mean square deviation
(RMSD) of protein. The above descriptors are extracted from the
last 50 ns trajectory of each MD to build a dataset.

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

dið Þ2
vuut

where di is the Euclidean distance between atom i in the two
structures and N is the total number of atoms.

The model training was conducted using scikit-learn.53 The
dataset was randomly divided into two groups: 80% for model
training and 20% for model testing. The extra trees regressor
was used, the maximum depth of the trees is unrestricted, and
each leaf node must contain at least one sample. The ensemble
model consists of 100 trees, and its performance is measured
using the root mean square error (RMSE) calculated by:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

yi � ẑið Þ2
s

where n represents the number of samples, yi is the actual
target value, and zi is the predicted value.
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