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Beyond the static picture: a machine learning and
molecular dynamics insight on singlet fissionf¥
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Singlet fission (SF) is a promising mechanism to overcome the current efficiency limit in solar cells.
Theoretical studies have focused extensively on static pairs of molecules, the minimum system where SF
can occur. Our work presents a complementary two-step approach. First, we developed a neural
network model to investigate correlations between selected descriptors and the SF driving force across
a library of organic molecules. SHAP analysis suggests that ionization potential (IP) and the second-to-
lowest triplet (T,) are the most influential features. Notably, SF-active and SF-inactive molecules exhibit
distinct energy ranges: 2.0-3.0 eV vs. 3.7-4.5 eV for T, and 5.0-6.5 eV vs. 8.0-9.5 eV for IP. Second,
we performed a molecular dynamics simulation on the a-polymorph of 1,3-diphenylbenzofurane, which
is SF-active. We followed the evolution of the electronic states and calculated electronic couplings
within a diabatic framework. Values of electronic couplings suggest a charged-transfer mediated mecha-
nism, with the largest electronic couplings (20 meV) observed in inter-stack pairs, and intra-stack pairs
exhibiting lower values. This work attempts to illustrate how machine learning can uncover relationships
that may be relevant in the design of SF materials, and highlight the role of structural changes in modu-

rsc.li/pccp lating electronic couplings.

1 Introduction

The conversion of sunlight to electricity has been extensively
studied as a means of transitioning to more renewable methods
for energy generation." However, a theoretical radiative effi-
ciency limit of around 30% has been proposed for current
inorganic-based solar cells with a single p-n junction,” prompt-
ing exploration of different approaches in other families of
organic and inorganic compounds. In addition to this search,
several ongoing works have been dedicated to overcoming the
efficiency limit by experimenting with new architectures. Exam-
ples of these approaches include multi-junction solar cells with
stacked inorganic layers,® the incorporation of perovskites* and
quantum dots,>” bio-inspired solar cells,® and the develop-
ment of organic photovoltaics. Within the latter category,’
particular attention has been paid to organic materials that
exhibit multiple exciton generation (MEG).

Observed originally in 1965 in anthracene,'® and three years
later in tetracene,'’ singlet fission (SF)'*** is a MEG and spin-
allowed process that occurs in organic crystals. In this process,
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two free charge carriers may be formed upon absorption of a
photon; a photochemically excited molecule transfers part of its
energy to a neighboring molecule, resulting in the formation of
a state in which two triplets are coupled. Fig. 1 shows a
schematic representation in which a molecule in the first
singlet excited state (S;) and a neighbor molecule in the ground
state (So) undergo SF to generate the 'TT state. This coupled
state will eventually separate into two independent triplets (T,)
that will move away from each other until they are harvested.™*

Fig. 1 Depiction of the singlet fission process. Two neighboring mole-
cules, one in the first singlet excited state (S;) and one in the ground state
(So) undergo the spin-allowed process to form two coupled triplets (*TT).
The process may occur throughout different channels: (a) direct, (b) a two
step mechanism by the formation of the cation (D*) and anion (D), or (c)
mediated by charge transfer states.
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SF is thermodynamically favored if the condition E(S;) 2 2E(T,)
is met, i.e. the process is slightly exothermic, where E repre-
sents the energy of the corresponding excited state.

The underlying mechanism of the process has been debated,
and experimental and theoretical evidence has been presented
in an effort to determine the mechanistic pathways that are
taking place. In Fig. 1 we can differentiate between: (a) a direct
transfer mechanism in which the conversion occurs in a single
step, (b) a two-step mechanism in which the cation (D") and
anion (D7) are formed and the process goes through these
intermediaries, and finally (c) a charge-transfer (CT) mediated-
mechanism'® in which the CT states are not involved directly in
the process, but rather mixed with the singlet and triplet states
facilitating the conversion.

