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ChemKANs for combustion chemistry modeling
and acceleration

Benjamin C. Koenig, † Suyong Kim † and Sili Deng *

Efficient chemical kinetic model inference and application in combustion are challenging due to large

ODE systems and widely separated time scales. Machine learning techniques have been proposed to

streamline these models, though strong nonlinearity and numerical stiffness combined with noisy data

sources make their application challenging. Here, we introduce ChemKANs, a novel neural network

framework with applications both in model inference and simulation acceleration for combustion

chemistry. ChemKAN’s novel structure augments the generic Kolmogorov–Arnold network ordinary

differential equations (KAN-ODEs) with knowledge of the information flow through the relevant kinetic

and thermodynamic laws. This chemistry-specific structure combined with the expressivity and rapid

neural scaling of the underlying KAN-ODE algorithm instills in ChemKANs a strong inductive bias,

streamlined training, and higher accuracy predictions compared to standard benchmarks, while

facilitating parameter sparsity through shared information across all inputs and outputs. In a model

inference investigation, we benchmark the robustness of ChemKANs to sparse data containing up to

15% added noise, and superfluously large network parameterizations. We find that ChemKANs exhibit no

overfitting or model degradation in any of these training cases, demonstrating significant resilience

to common deep learning failure modes. Next, we find that a remarkably parameter-lean ChemKAN

(344 parameters) can accurately represent hydrogen combustion chemistry, providing a 2� acceleration

over the detailed chemistry in a solver that is generalizable to larger-scale turbulent flow simulations.

These demonstrations indicate the potential for ChemKANs as robust, expressive, and efficient tools for

model inference and simulation acceleration for combustion physics and chemical kinetics.

1 Introduction

Chemical kinetic modeling underpins a wide range of scientific
and engineering applications, from biological systems to energy
conversion. In combustion, two long-standing challenges hinder
effective kinetic modeling: the complexity and size of detailed
reaction mechanisms,1 and the computational stiffness these
systems introduce during numerical integration.2,3 Recent
advances in machine learning offer new opportunities to address
both challenges through data-driven model discovery and acceler-
ated surrogate solvers.4

For kinetic model discovery, a variety of learning algorithms,
model structures, and optimization approaches have emerged.
The chemical reaction neural network approach,5 for example,
is capable of inferring reaction networks and parameters from
limited species trajectory or heat release data6–8 by directly
enforcing the Arrhenius and mass action laws in a neural

network structure. The sparse identification of nonlinear
dynamics (SINDy) approach is similarly capable of extracting
models from experimental data by assuming various functional
relationship building blocks and learning the precise forms
needed to fit the data.9 Further optimization and inverse
modeling tools exist for other chemical kinetic inference
problems,10–12 with a key piece of many physics-based model
inference techniques being a certain (and often substantial)
degree of prior knowledge of the governing equations, reaction
pathways, and reactants. A critical need across all of these
methods is robustness to noisy data and model uncertainty,
conditions common in combustion kinetics.5,7,13

On the solver front, researchers have proposed methods for
dimension reduction6,14 and computational acceleration15–18 to
handle stiff, high-dimensional systems. For instance, Owoyele
and Pal17 recently proposed ChemNODE, a creative and high-
performing tool that uses the neural ODE concept of Chen
et al.19 to replace a complete chemical kinetic model with a
collection of neural networks, one for each tracked thermo-
chemical quantity. By using these networks to directly link
the current thermochemical state to the chemical source term
with no other problem-specific treatment, computational
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acceleration was enabled in the as-studied homogeneous reac-
tor while retaining the generalizability of the surrogate model
to higher-dimensional reacting flows where such acceleration
becomes significantly more meaningful. Other recent works
leverage DeepONets20 to directly learn stiff integrators using
neural operators, either with problem-specific network struc-
tures14,21 or by mapping from the current state to the source
term, similar to ChemNODE,18,22 allowing for significant com-
putational acceleration downstream.

These strengths all come with drawbacks, however. Owoyele
and Pal,17 for example, found that while the neural ODE
approach’s clever exploitation of the dynamical structure of
chemical kinetic models can provide high accuracy, the non-
linearity inherent to such models creates a challenging infer-
ence problem for the underlying MLP layers. This led the
authors to omit a handful of species (including the key H
radical) and break the training up into multiple unique and
likely redundant networks, rather than a single cohesive archi-
tecture. Similarly, DeepONet techniques are cheap to evaluate
and capture steady state behavior well, but their accuracy can
suffer in stiff regions of the data that the integrator (which with
DeepONets must be inferred directly by the network, as they do
not explicitly leverage existing ODE solvers) can learn to skip
over without significant penalties. We thus find that despite
these recent novel and productive efforts, the training of
efficient surrogate models for combustion chemistry remains
a challenging task with open questions due to stiff behavior in
the solution profiles and numerical instability in the nonlinear
training processes.

Kolmogorov–Arnold networks were proposed recently23 as
an alternative to multi-layer perceptrons (MLPs) for general
neural network applications, where instead of learning weights
and biases on fixed activation functions, the shapes and
magnitudes of the activation functions themselves are learned
via gridded basis function sums and products. This shift was
proposed to increase neural convergence rates, accuracy, and
generalization. Echoing the development of traditional MLPs,
physics-informed KAN structures were proposed shortly after,
where it was found that certain knowledge of physical laws
embedded in the training process can help the KAN converge
to a physically meaningful solution.24–26 Similar develop-
ments have been studied where direct encoding of physical
insights or specific geometries into novel KAN structures has
shown significant promise, such as including physical sym-
metries for quantum architecture search27 or irregular geo-
metries for flow simulations.28 The inference benefits of KANs
were additionally demonstrated to extend to dynamical system
modeling in the Kolmorogorov-Arnold network ordinary dif-
ferential equations (KAN-ODEs) framework,29 where KANs
replaced MLPs in the neural ODE algorithm,19 and have since
been demonstrated in a variety of settings, including predator-
prey dynamics, shock formation, complex equations, phase
separation,29 personalized cancer treatment,30 and flashover
prediction.31

In short, KAN-ODEs leverage KAN networks as gradient
getters, while maintaining standard ODE solvers to integrate

the solution profiles as in a traditional numerical approach.
KAN-ODEs were shown to retain all major KAN benefits while
also accessing the dynamical system inference capabilities of
the neural ODE framework,29 which would appear to lend them
to efficient chemical kinetic system modeling. However, a few
key questions remain. KAN-ODEs have so far only been tested
in relatively small systems (up to two-dimensional state vari-
ables), making their applicability and performance in larger,
practical combustion systems unknown. Additionally, KANs
in general have been shown to suffer substantially when trained
with noisy datasets.32 While we theorize that their direct
coupling to ODE integrators combined with their sparse para-
meterization and smooth activations should provide KAN-ODEs
with strong robustness to noise regardless of previously
reported issues in generic KANs, this has not yet been studied
quantitatively.

In this work, we aim to develop a chemistry KAN-ODE
(ChemKAN) framework for chemical kinetic modeling by
designing the Kolmogorov–Arnold network gradient getter to
learn the spatially-invariant relationship between the current
thermochemical state and the chemical source terms. In the
operator splitting regime, such a surrogate can be directly
coupled to existing CFD or machine learning-based flow solvers
for multi-dimensional combustion simulations in arbitrary
physical domains. Developed across two case studies of increas-
ing complexity, the ChemKAN framework contains a physics-
informed, two-stage training process that enforces the direct
coupling between species production and heat release, and
additionally contains a soft constraint for element conserva-
tion. We further stabilize the optimization problems by imple-
menting forward sensitivity analysis. Stiff chemistry is fully
resolved via an attached numerical ODE solver. We study two
cases here to explicitly probe the key behaviors and gaps in the
model inference and solver acceleration literature identified
above, both of which are addressed with ChemKANs.