In this simple picture, the excited states of most interest are S;
and T, since these are the ones directly involved in the process.
Nevertheless, there are some additional energetic considerations
that must be taken into account when looking for new SF
materials. For example, to avoid triplet-triplet loss it is crucial
that the second triplet state (T,) lies higher in energy than Sy, ie.
E(S;) < E(T,). If the process would occur via CT intermediates
then E(S;) > E(CT) > 2E(T,). For this reason, it is necessary to
understand and study the influence that these additional electro-
nic states and structural parameters have on the SF process. In
this context, machine learning (ML) algorithms offer the possibi-
lity to aid us in uncovering patterns or relationships within data
that may be unapparent at first sight. This task can be achieved by
not only evaluating the predictive power of the model, but also by
analyzing the relative importance that the different descriptors
have in describing our quantity of interest.

Previous works have demonstrated the applicability and
predictive power of ML algorithms to study SF. Examples of
these works include the use of a hierarchical approach, namely
the sure-independence-screening-and-sparsifying-operator algo-
rithm, to identify potential SF candidates from a library of 101
polycyclic aromatic hydrocarbons.'® Another work employed a
random forest classifier on a library of four million cibalackrot'”
derivatives to explore the influence of chemical substitution on
the electronic properties of this indigo derivative.'® Moreover,
binary classification models (namely support vector machines
and decision trees) in combination with K-means clustering have
been used to identify SF candidates, based on their biradical
character, from a library of nearly half a million compounds.'® A
recent model has studied the extrapolation of complete active-
space self-consistent field (CASSCF) in pentacene crystals to have
an understanding of the evolution of the SF process.>

Theoretical studies on SF have focused mainly on a static
picture of a pair of molecules in vacuum, since, in principle, it
is the smallest system where SF can occur.>' Studies exploring
the dynamics of the process are needed to offer a deeper
understanding of how SF occurs and, ultimately, offer guidance
on the design of SF materials. Recent works have gone beyond
the static pair model either by including the influence of the
environment, studying larger ensembles*” and following the
dynamics of the process. Sousa et al. studied the differences in
electronic couplings for pairs and trimers, finding that similar
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conclusions can be drawn from both structural models.”?
Furthermore, Lopez et al. analyzed the evolution of electronic
couplings due to vibrations and thermal motions in pentacene
and doped B,N-pentacene.>*

Our work focuses on applying a ML algorithm to identify
correlations between input features and a target variable. For our
purposes, the target variable of interest is the so-called driving
force (DF) of the SF process which is mathematically defined as
DF = E(S;) — 2E(T,). To achieve our goals, we have set up the
following procedure: first, a neural network (NN) architecture
was built to determine which of the explored input features
have an influence on the target quantity DF. We built our own
dataset of 150 different molecules that represent a broad range
of chemical families. We have included examples of molecules
previously pointed out in the literature as potential SF candi-
dates. We also incorporated compounds that do not exhibit SF
to verify that the NN is capturing accurately those compounds
that do. For each of these compounds, we have chosen the
following features: the second lowest singlet (S,), the second
lowest triplet state (T,), electron affinity (EA), ionization
potential (IP), as well as the number of total atoms as a
sanity check.

To determine the influence of each parameter on DF, we used
the Shapley additive explanations™ (SHAP) values. This analysis
offers an insight into the importance that each descriptor has on
the model, how it affects the target variable and its relative
contribution with respect to other descriptors. We then per-
formed a molecular dynamics (MD) simulation on a section of
the « crystalline structure of 1,3-diphenylisobenzofuran (DPBF,
Fig. 2), the known form exhibiting SF.***” With this, we studied
how the vibrational motions in the crystal influence the evolu-
tion of electronic states as well as the effective electronic
couplings in a diabatic representation. These couplings are a
measurement of the probability of the process to occur. Our
work focuses on studying how conformational changes during
the ground-state dynamics affect the magnitude of the electronic
coupling.

This paper is structured as follows: in Section 2 we outline
the details for the generation of the dataset, the architecture of the
NN, and the calculation of the SHAP values. We also present the
outline of the setup for the MD simulations, the snapshot
selection, and the calculation of the different parameters and
electronic couplings. In Section 3, we discuss the results of the NN
and the evolution of the electronic states and effective couplings
throughout the simulation. Finally, we summarize our findings,
discuss limitations, and present lines for future work.