First, we demonstrate the capability of ChemKANs to extract
realistic and multi-species models from synthesized experi-
mental data in a comparison against DeepONets (DONs) in
biodiesel production modeling. In this case, increasing levels of
noise in the training data test the abilities of the two different
approaches to extract the true underlying behavior, and evalu-
ate the robustness of ChemKANs (and KAN-ODEs in general) to
noisy data in light of the recent work suggesting the weakness
of KANs in the presence of noise.32 Second, we demonstrate
ChemKANs as efficient and time-saving surrogate models in an
even larger system by learning zero-dimensional hydrogen
combustion behavior using homogeneous reactor data that
are subject to stiff dynamics, in a study designed to facilitate
direct comparison against the MLP-based ChemNODE struc-
ture17 that this second ChemKAN application was inspired by.
In contrast to ChemNODE, where a reduced subset of the
thermochemical state (excluding H, HO2, and H2O2) was
learned using separately trained, non-interacting networks,
we learn all species and temperature profiles here with a single
compact ChemKAN network while retaining similar computa-
tional acceleration and performance. Across these two distinct
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cases, we demonstrate the strong capability and robustness of
ChemKANs as efficient and expressive tools for both modeling
and inference in combustion chemistry.

2 Methods

This section describes the mathematical details in the newly
developed chemistry Kolmogorov–Arnold network ordinary dif-
ferential equations (ChemKANs). We begin with a review of a
zero-dimensional chemical kinetic model without transport
effects in Section 2.1, followed by existing MLP-based kinetic
modeling techniques in Section 2.2. Then, we discuss the
implementation of the ChemKAN framework for multi-
purpose chemical model inference and computational accel-
eration in Section 2.3. That subsection includes a physics-
enforced ChemKAN architecture, optimal learning strategies,
and physics-informed loss functions. Finally, in Section 2.4 we
provide the kinetic models of biodiesel pyrolysis and hydrogen–
air combustion that are used to demonstrate the performance
of ChemKANs.

2.1 Chemical kinetics model

Given the state variables u(t) = [Y1, Y2, . . ., Ym, T](t) where T is
the temperature, Y is the mass fraction, and m is the number of
species, the net production/consumption rate for each species
in a homogeneous reactor can be expressed as

dYi

dt
¼ 1

r
Wi _oi; (1)

where t is the time, r is the density, Wi is the molecular weight
of species i, and _o is the molar production or consump-
tion rate.33 In the commonly used operator splitting approach,
this homogeneous reactor is also applicable to higher-
dimensional, turbulent simulations. While the specific func-
tional form may differ across systems, _o is typically a strong
function of temperature (for example, in the Arrhenius form
_o / exp �Ea=RTð Þ) as well as the current species concentrations.
Additionally, energy conservation can be modeled by tracking the
system temperature as in eqn (2).

In some cases, eqn (1) sufficiently describes a chemical
process when heat release or consumption is negligible. In
other cases, such as combustion and pyrolysis processes,
chemical reactions entail exothermic and endothermic beha-
viors. In these cases, the temperature of a system can be tracked
with energy conservation, as in

dT

dt
¼ �

Xm
i¼1

hi _Yi

cp
; (2)

where cp is the mixture-averaged specific heat and hi is the
enthalpy of species i. Here, the strongly nonlinear coupling of Y
and T in eqn (1) and (2) often leads to modeling challenges
such as numerical stiffness. While always present in the
governing laws and essential to accurate modeling for pro-
cesses such as combustion and pyrolysis, eqn (2) can occasion-
ally be neglected, such as when modeling the kinetic rates of an

isothermal experiment. We can express eqn (1) and (2) as a
generic system of equations f such that

du

dt
¼ f u; tð Þ: (3)

Therefore, the thermochemical states u can be predicted by
integrating f(u, t) with an ODE integrator over time.

2.2 MLP-based models

Recent machine learning approaches for model inference and
computational acceleration often rely on neural networks
constructed from multi-layer perceptrons (MLPs). Among
them, we introduce two mainstream models based on deep
operator networks and neural ordinary differential equations.
We will use these two MLP-based models to highlight
the performance of our ChemKANs (to be introduced in
Section 2.3).

2.2.1 Deep operator network (DeepONet). As one of the
more popular architectures for combustion applications,14,18,21,22

DeepONets20 learn the chemical kinetic system (outlined in
Section 2.1) through a physics-inspired separation between
the system’s parameterization and the solution coordinate
(Fig. 1(A)). Specifically, the solution is learned using two neural
networks (branch net for thermochemical states u and trunk
net for time t), as per

u(u(0), t) = MLPopt[MLPbr(u(0), hbr)}MLPtr(t,htr),hopt]. (4)

More specifically, given an initial condition u(0) = [Y(t = 0),
T(t = 0)], the DeepONet reports the solution u at a given time t
as the element-wise product (}) of the branch network MLPbr

evaluated on the initial condition and the trunk network MLPtr

evaluated on the current time, with an optional final MLPopt

layer for additional nonlinear encoding. h are the learnable
parameters for the respective neural networks. The DeepONet
here, as well as in other augmented structures from higher-
complexity implementations,18,22 directly learns the solution
state at future times. By eliminating the integration step, these
methods have shown substantial acceleration of computa-
tional times.

2.2.2 ChemNODEs. In contrast to the DeepONet approach,
ChemNODE17 aims to learn the source terms f in eqn (3), rather
than the direct thermochemical states over time u(t). However,
training challenges were observed17 when testing a single MLP
network with m + 1 inputs and m + 1 outputs (m for Y and 1 for T).
This led to the development of a segregated model for each
thermochemical state ui, as per

dui

dt
ðtÞ ¼MLPi u tð Þ; hið Þ: (5)

Therefore, ChemNODE constructs m + 1 MLP networks, each of
which reads the entire current thermochemical state vector u.
The ith network has its own unique set of parameters hi, and is
responsible for computing the current temporal gradient of
that scalar ui. Notably, ChemNODE is still trained via MSE loss
computed against the integrated solution profile (rather than
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the gradients that the MLPs directly output), thanks to the
differentiable Neural ODE framework.19 This latent-dynamics
modeling for f allows ChemNODEs to compute rate terms
without restriction to a specific instance. This contrasts with
standard DeepONets, which require an initial condition fed
into the branch network. Therefore, ChemNODEs can be effort-
lessly generalized as the interpretable source terms even for
large-scale simulations.

We remark again that the split networks MLPi in this
framework appear inefficient. In fact, this multi-network
approach requires an (m + 1)-step training process, where each
network is trained with the remaining thermochemical scalars
held frozen. While this separated training strategy facilitates
model convergence (and in fact was found necessary17 to
converge the MLP gradient getters), it increases training cost
significantly with the number of species, especially when con-
sidering that no knowledge is shared between networks, even
for common reactants. See Fig. 1 for visualizations of these two
existing methods, as well as a simplified depiction of the
method we will propose in the next sections.

2.3 Chemistry Kolmogorov–Arnold network ordinary
differential equations (ChemKANs)

2.3.1 Vanilla KAN-ODEs. The KAN-ODEs framework was
proposed by Koenig et al.29 to model a dynamical system in the
form of differential equations, where the gradient function is
replaced by a KAN network of L layers,

du

dt
¼ KAN u tð Þ; hð Þ ¼ CL�1 �CL�2 � � � � �C1 �C0ð Þ u tð Þð Þ; (6)

where KAN is the KAN representation of the system equation,
parameterized by h. The original KAN structure,23 so-called
AddKAN, connects an nl-sized input to an nl+1-sized output

with the learnable activation function matrix such that

AddKAN: Cadd
l ¼ Fl

¼

jl;1;1ð�Þ jl;1;2ð�Þ � � � jl;1;nl
ð�Þ

jl;2;1ð�Þ jl;2;2ð�Þ � � � jl;2;nl
ð�Þ

..