O

\ 7/

Fig. 2 Chemical structure of diphenylbenzofurane; a polymorph of this
compound exhibits singlet fission.
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2 Computational details
2.1 Dataset construction

Structures for 150 molecules, shown in Fig. S1-S6 in the ESL¥
were optimized*®*' using density functional theory (DFT) at
the ®B97X-D3%?/6-311G** level of theory. Vibrational analyses
were performed to confirm that these optimized structures
corresponded to local minima. Following this, the excitation
energies for ten singlets and triplets in each compound were
obtained with time-dependent DFT (TD-DFT) at the same level
of theory as the geometry optimizations. The EA and IP were
calculated as the energy difference between the neutral mole-
cule and its anionic and cationic forms, respectively.

For each molecule, we calculated its corresponding DF using
the S; and T; excitation energies and used this quantity as the
target variable. The input features used for the ML model, which
we will refer to as descriptors, were Ty, S,, IP, EA, and number of
atoms. All calculations were performed with the open-source
ORCA*® package. The full dataset is available for download as a
CSV file in the GitLab repository (link provided in the ESIt).

2.2 Neural network architecture and hyperparameter tuning

For our predictive model of the DF, we employed a feedforward
NN implemented in PyTorch.** We have explored three archi-
tectures: (a) a single-hidden layer model, (b) a two-hidden layer
model, and (c) a two-hidden layer model with dropout regular-
ization after the first layer. For architecture (a), we varied the
size from 2 to 100 to identify differences in performance. For
the extended architectures (b) and (c), we tested 64 and 32
nodes as the first and second hidden layer sizes, respectively.
For each of these architectures, we further evaluated ReLU,
LeakyReLU, ELU as activation functions, in combination with three
loss functions: mean squared error (MSE), mean absolute error
(MAE) and Huber loss (see their mathematical definitions in Notes
and references).§ The models were optimized with the adaptive
moment estimation (Adam),® and three training/testing splits were
analyzed: 90/10, 80/20 and 70/30. To avoid overfitting and reduce

§ Here we provide the mathematical equations describing the three loss
functions (%) used during the tuning of our model.

(a) Mean squared error (MSE)

2

PMsE = %i <DF,' - ﬁ,)
=

(b) Mean absolute error

1Y —
QWE:NEJDH—DR

i=1
(c) Huber loss (also known as smooth mean absolute error)
1 —\2 —
E(DF,--—DF,-) iﬂDFr-DE)gé

fHuber = ) o 1
()(’DF,- — DF,-‘ - 5(3) otherwise

where DF; denotes the reference value of DF for compound i, ﬁl\:,-
represents the corresponding predicted value by our model, N is the
total number of compounds in the data set, and ¢ is a threshold
parameter that determines the when the function transitions from
MSE to MAE. In our case, the default value used was 1.0.
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training time, we implemented an early stopping if the value of the
loss function did not improve after 20 consecutive epochs. The
results of these runs are presented in Fig. S7-S35 in ESLY

One architecture was chosen based on lower variability in
MAE and coefficient of determination (R*) values across the
different runs, and the configuration that consistently yielded
the lowest values of MAE. To further test the robustness of the
model, we employed a 5-fold cross-validation and explored five
different learning rates: 0.01, 0.005, 0.001, 0.0005, and 0.0001.
The optimal learning rate was chosen based on the lowest
average validation loss.

For all the explored NN configurations, we computed the
SHAP values to assess the importance of the features and the
interpretability of the model. Beeswarm plots were generated to
visualize the contribution of each of the descriptors (Fig. S7-
S35 in ESIt). As a baseline comparison, we also performed a
multiple linear regression to test whether the relationship
between the features is predominantly linear or not.

2.3 Snapshots of the dynamics

The MD simulations for the DPBF crystal were performed using
the GROMACS®® software. The initial crystal structure was
obtained from the Cambridge Structural Database with deposi-
tion number 1428159.2° The force field for the DPBF molecule
was generated and validated with the Q-Force®” software. The
simulation box was constructed by replicating the unit cell
along the three lattice vectors (2 x 2 x 2) to ensure proper
periodic boundary conditions and preserve the crystalline
environment. Energy minimization was performed using the
steepest descent algorithm. Then, we performed an NVT equili-
bration at 300 K for 500 ps using the V-rescale thermostat,
followed by an equilibration under NPT conditions (1 atm,
300 K) for 500 ps with the Parrinello-Rahman barostat. One MD
production simulation was then carried out for 10 ns with a 2 fs
time step. For the calculation of the electronic states we have
recorded 100 snapshots (every 0.1 ns) and identified a single
molecule in the center of the crystal as our reference for these
calculations. For calculation of electronic couplings, due to
limited computational resources, we selected five snapshots
(every 2 ns) and in each of these, we identified three different
pairs of molecules that are representative of the inter and intra-
stack interactions.