. ..
. ..

.

jl;nlþ1 ;1ð�Þ jl;nlþ1;2ð�Þ � � � jl;nlþ1;nl ð�Þ

0
BBBBBBBB@

1
CCCCCCCCA
;

(7)

where each f is a unique learnable activation function con-
necting a single input to a single output (thus Fl 2 Rnl�nlþ1 ).
In other words, each input is connected to each output with a
unique learnable activation function (much like in an MLP,
where each input is connected to each output with a unique
learnable weight), leading to a total of nl�nl+1 activation func-
tions connecting the lth and (l + 1)th layers. We use RBF basis
functions in the current work as was shown previously for
KANs34 and KAN-ODEs,29,35 although the choice of f is flexible,
and many other options have been proposed in the literature
including B-splines,23 ReLU functions,36 and various other
combinations.37,38 The AddKAN structure has an inherent
problem of expression using only additive operations, limiting
its concise expressivity for problems involving substantial use
of the multiplication operator. Therefore, recent studies have
proposed new layer structures to address this issue and
improve parameter efficiency.35,39 Here we use LeanKAN,35

which has shown promise to be the most effective and efficient
for both additive and multiplicative operations. The LeanKAN
structure is achieved by summation of two separate terms,
yadd

l and ymult
l , such that

LeanKAN: Clean
l xlð Þ ¼ ymult

l þ yaddl 2 Rnlþ1 ; (8)

Fig. 1 Comparison of three kinetic modeling approaches discussed in this work. (A) DeepONet, where the initial (m + 1)-dimensional state and current
time are input to two inductively split networks (and a third optional network) to output the current state. (B) ChemNODE, where the complete current
state is input in parallel through m + 1 separate networks, each of which outputs a single state gradient, the collection of which is integrated through a
differentiable ODE solver to reach the next time step. (C) ChemKAN, which has a similar workflow to ChemNODE but replaces the m + 1 MLP networks
with a single, physics-mimicking KAN-based structure that is capable of computing the entire state gradient in a single pass.
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ymult
l;i ¼

Ynmu
l

j¼1
jl;i;j xl;j

� �
for i 2 f1; 2; . . . ; nlþ1g � N; (9)

yaddl;i ¼
Xnl

j¼nmu
l
þ1

jl;i;j xl;j
� �

for i 2 f1; 2; . . . ; nlþ1g � N; (10)

where nmu
l is the multiplication hyperparameter that dictates

the number of multiplication input nodes for layer l, and f are
the same univariate activation functions used in AddKAN (to be
defined below). Overall, the LeanKAN formulation takes the
nl � nl+1 matrix of activated inputs, computes sums and
products in parallel according to nmu to construct the inter-
mediate yl, and finally sums the multiplication and addition
components of yl to arrive at the next layer. Further derivation
and implementation details are available for KANs,23 KAN-
ODEs,29 and LeanKAN layers.35

Finally, the activation functions themselves can be expressed
with gridded basis functions34 as per

jl;a;b xð Þ ¼
XN
i¼1

w
c
l;a;b;i � c x� cik kð Þ þ wb

l;a;b � b xð Þ; (11)

cðrÞ ¼ exp � r2

2h2

� �
; (12)

where we define N as the grid size, or number of superimposed
basis functions used to construct a single activation. wc

l,a,b,i

and wb
l,a,b are the learnable network parameters that make up h,

where wc
l,a,b,i scales each gridpoint’s RBF basis functions c(r)

within the sum, and wb
l,a,b scales a single base acti-

vation function b(x). a and b denote the input-output pair for
which the current activation function is defined (e.g., the
activation function with subscripts a = 3 and b = 2 connects
the second input node to the third output node).The grid itself
is defined by its individual gridpoints ci and gridpoint spacing
(or RBF spreading parameter) h. While Liu et al.23 suggest
periodically re-gridding these basis functions to ensure
they are learning on the proper input range, here we instead
normalize at each layer input using the tanh function as in
more recent works29,35,40,41 for computational efficiency. The
single base activation term b(x) in each f is a Swish activation
function.42

2.3.2 Novel chemistry KAN (ChemKAN) architecture. Here,
we design a novel ChemKAN architecture through a unique
composition of AddKAN and LeanKAN layers that shows invar-
iance to the number of species by combining all model beha-
vior into a single network architecture (see Fig. 1). The standard
KAN-ODE architecture has the same dimensions of inputs and
outputs (m + 1 thermochemical states in our current problem).
In contrast, the ChemKAN architecture mimics the structure of
the actual governing equations in eqn (1) and (2) to redirect the
kinetic and thermal inputs and outputs in a physics-inspired
manner. We define the full and species-only state variables
with u = [ũ, T], and separate the kinetic and energy equations

such that

d~u

dt
¼ KANkin u; hkinð Þ; (13)

dT

dt
¼ Linear

d~u

dt
; hthermo

� �
þ e (14)

= Linear(KANkin(u, hkin), hthermo) + KANcor(u, hcor).
(15)

We define the terms in these equations line by line through-
out this paragraph. In eqn (13), we encode prior knowledge of
the true species production/consumption rate relationship of
eqn (1) into the ChemKAN by computing the species-only
production rate dũ/dt from the entire state input u, via a KAN
network (KANkin) parameterized by hkin. Then, from the true
energy equation (eqn (2)), we recognize that the temperature
rate dT/dt is a simple linear combination of the species
production rates, with scaling factors defined by the enthalpy
h and specific heat values cp (or alternatively, in eqn (14) by the
m scalars in the linear mapping parameterized by hthermo).
Thus, the crux of the thermodynamic superstructure is a
computationally trivial, simple linear sum of the already-
evaluated outputs of the kinetic core, as shown in eqn (14)
and (15). One level deeper, we recognize that a secondary effect
in the true eqn (2) is the dependence of the thermophysical
parameters, specifically cp, on the temperature and species
mixture. The error stemming from the first-order Linear(�)
approximation’s failure to account for such thermophysical
parameter variation is reflected in the e term of eqn (14), which
in the final formulation of eqn (15) is accounted for via a
supplemental single-layer, single-output KAN correction carry-
ing forward a functional dependence on the species and
temperature inputs, parameterized by hcor. Overall, ChemKAN
is composed of a kinetic core structure and a thermodynamic
superstructure that strongly mimic the true governing equa-
tions, operate largely in series, and include full sharing
of all reaction and species production information. This archi-
tecture allows for versatile and flexible modeling by turning
‘‘on’’ or ‘‘off’’ the energy equation for standalone, kinetic core-
only modeling or combined kinetic and thermodynamic
modeling.

2.3.3 Network structure details. The ChemKAN structure
proposed here is combined with the KAN-ODE framework
detailed in Section 2.3.1 to leverage both the physics-guided
ChemKAN architecture and the proven dynamical system ben-
efits offered by the KAN-ODE integration. For nomenclature
consistency, we henceforth refer to both the newly designed
network structure as well as its complete integration with an
ODE solver as ChemKAN. For the relatively larger kinetic core
responsible for learning all reaction information, we define the
internal layer structure as

KANkin(u(t), hkin) = (Clean
1 3Cadd

0 )(u(t)), (16)

a two-layer structure per the notation introduced in eqn (6). The
first is an AddKAN layer23 (which is equivalently35 a LeanKAN
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layer with nmu = 0). The second is a LeanKAN layer with nmu 4 0
to inject the multiplication operator. Further discussion of this
specific two-layer form and its merits is available separately.35

The thermodynamic correction structure simply comprises a
scalar sum of univariate activations evaluated on the m + 1
components of u,

KANcor(u(t), hcor) = Cadd
0 (u(t)). (17)

As in ChemNODE, differentiable ODE solvers are leveraged to
enable ChemKAN encodings of the state gradients to be trained
on the integrated state profiles.

2.3.4 Loss function. We define the loss function used for
ChemKAN training as

L hð Þ ¼ LMSE hð Þ þLPINN hð Þ

¼ 1

n�

XNt

j¼1

Xn�
k¼1

û
pred
k tj ; h
� �

� ûobsk tj
� �� �2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
MSE; variable n�

þ aPINN

XNe

i¼1

XNt

j¼1

Xm
k¼1

Nk
i Wi Ypred

k;j � Ypred
k;1

� �
Wk

						
						|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

optional element conservation

;

(18)

where n� ¼ m; in Stage1:
mþ 1; in Stage2:




Here ûk denotes the kth thermochemical state normalized to
the [0, 1] window by subtracting the minimum then dividing by
the range. ûpred

k (tj, h) is the network prediction for this state
quantity at time tj with the network parameters h (including the
kinetic, thermo, and correction parameters), while ûobs

k (tj) is the
corresponding training data. Nt is the number of datapoints in
the temporal profiles. In the first MSE term, n* = m when
training the kinetic core, as only species profiles are learned.
For the thermodynamic superstructure, n* = m + 1 is used
to train the added temperature output. We also provide an
optional element conservation physics-informed loss term, or
PINN term,43,44 to encourage the ChemKAN to find models that
obey physical laws. There, Ne is the number of elements in the
data (i.e., H, O, N). For a given element i, the element conserva-
tion term begins by computing the mass fraction difference
across all m species between the current ChemKAN timestep
and the initial condition. This is then converted to an elemental
conservation difference via Nk

i , the atom count of element i in
species k; Wi, the atomic mass of element i; and Wk, the molar
mass of species k. This conserved term is computed at all
timesteps j across all elements i, and then weighted by aPINN

(here aPINN = 10�4). In the examples below, we use only the MSE
loss for all biodiesel model inference results, and the MSE loss
with the PINN term for H2 model acceleration.

2.3.5 Training process. We highlight again that this archi-
tecture incorporates significant inductive bias by separating the
inference of the kinetic behavior and thermodynamic behavior
into distinct layers and activations within the complete struc-
ture, giving the network an explicit functional coupling
between the temperature rate and the species rates to ease its

training burden while retaining an accurate model of the real
exothermic and endothermic behavior of the system. In itself,
this serially run inductive split should theoretically ease some of
the nonlinear training difficulties observed with ChemNODE17

while retaining a single cohesive and information-sharing struc-
ture. Additionally, and more importantly to stable training and
convergence behavior, it allows us to separate the training itself
into a kinetic and a thermodynamic stage to greatly reduce the
inference burden, as discussed here:
� Training stage 1—core kinetics hkin: all m + 1 inputs are

used, and only the m species production rate outputs are
learned (see eqn (13)). The thermodynamic superstructure of
eqn (14) and (15) is not used in this stage, and the input
temperatures are simply read in from the training data to
provide the kinetic core of the network with a simpler training
task. See the grey highlight in Fig. 2. For cases without heat
release, this step in isolation is sufficient for a complete model.
With heat release, we move to stage 2 once stage 1 is converged.
� Training stage 2—thermodynamic superstructure hthermo

and hcor: once stage 1 is converged, the thermodynamic super-
structure is added and the temperature rate is explicitly
learned. The entire network (eqn (13) stacked with eqn (15))
is updated in order to infer the temperature together with all
species. See the red highlight in Fig. 2, which is stabilized
during training with the already-converged behavior of the grey
kinetic core.

This two-stage training process contrasts with the m + 1
stage training process of ChemNODE,17 which requires m + 1
networks to all learn their own distinct representations of what
we know to be shared kinetic and thermodynamic governing
laws. The current ChemKAN approach, while trained in two
distinct stages, has an overall structure resembling a simple
feedforward KAN thanks to its stacked design, where all kinetic
and thermodynamic information is shared across all inputs
and outputs. For downstream evaluation, a single forward pass
through the combined network of Fig. 2, or alternatively
through eqn (13)–(15), predicts the complete thermochemical
state vector u(t).

While adjoint sensitivity analysis was used in the original
KAN-ODE paper29 to compute the gradients of a loss function
dL/dh, in the current work we note the numerical instability
present in many chemical kinetic modeling problems due
to numerical stiffness,3,17,18,22,45 potentially leading to failures
with adjoint sensitivity analysis in the training process.3

To prevent this, we implement forward sensitivity analysis to
mitigate this potential stiffness issue in the ODE solver.3

ChemKANs and their corresponding forward sensitivity equa-
tions are solved using an ODE integrator of Tsit5 (Tsitouras
5/4 Runge–Kutta method46). The learnable parameters h

are trained by the Adam optimizer47 with a learning rate of
2 � 10�3.

2.4 Data generation for case studies

We introduce two chemical reaction systems to demonstrate
ChemKANs as a multi-purpose modeling technique. The first
case of biodiesel production will illustrate the effectiveness of
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ChemKANs for inferring a chemical kinetic model purely from
noisy data. Then, we show computational acceleration for high-
fidelity simulations using ChemKANs in a hydrogen–air com-
bustion example subject to significant numerical stiffness.

2.4.1 Model inference from noisy data – biodiesel pro-
duction. Biodiesel production involves the transesterification
of branched triglyceride molecules (TG) with methanol into
straight-chain methyl ester molecules, as described48 and
modeled5,49 previously. A motivating goal here is to evaluate
the ChemKAN framework’s capability to learn the true models
underlying experimental data in a preliminary and numerically
well-behaved case related to combustion chemistry, and to
probe its robustness to noisy data masking the true
underlying signal.

With the three byproducts di-glyceride (DG), mono-glyceride
(MG), and glycerol (GL), the three-reaction system can be
expressed as

TGþROH �!k1 DGþR0CO2R; (19)

DGþROH �!k2 MGþR0CO2R; (20)

MGþROH �!k3 GLþR0CO2R; (21)

where the reaction rates scale with temperature via the stan-
dard Arrhenius law as ki = Ai exp(�Ea,i/RT), with i = 3 for the
three reactions. As studied previously,5 we generate data in this

case using Ea = [14.54, 6.47, 14.42] kcal mol�1 and ln(A) =
[18.60, 7.93, 19.13], with isothermal experiments at tempera-
tures randomly sampled in the range of 323 K to 343 K. We
define the species scalar quantities Y here as concentrations
rather than mass fractions, to match the convention with the
governing equations. Initial TG and ROH concentrations are
randomly sampled uniformly between 0.5 and 2 with all other
intermediate and output species initialized at zero. 20 training
data sets and 10 testing data sets are generated, with 30-second
time windows in both consisting of 30 sampled points. The
temperature-dependent yet isothermal reaction rates present in
this system motivate the use of the kinetic ChemKAN core
structure only (see the Hydrogen example below for use of the
kinetic core together with the thermodynamic superstructure).