2.4 Effective electronic couplings

The calculation of effective electronic couplings was performed
using the GronOR*® package, in which a non-orthogonal
configuration interaction approach is implemented.

As the first step of this methodology, we carried out indivi-
dual state-specific CASSCF(6,6)/ANO-S-VDZP for the monomers
in the identified pairs by performing state-average calculations
and setting the weights to zero for those states that were not
relevant. For each monomer, we described the S,, S, T;, D" and
D™ states. These molecular calculations were performed in the
conformation arising from the MD simulations without opti-
mization in order to retain the influence of structural changes.
This first step allows us to account for orbital relaxation and

This journal is © the Owner Societies 2025
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non-dynamical electron correlation for the localized states
resulting in non-orthogonal orbital sets. The CASSCF calcula-
tions were carried out with the OpenMolcas®® software.

Then, we constructed six many-electron basis functions
(MEBFs) as (spin-adapted) anti-symmetrized products of the
molecular wavefunctions to describe the states of interest in the
pairs. These states are SoSo, SoS1, S1So, ‘TT, D'D ™, and D D",
The electronic couplings (V) between these diabatic states were
estimated by:

(| A|e) (0|0 + (@] A]0r)) - (@)
a 1 —(®i|®)?

where H represents the electronic Hamiltonian, and @; and &x
denote the initial and final diabatic electronic states, i.e., the
MEBFs. The influence of the CT states in the system was
explored by allowing the CT states to mix with the photoche-
mically excited states.

The reason behind calculating electronic couplings for only
five snapshots is the limited resources available at our disposal
since GronOR is intended for massively parallel computations.

3 Results and discussion
3.1 Machine learning algorithms and feature importance

3.1.1 Hyperparameter tuning and output of the model. The
multiple linear regression (Fig. S36 in ESIt) led to an R* =
0.2800 suggesting a non-linear relationship between the input
features and the target variable, prompting the use of the NN to
uncover potential non-linear patterns.

The results of the systematic NN exploration are summar-
ized in Tables S1-S3 in the ESL{ In the following analysis, we
examine the differences in MAE and R* across variations in
activation functions, loss functions and training/testing splits.

For architecture (a), which consists of a single hidden layer,
the use of LeakyReLU generally resulted in modestly higher R*
values and lower MAE across all training/testing splits. For
example, with a 70/30 split and MSE as the loss function, the
MAE and R® values were 0.2821 eV and 0.8132 (ReLU), 0.2804 eV
and 0.8585 (LeakyReLU), and 0.3181 eV and 0.8488 (ELU). A
similar trend was observed for the MAE values across the other
two loss functions.

When comparing loss functions, no strong trends were
observed among comparable runs (i.e., with a fixed activation
function and training/testing split). However, Huber loss often
achieved the lowest MAE, which is in line with its role as a
balance between MSE and MAE.

Overall, the results for the three activation and loss func-
tions in architecture (a) suggest similar performance across
runs, with only a marginal advantage when using LeakyReLU.

For architecture (b), LeakyReLU again demonstrated the
most stable and consistent performance across most splits
and loss functions. In particular, for the 70/30 runs using
MSE as the loss function, the registered MAE values were
0.2249 eV (ReLU), 0.2167 eV (LeakyReLU) and 0.2654 eV
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(ELU). Similarly, the use of Huber loss yielded the lowest
MAE when in combination with the ReLU function.

For architecture (c), we observed a comparable performance
between the ReLU and LeakyReLU activation functions with
similar MAE and R> values across runs. In this particular
setting, Huber loss did not outperform the other two loss
functions, and the ELU activation function showed the weakest
performance. The latter may indicate that this activation func-
tion is less robust in the current architecture and for the
explored hyperparameters in our dataset.

Comparison of performance among the three architectures
shows that (b) and (c) achieved lower MAE and higher R* values
for runs with similar settings (training/testing, activation and
loss functions). The performance of (b) shows lower variability
than (c) which may indicate greater robustness and stability. In
this regard, for the purposes of this study we prioritize robust-
ness of the model rather than marginal gains in the R and MAE.

Based on the previous observations, we selected the following
configuration for further testing by varying the learning rate and
using 5-fold cross-validation: architecture (b), LeakyReLU as
activation function and MSE as the loss function. Based on the
results of the 5-fold cross validation, a learning rate of 0.005 was
chosen.

Fig. 3 aggregates all the predicted and actual DF values
obtained from the 5-fold cross validation on the selected
configuration. The model achieved an average R* of 0.8179 +
0.0539.

A closer examination of the results reveals that the model
appears to distinguish between compounds that exhibit SF,
characterized by a DF close to zero, and those that do not, with
values as large as —4.0 eV. For instance, the predicted DF for
pentacene (compound 33 in Fig. S2 in ESIf) and tetracene
(compound 34 in Fig. S2 in ESIt), both of which are known to
undergo SF in the crystalline phase, are —0.20 eV and —0.42 eV,
respectively. In contrast, compounds that do not exhibit the
process, such as 4-methylphenol (compound 61 in Fig. S3 in
ESIt) and 1-phenylethanone (compound 77 in Fig. S4 in ESIY)
show larger predicted DFs of —3.13 eV and —2.97 eV,
respectively.

Nevertheless, the model is unable to accurately predict DF
for compounds with subtle DF differences. To illustrate this
limitation, Fig. 4 compares the descriptors for compounds 31
and 32 (code used in Fig. S2 of the ESIf) as well as their
predicted and calculated DF. Based on the calculated S; and T,
energies, their calculated DFs differ by 0.063 eV. The model predicts
nearly identical values, with a difference of only 0.003 eV, suggesting
limited sensitivity to such changes. An inspection of the input
descriptors reveals that the energies of the S, and T, states are
nearly identical, with a difference of 0.017 eV and 0.001 eV,
respectively. The number of atoms is also nearly identical. The
largest differences arise in their IP (0.448 eV) and EA (0.671 eV). In
the following section, we discuss the feature importance analysis
which indicates that our model places a larger importance on IP
than EA when predicting the DF.

These findings highlight the need to explore additional
architectures beyond the presented NN, in order to construct
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Fig. 3 Actual vs. predicted driving force (DF, in eV) obtained from the
selected neural network model (architecture with two hidden layers,
LeakyReLu, MSE loss function) trained with 5-fold cross validation. Pre-
dictions are aggregated across all folds. The red dashed line indicates the
linear agreement.

a model that could fully capture the subtle differences arising
from positional isomers and chemical substitutions. Addition-
ally, expanding input features that reflect the crystal packing
may help improve the current model.

3.1.2 Feature importance. One of the goals of this study is
to identify trends among the molecular descriptors and the DF.
These observations may inform the design of SF materials. In
order to interpret the relationships captured by our NN model,
we employed SHAP values to quantify the contribution that
each descriptor had on the DF.

Fig. 5 presents a representative SHAP beeswarm plot (fold 1
of 5-fold cross validation) in which the descriptors are ordered
top-to-bottom by their average absolute SHAP value. Additional
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Fig. 5 Beeswarm plot in which the descriptors have been ranked based
on their mean absolute SHAP value. The following electronic states are
represented: second triplet (T,), second singlets (S,), electron affinity (EA),
jonization potential (IP) and total humber of atoms (NumAtom). The
feature value color scale represents the range of each feature. The
presented plot is for fold 1 of cross-validation.

plots for the remaining folds are presented in Fig. S37-S40 of
the ESL.¥

The SHAP plots reveal that IP and T, are consistently the two
most influential features. This ranking remained stable across
all the cross-validation folds as well as across the runs exploring
activation and loss functions (Fig. S7-S35 in ESI{). We calcu-
lated the mean SHAP values and standard deviations for each
descriptor across the folds (Table 1). These results confirm that
IP (0.8412 + 0.1206) and T, (0.4571 + 0.0767) are the main
features in the model prediction. In comparison, the EA, S, and
number of atoms exhibited lower average SHAP values and
variable ranking, which suggests that their influence is depen-
dent on the configuration of the model.