In this case we additionally probe the effectiveness of
ChemKANs in the presence of significant experimental noise.
To do so, we add increasing amounts of noise to the data and
evaluate ChemKAN’s performance against that of a standard
DeepONet.20

2.4.2 Model acceleration – hydrogen–air combustion.
Despite its relatively simple chemistry, hydrogen–air combus-
tion is subject to numerical stiffness, leading to high computa-
tional costs and numerical instability in the ODE solver. The
main goal of the ChemKAN here is to achieve high accuracy in
species and temperature profile reconstruction while reducing
computational cost compared to the detailed chemistry solver.
We generate training data in Cantera,50 using the H2/O2

Fig. 2 Proposed ChemKAN structure to embed physical knowledge in KAN-ODEs for chemical kinetic modeling. The grey portion of the network
contains m + 1 inputs (all species and temperature) and m outputs (all species rates), and represents the kinetic behavior of the chemical model. The red
portion of the network performs a linear transformation on the species rates, with a nonlinear thermophysical parameter correction, to account for the
thermodynamic behavior leading to heat release and temperature change. The ChemKAN can either be trained and evaluated for kinetics only (as in the
biodiesel case of Sections 2.4.1 and 3.1), or trained sequentially for kinetics and then thermodynamics, with both portions of the network evaluated in
serial for applications predicting both kinetic and thermodynamic behavior (as in the H2 case of Sections 2.4.2 and 3.2).
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mechanism from GRI-Mech 3.051 (9 species, 29 reactions). Data
are generated at all 36 combinations of initial temperatures T0

in {950, 1000, 1050, 1100, 1150, 1200} K and equivalence ratios
F in {0.7, 0.9, 1.1, 1.3, 1.5}, with the [1150 K, 1.3] case withheld
as unseen testing data. The problem setup here is largely
identical to that studied originally in ChemNODE17 to facilitate
fair comparison, although here we add the single withheld
testing dataset to probe ChemKAN’s robustness (thus 35 training
datasets are used, compared to the 36 in ChemNODE).

In addition to significantly increased numerical stiffness
and complexity, a key fundamental difference between the
current combustion system and the previous biodiesel synth-
esis case is the presence of substantial two-way temperature
coupling as per eqn (1) and (2). To account for this, we include
the thermodynamic ChemKAN superstructure and the two-
stage training process outlined in Sections 2.3.2–2.3.5.

3 Results and discussion
3.1 Biodiesel model inference from noisy data

We begin with an analysis of the biodiesel model inference of
the ChemKAN (the kinetic core only for this isothermal case),
and a comparison against a traditional DeepONet for an
identical task. DeepONets were selected as the target of com-
parison due to their general use in the scientific machine
learning community, to provide a baseline against which to
evaluate our first ChemKAN results. Note that comparison
against ChemNODE is saved for the hydrogen–air combustion
case in Section 3.2.

3.1.1 Model performance of the proposed ChemKAN archi-
tecture. The kinetic core (eqn (13)) of the ChemKAN comprises
two layers: one AddKAN and one LeanKAN, as discussed in
Section 2.3.2. Note that the thermodynamic superstructure
(eqn (15)) is not applied in this problem as the process is
isothermal. A four-node hidden layer is used, with all activa-
tions comprised of three-point grids. The multiplication hyper-
parameter nmu in the LeanKAN layer is set to 2 as per the
standard LeanKAN formulation.35 The training and testing data
are sampled from the ground truth at a sparse time interval of
1 s, leading to 30 total data points for each individual species.
The ChemKAN is trained on this data for 104 epochs. The
leftmost column of Fig. 3 shows example time-history species
profiles for an unseen test case with the ground truth, unseen
test data, and prediction by the learned ChemKAN model. With
clean, noise-free data, the ChemKAN successfully learns the
underlying model and shows good generalizability, with accu-
rate predictions at the training time steps and smooth profiles
in between.

A common characteristic of experimental data used for
machine learning model inference is the presence of uncer-
tainty or noise, which can cause even well-parameterized deep
learning models to overfit as they struggle to distinguish
genuine underlying trends from experimental artifacts. This is
no different in traditional KANs, where small amounts of noise
have been shown to severely limit inference capabilities.32 In the

current work, we further probe whether coupling to inherently
noise-robust ODE solvers helps ChemKANs to extract useful
models from increasingly noisy data. To do so, we task
ChemKANs with extracting models from the same dataset with
varying amounts of noise added (up to 15%) as shown in Fig. 3.
Surprisingly, the ChemKAN, even with significant amounts of
noise, demonstrates strong robustness and a capability to infer
smooth and accurate solution profiles that correspond well to
the underlying true data. We provide detailed discussions
on how ChemKAN performs compared to DeepONet in the
following subsections.

3.1.2 Neural scaling with noise-free data. Neural scaling is
an effective method of measuring parameter efficiencies in
neural networks. Here, different parameter sizes were investi-
gated by changing the number of nodes in the hidden layers.
Training and test losses were evaluated for data without added
noise, to isolate the underlying expressive capabilities of each
technique. Fig. 4 reveals neural scaling at orders of 1.0 and
0.6 for the training and testing metrics of ChemKANs (where
the order of neural scaling is defined as the power to which the
loss decreases with respect to the number of parameters).
While we might expect values up to 4 based on prior KAN23

and KAN-ODE29 studies, we remark here that the low-order
neural scaling appears to indicate relatively saturated training
of the ChemKAN with errors already around 10�4 with just 72
parameters, rather than poor convergence which might other-
wise have been indicated if low convergence rates were coupled
with poor loss metrics.

To further probe the nuances of ChemKAN’s convergence
efficiency, we compare its results with those of DeepONet. The
ChemKAN iterates roughly an order of magnitude slower but
converges in fewer epochs (as also noted in prior work29).
Thus, to facilitate fair comparison the ChemKAN was trained
only for 5000 epochs, while the DeepONet was trained for
50 000 epochs. Two key distinctions between ChemKAN and
DeepONet are as follows. First, as discussed earlier, the extre-
mely sparse ChemKANs (toward the left half of Fig. 4(A)) are
able to reach remarkably low error even with just 78 para-
meters, while the DeepONets see significantly worse perfor-
mance at sparse parameterizations (also seen in the left half of
Fig. 4(A)). Secondly, we note that the DeepONet sees signifi-
cantly higher order neural convergence in the training results,
allowing it to surpass the training performance of the Chem-
KAN at above 200 parameters, with remarkably strong training
accuracy for the largest, 456-parameter DeepONet studied here.
Linear fits with slopes are shown in Fig. 4(A) to illustrate this
point, where the last ChemKAN and last two DeepONet points
are excluded as they begin to plateau in training loss. From this
observation, a large-enough DeepONet seems to outperform
ChemKAN when looking only at the training losses.

To further contextualize the structural efficiency, we discuss
results for the testing error of the same neural convergence
runs in Fig. 4(B). Here, we notice a significant departure from
the training convergence rates in Fig. 4(A). Unlike the neural
convergence for training data, the ChemKAN is seen to outper-
form the DeepONet at all sizes, with the largest ChemKAN
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leveling out and retaining nearly the same testing performance
as the second-largest ChemKAN. The DeepONet, while enjoying
a faster neural convergence rate below 308 parameters, notably
fails to plateau and instead appears to diverge at higher
parameter counts. When compared against the training results
in Fig. 4(A), we observe two distinct modes of training satura-
tion. Saturation, or the point where the linear fit no longer
holds, appears to occur for the two largest DeepONets. For
the ChemKAN, we might either interpret the entire profile to be
saturated, or highlight the single largest network as the satura-
tion point. Regardless, what we observe in these high-parameter

networks is high robustness in the ChemKAN to overfitting (with
a flat testing loss plateau), compared to the significant over-
fitting and divergence seen in the DeepONet past 308 parameters
(i.e., the last two testing points seeing increasing loss).

It is unsurprising that a standard deep learning technique
begins to overfit a small dataset when given a large number of
parameters. The DeepONet overfitting past saturation leads to
further decreases in training loss accompanied by significant
increases in testing loss. What we do find surprising, however,
is ChemKAN’s apparent resilience to overfitting, even with
similar parameter counts. In this context, its original failure

Fig. 3 Ground truth and prediction by the learned ChemKAN model for an unseen test case. Each column shows the evolution of species
concentrations trained at different noise levels from 0% to 15% given the unseen initial condition of [TG] = 1.94, [ROH] = 1.43, [DG] = 0.0, [MG] =
0.0, [GL] = 0.0, [R 0CO2 R] = 0.0, and T = 334.8 K. Noise is shown in the unseen test data to visualize the effect of the noise on the seen training data.
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to reach the same training performance as the DeepONet
appears to be a strength of the method rather than a drawback,
as it reaches a minimum value for both training and testing
and then remains robust to superfluously added parameters,
while the DeepONet clearly requires additional care to avoid
overfitting. This pilot neural convergence test suggests that
ChemKANs are robust to overfitting, and motivates further
study of their capability in a second, more realistic model
inference scenario.