To explore possible reasons for the influence of IP and T, in
our model, we examined the IP values for two representative
samples of molecules from our library, one group with the
molecules known to exhibit SF and the second with molecules
that do not. Table 2 presents examples of both groups to
illustrate the general trends.

Our initial observations for the SF-active molecules suggest
that the energy of the T, states lies roughly within a range of
2.0-3.0 eV. For SF-inactive molecules in our set, these energies
oscillated in a higher range between 3.7-4.5 eV. For SF-active
molecules the T, states are higher in energy than the S; states;
for example 1.20 eV for tetracene and 1.06 eV for pentacene.
Opposite to this, T, states in SF-inactive molecules lay closer to
the corresponding S; states (0.11 eV for 4-methylphenol and
0.24 eV for 1-phenylethanone). Experimentally, this may be
beneficial since higher T, states may reduce triplet-triplet

annihilation. Nevertheless, further investigation is needed.

Table 1 Mean absolute SHAP values and standard deviation for each
descriptor across 5 cross-validation folds

"\\‘/,' a4 ‘

31 32
Descriptor Compound 31 Compound 32
S 2.83 2.79
S 3.68 3.66
T 1.26 1.21
7 2.33 2.33
P 6.06 6.50
EA 1.36 2.03
Number of atoms 38 37
DF (calculated) 0.30 0.37
DF (predicted) 0.29 0.30

Fig. 4 Chemical structures of two molecules in the library that differ in
their functional groups, a nitro substituent (31) and a nitrile group (32). The
values of their descriptors are listed in the table. Excitation energies,
electron affinity (EA) and ionization potential (IP) in units of eV.

16402 | Phys. Chem. Chem. Phys., 2025, 27, 16398-16406

Descriptor SHAP Standard deviation
1P 0.8412 0.1206
T, 0.4571 0.0767
EA 0.2164 0.0264
Number of atoms 0.1476 0.0548
S, 0.0529 0.0154
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Table 2 Descriptors for four representative molecules. Tetracene and
pentacene are SF-active while 4-methylphenol and 1-phenylethanone are
not. Units of the different electronic states are given in eV. The desriptors
used as input features are presented in italics

4- 1-
Descriptor Tetracene Pentance Methylphenol Phenylethanone
S; 3.42 2.91 5.34 411
Sy 3.94 3.69 6.35 5.34
T 1.74 1.29 4.08 3.59
T, 2.94 2.35 4.29 3.83
1P 5.23 6.45 8.02 9.26
EA 1.68 1.17 1.75 0.23
Number of 30 38 16 17
atoms

Regarding IP, we observed larger differences between the
two groups. For SF-active molecules, these values lie within a
range of 5.0-6.5 €V while for SF-inactive molecules it ranged
from 8.0-9.5 eV. We speculate that these different ranges may
contribute to the higher importance of this descriptor in
the model.

Such differences in value ranges between the two molecular
groups were not observed for EA. With the exception of 1-
phenylethanone, which exhibited the lowest EA value (0.23 eV),
both groups of molecules had values ranging between
1.0-2.0 eV. This lack of differentiation may explain the relative
lower impact on the model. Similarly, the number of atoms was
the second-to-last feature in terms of importance with S, having
the lowest (mean) SHAP value.

At present, we do not have a clear chemical interpretation of
the observation that the number of atoms had a higher relative
importance than S,, which may reflect limitations of the
current model in our data set. Additionally, expanding our
analysis to feature interactions may reveal further non-linear
patterns within the molecular descriptors.

3.1.3 Evolution of electronic states and effective couplings.
The average values for T, (in Table 3) show that this state is
higher in energy (3.50 & 0.03 eV) than S; (3.29 & 0.07 eV), which
is one of the energetic requirements proposed for SF to take
place. The values throughout the simulation are consistent with
the overall SF requirement in which E(S;) ~ 2E(T;). However,
this is not the case for all levels of theories and methodologies
explored and presented in Table 3 highlighting the importance
of further benchmarking.