3.1.3 Benefits of latent-dynamics modeling: noisy infer-
ence comparison. To gain a deeper understanding of how
ChemKAN outperforms DeepONet, we further test the training
behaviors of ChemKAN and DeepONet with noisy data. Early
stopping is carried out for both network structures at 10 000
epochs, to enable fair comparison and limit overfitting in the
DeepONet cases. In all cases, a DeepONet with 308 parameters
was used to compare against a ChemKAN with 156 parameters.
The 308-parameter DeepONet was chosen based on the results
of Fig. 4, where this was seen to be the largest DeepONet before
the test loss began overfitting. The 156-parameter ChemKAN,
meanwhile, was chosen to roughly match the DeepONet’s
training and testing performance at zero noise. In other words,
we chose the best-performing DeepONet size possible based on
the preliminary neural convergence study, and then sized the
ChemKAN according to the zero-noise performance of both
networks. In more detail, the DeepONet had a three-layer
branch network with eight nodes per layer and a two-layer
trunk network with seven nodes in the first layer and eight in
the second layer, with a final output layer converting these two
eight-dimensional layers to the six-dimensional solution vector.
The ChemKAN, meanwhile, had a single hidden layer with four
nodes, two of which included multiplication operators (nmu = 2)
as per the standard LeanKAN formulation,35 and three grid-
points per activation.

Fig. 5(A) shows average training results after 104 epochs
across the 20 training and 10 testing cases at varied noise levels
from 0% to 15%. As expected from Section 3.1.2, the training
MSE with 0% noise shows that the 308-parameter DeepONet

slightly beats the 156-parameter ChemKAN in training perfor-
mance, and is slightly worse in terms of reconstructing the
unseen testing data.

As increasing noise is added to the system, we see in the
standard training and testing metrics of Fig. 5(A) that both
networks unsurprisingly see increases in training and testing
errors. Roughly, the increase in MSE error in the training losses
scales with the square of the noise, as follows from eqn (18). For
example, the ChemKAN sees an increase in MSE between 0%
noise and 1% noise of 3.78 � 10�5, where the second degree
scaling of the MSE suggests that a 25� larger increase of
9.45 � 10�4 might be expected between 0% noise and 5%
noise. This is indeed observed, with an increase in this latter
case of 9.64 � 10�4 E 9.45 � 10�4. Thus, the increase in
training error for both networks as noise is added can be
attributed to the effect of the noise itself on the loss function
(eqn (18)), and does not appear to indicate any problems with the
two networks’ capabilities to fit the increasingly noisy training
data. For a direct comparison, The ChemKAN retains lower testing
error throughout all tested noise values, and at 7% noise and
above, it is actually able to reach a lower training error than the
DeepOnet. Looking at the big picture, however, results in these
two metrics remain within a factor of two of each other at all noise
levels, indicating largely similar performance.

Upon further evaluation, we found that the training and
testing MSEs evaluated on noisy datasets do not fully capture
the effects of noise on useful model predictions, as overfitting
can occur not only to the training conditions but also to the
noise present in the data. To more effectively compare these
frameworks, we introduce a noise-free MSE metric as was
previously studied in the context of KANs,32

LMSE;noise-free ¼
1

n�

XNt

j¼1

Xn�
k¼1

û
pred
k tj ; h
� �

Þ � ûtruek tj
� �� �2

; (22)

which differs from the test MSE LMSE in eqn (18) in its use of
the true, noise-free data rather than the noisy observations.
This noise-free metric serves to quantify the capability of the

Fig. 4 Neural convergence comparison between ChemKAN and DeepONet (no noise). (A) Training MSE results with varying ChemKAN and DeepONet
sizes. (B) Testing MSE results with varying ChemKAN and DeepONet sizes. Fitted slopes D in the log scale are provided for each convergence test, where
linear fits are evaluated prior to saturation (or in the DeepONet testing results, prior to overfitting).
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two modeling approaches to accurately extract the true under-
lying model from noisy data, rather than overfit the noise or
otherwise fail to deliver a useful model. With this metric, much
more significant performance shifts can be seen in the noise-
free testing values in Fig. 5(A). The impact of the added noise
on the noise-free testing error for the ChemKAN is relatively
small (a roughly 2� increase from 0% to 15% noise), suggesting
that the ChemKAN is able to extract the true underlying
behavior well from the noisy datasets. We reiterate the signifi-
cance of this result in the context of prior work,32 where
standard KANs were demonstrated to fail when faced with
small added noise. In contrast, the DeepONet sees a 5�
increase in noise-free testing MSE from 0% to 15% noise,

with its final noise-free testing loss 4.4� larger than that of
the ChemKAN.

The loss profiles in Fig. 5(B) provide further insight on the
training dynamics that lead to this significant discrepancy in
noise-free testing reconstructions. In the 0% noise training
cycle of Fig. 5(B), we see fairly standard behavior across the
training and noise-free testing traces for the DeepONet and
ChemKAN, with all quantities steadily decreasing for the entire
duration of training. This is the expected result, as we have
sized the DeepONet based on Fig. 4 to avoid any overfitting in
the noise-free case. As we increase the amount of noise to 2%,
the training loss values are heavily penalized (due to the noisy
data used in the computation of eqn (18)), while the noise-free

Fig. 5 ChemKAN and DeepONet training results with increasing amounts of synthetic noise added to the training data. (A) Converged training, testing,
and noise-free testing loss comparisons as a function of % noise. (B) Comparison of training and noise-free testing loss profiles at increasing amounts of
noise (0%, 2%, 7%, and 15%, respectively). Color legends in (B) are the same with (A). DeepONet is seen to overfit substantially with noisy data, while
ChemKAN continues to converge to lower values in all metrics, with no indication of overfitting.
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testing values are slightly penalized but remain comparatively
strong, indicating that both approaches are at least to a certain
extent able to extract the true underlying model from the noisy
data. While the training loss continues to drop quickly and
then plateau in all four subplots, we see in the 7% noise case of
Fig. 5(B) that the DeepONet noise-free testing loss dynamics
begin to suffer, with a minimum value near 5000 epochs and a
slight upward trend toward later epochs, likely due to over-
fitting. In the 15% noise case of Fig. 5(B), this issue is further
exacerbated, with an early minimum near 1000 epochs followed
by significant overfitting to the noisy data for the remainder of
the training profile. The ChemKAN in both cases remarkably
continues to drop its noise-free testing loss even while the
DeepONet is overfitting, with late-epoch dynamics showing
plateaued minimum values rather than the overfitting seen in
the DeepONet. This echoes the behavior seen in Fig. 4, where
the ChemKAN did not overfit and instead simply plateaued at
its minimum training and testing errors.

Reconstructed training data profiles are shown for the 15%
noise case in Fig. 6. While the DeepONet and ChemKAN
are both roughly able to find the unseen, noise-masked
ground truth profile, a close inspection reveals not only better
ChemKAN fits but also notably jagged profiles from the
DeepONet as it attempts to overfit the noise present in the
training data. These results suggest that the dynamical sys-
tem exploitation inherent to the ODE-based framework of
ChemKANs (and KAN-ODEs in general) can mitigate or even
entirely resolve previously observed issues32 regarding noisy
data with KANs, and help to surpass the performance of
standard DeepONets.