Table 3 Vertical excitation energies of the S;, S,, Ty and T, electronic
states, and the electron affinity (EA) and ionization potential (IP) for an
optimized structure of DPBF calculated at different levels of theory and in
units of eV. Not available (NA)

Method S: S, T, T, EA P
B3LYP 3.18 3.95 1.90  3.28 0.35 6.45
BHANDLYP 3.44 454 1.89 337 020  6.40
CAM-B3LYP 3.47  4.54 1.98 3.44  0.33 6.97
®B97X-D 3.28  4.77 1.46  3.54 023 6.68
ADC(2) 3.52 3.84 230 NA — —
Experimental* 3.16 NA 1.47 NA NA NA
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Table 4 Average values and standard deviations of different electronic
states (in eV) calculated at the ®B97X-D/cc-pVDZ level of theory for 100
conformations of a single molecule of DPBF in the crystal structure

State Average value Standard deviation
S1 3.29 0.07
S, 3.89 0.04
T, 1.50 0.06
T, 3.50 0.03
EA 0.26 0.04
1P 6.66 0.02

Table 4 collects the average values and standard deviations
across 100 different snapshots, of vertical excitation energies, EA
and IP of a single molecule in vacuum taken from the crystal
during the MD simulation. The standard deviations below 0.1 eV
suggest that the changes due to vibrational modes had a
negligible influence on the energies of the different states. It is
worth stressing that we have considered a single molecule of
DPBF in vacuum for these calculations, and that inclusion of the
environment could point towards another direction since addi-
tional intermolecular interactions could play a significant role.

In this work, we focused on studying the o-polymorph of
DPBF, which is known to exhibit SF. We selected three pairs in
the crystal structure as shown in Fig. 6. The first pair consists of
monomers I and II that are representative of a m-n intra-stack
interaction. The second pair corresponds to the one formed by
monomers I and III; this represents an inter-stack interaction
in which monomer III has an orthogonal disposition with

a)
I

=

II1

_
I s

Fig. 6 (a) Representation of a portion of the crystal structure in which the

three pair arrangements are indicated. Monomers | and |l represent a pair

with intra-stack interaction, while the pairs involving molecules | and I,

and | and IV represent inter-stack dispositions. (b) Individual depictions of

the dispositions between the pairs of molecules.
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respect to monomer I. The third pair is formed by monomers I
and IV which also represents an inter-stack interaction. However,
the monomers in the latter pair do not overlap. The difference
between these dispositions is further exemplified by the distance
of separation (d;) between the centers of mass of the different
monomers: for pair I-1I, ds = 5.59 A, d,=7.08 A for pair I-111, and
d = 12.66 A for pair I-IV.

Table 5 collects the effective electronic couplings between
the pairs (in vacuum) for the five different snapshots recorded
during the ground-state MD simulation. These electronic cou-
plings are divided into two sets: (1) one in which the CT states
are not allowed to mix, and (2) one set in which these states
were allowed to do so.

The magnitudes of the electronic couplings in set (2) are
higher than those in set (1). This suggests that, in these snap-
shots, the mechanism appears to be CT-mediated, i.e., the CT
states mix with the S¢S;, S:So, and 'TT states to facilitate the
conversion.

The highest CT-mediated couplings are consistently
observed for the I-III pair throughout the snapshots (with
values ranging from 18.3 to 25.8 meV), and it corresponds to
an inter-stack spatial conformation. Smaller electronic cou-
plings, in the range 5.0-15.4 meV, are observed in the I-1I pair
that represents the n-r intra-stack interaction. Finally, pair I-IV
shows a negligible coupling all across the snapshots with values
closer to 0 meV. This observation on pair I-IV could be related
to its inter-stack disposition where the monomers have a large
distance of separation (12.66 A) which suggests an unfavorable
disposition for electronic transfer.

The CT-mediated electronic couplings differ in approxi-
mately 10 and 7 meV for pairs I-II and I-III, respectively. These
large differences in the couplings for a pair illustrate that subtle
structural differences due to vibrational modes may have an
impact on the coupling. A closer look at the structures of the
pairs in snapshots 1 and 5, which presents the lower coupling
value, reveals that in the latter, the phenyl rings of the structure
are bent out-of-plane, as depicted in Fig. 7 when compared
against the pair in snapshot 1. This bending could be related to
a lower coupling due to less overlap. In the original experi-
mental study,”® the authors suggested that this property was
probably related to the inter-stack rather than intra-stack
interactions. This is supported by the calculated electronic
couplings presented in Table 5.