In summary, we have demonstrated ChemKANs as a promis-
ing tool for model discovery in temperature-dependent
chemical kinetic systems, especially with realistically noisy
datasets. They show promise not only on the scientific side of
the problem, where they were demonstrated here to have
significant capability compared to a standard tool in discover-
ing models hidden under noisy data, but also on the machine
learning side of the problem, where we have demonstrated that
the neural ODE implementation of KAN-ODEs and ChemKANs
helps them to overcome the noisy data limitation recently
shown in vanilla KANs.32

3.2 Hydrogen combustion acceleration from homogeneous
reactor data

In our second case study, we investigate the use of ChemKANs
as a reduced-order solver acceleration framework for known
chemical models. We hypothesize based on previous high-
order neural scaling results23,29 as well as the strong perfor-
mance at low parameter counts seen in Fig. 4 that the use of a
KAN structure instead of an MLP will allow for similar accuracy
in network predictions with fewer parameters and lower cost.
We additionally aim to evaluate the novel network architecture
of the ChemKAN, and whether its physics-based, single-
network structure is able to model behavior that required
m + 1 MLPs in the Neural ODE framework.17 To reduce
computational cost to the furthest extent possible, we use a
single hidden layer of just three nodes for the core kinetic
network (eqn (13)). This three-node hidden layer works as a
latent representation of the system’s dynamics, compressing
the information from 10 thermochemical states in the input

Fig. 6 ChemKAN and DeepONet model results trained with 15% noise, compared against both the noisy training data (blue dots) and the unseen noise-
free underlying data (ground truth, black curve). Red and green curves denote ChemKAN and DeepONet, respectively. Where DeepONet exhibits
significant overfitting to the training data, ChemKAN is able to more effectively match the unseen ground truth with smoother trajectories.
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and 29 reactions in the kinetic model. Leveraging our knowl-
edge of the functional form of the governing equations (eqn (1)
and (2)) and their strong multiplicative behavior, we use nmu = 3
here, defining all three hidden nodes using the multiplication
operator.

We begin in Fig. 7 with a demonstration of the ChemKAN
homogeneous reactor reconstructions for one training case (left
column, F = 0.9 and T0 = 1050 K) and the unseen testing case
(right column, F = 1.3 and T0 = 1150 K), after the two-stage
training process outlined in Section 2.4.2. These reconstruc-
tions were generated entirely by the ChemKAN, given only
the initial conditions. Overall the learned model successfully
predicted the temperature and mass fractions in both cases,
with no notable deterioration in the testing case (as expected
from the strong testing results and robustness to overfitting
observed in the previous biodiesel investigation). We further
emphasize that the ChemKAN was largely able to capture
the behavior of the low-concentration and highly reactive
species YH2O2

, YH, and YHO2
(Fig. 7(C) and (F)) that were

neglected in ChemNODE.17

A broader comparison is shown in Fig. 8(A), where the MSE
(in the normalized u units) is plotted across not only the initial
set of 35 training and 1 testing initial conditions, but a wider
set of 441 total initial conditions (406 of which were unseen
during training) at a finer resolution in the same range. The
low-temperature initial conditions see near-perfect reconstruc-
tions, as the ignition delays there are larger than the studied
time window, leading to smooth gradients and easily trainable,
near-isothermal behavior. In the remainder of the domain,
strong performance is seen at all training conditions, and
additionally at the single testing condition plotted in Fig. 7.
In terms of generalization to intermediate temperatures and
equivalence ratios, the ChemKAN performed very well through-
out the vast majority of the domain, with many testing points
even surpassing the accuracy of nearby training points at and
above 1050 K. We notice that toward the slower-igniting cases,
however, the ChemKAN struggled more with generalization. At
1000 K, for example, all six training points saw strong MSE
values in the 10�4 range, although a few of the intermediate
equivalence ratios suffered. At 987.5 K, however (one tick below

Fig. 7 KAN-ODE reconstruction of homogeneous reactor results. (A)–(C) temperature, species reconstructed here that were originally studied in
ChemNODE, and additional low-concentraiton species and radicals studied only here, respectively, at a training condition of F = 0.9 and T0 = 1050 K.
(D)–(F) same three subfigures at the unseen testing condition of F = 1.3 and T0 = 1150 K. Dots are the ground truth, and curves are ChemKAN
reconstructions. Constant N2 profiles are not plotted to improve clarity for reacting quantities, as training data does not include NOx chemistry.
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1000 K), all testing points saw poorer performance in the 10�3

range. We can conclude from these results that the ChemKAN
retains its strong capability to generalize in the more challen-
ging H2–air combustion case (as was originally reported in the
biodiesel modeling case), but with practical limits in the colder,
more temperature-sensitive ignition cases. While the Chem-
KAN’s ability to accurately learn the six studied training points
at 1000 K suggests that it is capable of tracking ignition
behavior through the cooler regions, its relatively poor perfor-
mance elsewhere in the initiation-sensitive regime suggests
that a non-uniform training grid with denser sampling toward
such cooler regions is needed to fully resolve this behavior and
provide more accurate results when applied in combustion CFD
simulations that require accurate ignition behavior.

We finally plot the actual and ChemKAN-predicted ignition
delays in Fig. 8(B), for the 30 studied cases that ignited
(the lowest temperature cases did not see ignition given the

time span of 0.6 ms). Ignition here is defined as the point of
maximum temperature rise rate.17 Accuracy is strong across the
board, even in the testing case.

This collection of results shows that the ChemKAN structure
was able to accurately learn the dynamics of all nine species
and temperature scalars across the same set of initial reactor
conditions as was studied using traditional MLP-based Neural
ODEs in ChemNODE.17 Compared to the six species plus
temperature scalars learned there via seven unique MLP net-
works with 91 parameters each (according to standard MLP
parameterizations, 637 total parameters), the current Chem-
KAN was able to learn the complete set of thermochemical
scalars (nine species plus temperature) using a single, 344-
parameter network. While training took place in two stages
to decouple the kinetic and thermodynamic behavior and
facilitate convergence, the final network remains a single
cohesive structure with shared information across all nodes,

Fig. 8 Evaluation of the proposed ChemKAN framework for various conditions. (A) ChemKAN reconstruction error at 35 training initial conditions
(navy crosses), single testing initial condition plotted in Fig. 7 (teal dot), and 405 additional testing locations between the initial 36. (B) Actual and
ChemKAN-predicted ignition delay times (green pentagons and blue triangles, respectively), as a function of equivalence ratio, at different initial
temperatures (1000 K, 1050 K, 1100 K, 1150 K, and 1200 K, from top to bottom).
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eliminating the redundancies in repeated yet isolated 91-
parameter MLPs.

Finally, regarding computational efficiency, we report that
the average time to solve all 36 homogeneous reactor condi-
tions in the Arrhenius.jl combustion solver package52 was 2�
faster when switching from the detailed chemistry to the
reduced ChemKAN framework. The total number of time steps
in the integration process remains largely unchanged, as the
ChemKAN is solving the same full-dimensional thermochemi-
cal state. The 2� speedup is predominantly achieved through
faster gradient computation (i.e., each time step is faster to
compute), facilitated by the ChemKAN’s compression of 29
reactions into just three hidden nodes and a handful of sparse
activations. By learning the relationship between the current
thermochemical state and the chemical source terms, the
ChemKAN is capable not only of predicting ignition delay times
and homogeneous reactor solution profiles 2� faster than the
detailed model, but also of generalizing to other simulation
conditions when coupled to flow solvers, including simple
laminar flames and complex 2-D and 3-D turbulent combustion
conditions. Such downstream uses of similar surrogate machine
learning models were discussed and tested in previously,16,17

where a 2� speedup in the chemical solver (which is often the
most computationally expensive component in a reacting flow
simulation) implies the potential for substantial acceleration
unlocked by ChemKANs while retaining the full-sized, detailed
solution state vector. While slightly slower than the 2.3�
speedup reported in ChemNODE,17 we reiterate that the Chem-
KAN solves for an additional three minor species (including the
key H radical). A summarized comparison of ChemKAN and
ChemNODE is provided in Table 1.

3.3 Current limitations and areas for further research

While we have demonstrated that our ChemKANs provide
remarkable inference capability and expressivity, there remain
drawbacks. The total speedup reported in Table 1 is ultimately
not as large as we believe that it could be. While still more than
competitive with that of ChemNODE, especially considering the
complete thermochemical source term with low-concentration
radicals that ChemKAN provides, it appears underwhelming in
light of the rest of the significant performance gains enabled by
ChemKAN in other comparisons throughout this work. That
being said, we believe that the reported speedup is a conserva-
tive lower bound on the potential for ChemKAN and KANs in
general. The original KANs23 are, at the time of original sub-
mission of the current work, barely a year old and are known in
the literature to be much slower than comparable MLPs (this is
even acknowledged by the authors of the original KAN paper23).
However, extensive research is actively ongoing to resolve this

issue, including parameter efficiency improvements35,37,53 and
prediction acceleration techniques.36,40,41,54–57 It is unclear
which methods will ultimately prevail, but the recent emer-
gence of KANs and the large amount of work proposing various
techniques for their acceleration suggest significant promise in
the near future for substantial and relatively lower-effort accel-
eration, compared to the more mature and well-developed
MLPs where we believe it reasonable to expect a slower pace
of future development.

We have additionally in this section compared a baseline
ChemKAN implementation against a baseline ChemNODE
implementation. Later works exist that appear to successfully
combine ChemNODE with augmented loss functions, autoen-
coders, and latent space time stepping. The most recent,
‘‘Phy-ChemNODE’’, includes all of these techniques.44 We do
not draw comparisons between the current ChemKAN implemen-
tation and the larger-scale, combined-methodology results
reported there, as our current aim is to compare the pure
performance of ChemKAN against the MLPs that underlie both
ChemNODEs and Phy-ChemNODEs. All further augmentations
carried out in Phy-ChemNODE that go beyond this baseline can
be replicated with ChemKANs, and an interesting target of future
studies may be to quantify the performance gains of ChemKAN
when applied in tandem with other advanced neural network
structures.

4. Conclusions

This work introduced ChemKANs, a novel physics-informed
machine learning technique based on the general KAN-ODE
framework with a specialized structure tailored explicitly for
chemical kinetic modeling and acceleration. Its two-part design
allows for application in isothermal or exothermic systems
through a kinetic core and an optional thermodynamic super-
structure that can be trained and applied as a single cohesive
framework. Model inference in a preliminary biodiesel synthe-
sis case using only the kinetic core revealed that ChemKANs are
remarkably robust to overfitting. Fair comparisons against a
generic DeepONet approach revealed that with increasingly
bulky parameterizations, ChemKANs retained plateaued opti-
mal loss metrics, while DeepONets saw minor further decreases
in training loss accompanied by an increase in testing loss, as
might be expected from a standard deep learning approach.
With added noise, this difference was further exacerbated, with
the DeepONet achieving low training loss through jagged fits to
the noise itself, while the ChemKAN converged its training,
testing, and noise-free testing performance with smooth fits
to the hidden underlying data. While alone promising, these
results are of particular interest given prior works in the

Table 1 Efficiency comparison between ChemNODE17 and ChemKAN. Note that a ChemNODE tracking all ten thermochemical quantities would
require 1210 parameters, as a single network in this case would comprise 121 parameters. Species in bold indicate missing species in ChemNODEs

# of nets # of params Species modeled Speed-up vs. true model

ChemNODE17 7 637 H2, O2, H2 O, N2, O, OH 2.3�
ChemKAN (our work) 1 344 H2, O2, H2 O, N2, O, OH, H, HO2, H2O2 2.0�
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literature that have cast doubts on the effectiveness of KAN
structures on noisy functions.

In a second case, ChemKANs were demonstrated as efficient
acceleration surrogates for learning chemical source terms in a
hydrogen combustion case. A two-stage training process for the
kinetic core and thermodynamic superstructure enabled a
single, 344-parameter ChemKAN to accurately learn complete
solution profiles across a range of hydrogen-air homogeneous
reactor initial conditions, a significant reduction in parameter
and network bulk compared to previous MLP-based neural ODE
approaches that required 637 parameters to learn a truncated
set of solution profiles. Timing comparisons against the
detailed mechanism revealed a 2� speedup when using the
ChemKAN surrogate model, which is significant for down-
stream applications of the hydrogen combustion surrogate
learned here (for example, 3-D turbulent reacting flow). In
summary, we find that ChemKANs are a promising tool for
both dynamical system modeling and acceleration tasks in
combustion chemistry. In doing so, we have also successfully
advanced the underlying KAN-ODE framework to much larger,
practical systems than had been studied previously. We hope
that these promising preliminary case studies motivate future
implementation of ChemKAN layers and modules in combus-
tion and chemical kinetic machine learning applications.
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discovering governing reactions from concentration data,
J. Chem. Phys., 2019, 150, 025101.

10 D. Langary and Z. Nikoloski, Inference of chemical reaction
networks based on concentration profiles using an optimi-
zation framework, Chaos, 2019, 29, 113121.

11 S. Kim and S. Deng, Learning reaction-transport coupling
from thermal waves, Nat. Commun., 2024, 15, 9930.

12 S. Kim and S. Deng, Inference of chemical kinetics and
thermodynamic properties from constant-volume combus-
tion of energetic materials, Chem. Eng. J., 2023, 469, 143779.

13 Q. Li, H. Chen, B. C. Koenig and S. Deng, Bayesian chemical
reaction neural network for autonomous kinetic uncertainty
quantification, Phys. Chem. Chem. Phys., 2023, 25, 3707–
3717.

14 B. C. Koenig and S. Deng, Multi-target active subspaces
generated using a neural network for computationally effi-
cient turbulent combustion kinetic uncertainty quantifica-
tion in the flamelet regime, Combust. Flame, 2023,
258, 113015.

15 S. Alqahtani and T. Echekki, A data-based hybrid model for
complex fuel chemistry acceleration at high temperatures,
Combust. Flame, 2021, 223, 142–152.

16 K. S. Jung, B. S. Soriano, J. H. Chen and M. Khalil, A
Hessian-based transfer learning approach for artificial
neural networks based chemical kinetics with a sparse
dataset, Proc. Combust. Inst., 2024, 40, 105390.

17 O. Owoyele and P. Pal, ChemNODE: a neural ordinary
differential equations framework for efficient chemical
kinetic solvers, Energy AI, 2022, 7, 100118.

18 A. Kumar and T. Echekki, Combustion chemistry accelera-
tion with DeepONets, Fuel, 2024, 365, 131212.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 8

/5
/2

02
5 

5:
49

:2
1 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cp02009c


This journal is © the Owner Societies 2025 Phys. Chem. Chem. Phys.

19 R. T. Q. Chen, Y. Rubanova, J. Bettencourt and D.
Duvenaud, Neural Ordinary Differential Equations, arXiv,
2019, preprint, arXiv:1806.07366, DOI: 10.48550/
arXiv.1806.07366.

20 L. Lu, P. Jin, G. Pang, Z. Zhang and G. E. Karniadakis,
Learning nonlinear operators via DeepONet based on the
universal approximation theorem of operators, Nat. Mach.
Intell., 2021, 3, 218–229.

21 B. C. Koenig, W. Ji and S. Deng, Kinetic subspace investiga-
tion using neural network for uncertainty quantification in
nonpremixed flamelets, Proc. Combust. Inst., 2023, 39,
5229–5238.

22 S. Goswami, A. D. Jagtap, H. Babaee, B. T. Susi and
G. E. Karniadakis, Learning stiff chemical kinetics using
extended deep neural operators, Comput. Methods Appl.
Mech. Eng., 2024, 419, 116674.

23 Z. Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halverson, M.
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