Table 5 Direct (not mixing allowed) and-charge transfer (CT) mediated
electronic couplings (in meV) between the electronic states S5, and TT
for each of the pairs identified in the crystal structure of 1,3-diphenyl-
benzofurane. The CT states were allowed to mix with these states for the
calculation of the CT-mediated couplings

Not mixing Mixing of CT states
Snapshot I-1I I-1IT I-1v I-1I I-1IT I-1v
1 2.1 7.0 0.0 11.4 23.2 0.1
2 2.3 5.9 0.0 15.4 25.1 0.2
3 3.1 6.3 0.0 9.8 21.5 1.1
4 2.7 6.2 0.0 8.7 25.8 0.6
5 1.0 5.8 0.0 5.0 18.3 0.2
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Fig. 7 Superposition of the identified I-IIl pair in snapshots 1 (red) and 5
(blue) depicting the structural differences between the arrangements
captured by the molecular dynamics simulation due to vibrational modes.

These coupling values also provide a qualitative estimation
of the timescale over which SF may occur. For comparison, a
previous study employed a fragment spin difference scheme to
estimate SF rates based on calculated effective electronic cou-
plings on pentacene.*’ Their findings pointed to estimated SF
rates of 239 and 37 fs for couplings of 15.21 and 37.30 meV,
respectively. While our methodology differs, it provides a basis
for interpreting the calculated couplings. Although we cannot
predict SF rates by analogy, the magnitudes of our couplings
(18.3 to 25.8 meV) suggest a sub-picosecond scale which is in
line with the reported timescales in DPBF of around 10-30 ps.””
Moreover, the magnitude of the couplings computed in this
work is comparable to previously reported NOCI couplings
calculated for known SF molecules and potential candidates,
which support the hypothesis that CT-mediated couplings
could facilitate SF in DPBF.**

Conclusions

In this work, we adopted a combined computational approach
to contribute to the discussion of how dynamics affect the
singlet fission process. In this regard, we explored whether
electronic states beyond S; and T; correlate with the driving
force of the process. For this purpose, we constructed a library
of 150 different molecules consisting of SF active and inactive
compounds.

We trained a neural network model to analyze the influence
on the driving force of the following features: S,, T,, EA, IP, and
number of atoms. Our model distinguishes between SF-active
and inactive molecules. However, it shows limitations when
predicting DF for molecules that have subtle functional group
variations and, hence, similar magnitudes of the input features.
SHAP analysis suggests IP and T, as the most influential
features in the model, and subsequent inspection revealed
non-overlapping value ranges for these two descriptors.

To improve the robustness of our model, we plan to expand
the molecular library to account for a larger variety of chemical
families. Additionally, we aim to incorporate additional
features, particularly those that reflect molecular packing and
crystalline properties to better reflect the environment in which
SF occurs.

As an illustrative example, we studied the o-polymorph of
1,3-diphenylbenzofurane, a crystalline structure that exhibits
singlet fission. We performed a molecular dynamics simulation
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in order to capture the vibrational motions, to study the effect
that these have on electronic states and effective electronic
couplings. Due to computational limitations, we calculated
electronic couplings for pairs in five snapshots with the aim
of providing a case study of how structural conformations
influence the magnitude of the couplings.

The average and standard deviations calculated along the
simulation for S;, S,, Ty, T,, EA and IP of a molecule in the
vacuum suggest that vibrational motions had little effect on the
energies of the different electronic states. Nevertheless, further
studies are needed in which the crystal environment is
included to clarify whether this is indeed the case for DPBF.

In this study, we have selected three different pairs of DPBF
molecules; one of which represents an intra-stack n—r interaction,
and two other molecular pairs that represent the unique inter-stack
interactions within the crystal. We have employed a non-orthogonal
configuration interaction to calculate electronic couplings, within a
diabatic framework, for five snapshots during the simulation. Our
results reveal that for the crystalline structure, the strongest values
are found in inter-stack pairs (defined in Fig. 6 as I and III) rather
than in the intra-stack pair between molecules I and II.
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