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Deep-learning-enhanced exploration of peptide
conformational space with high fidelity using
hydrogen bond information+

Gyeongok Song,® Hyo Nam Jeon,? Jer-Lai Kuo® and Hyuk Kang (2 *©

Neural network potential models were trained using density functional theory (DFT) data for singly
protonated hexapeptide, DYYVVR, previously studied through cryogenic ion spectroscopy and applied
for its conformational analysis. A fragmentation-based approach was employed, in which the training
datasets included capped dipeptides and capped single-residue clusters. The fragmentation approach
effectively reduced energy prediction errors at reduced computational costs. To better capture a wider
range of conformational space, all hydrogen bond types present in the peptide were included in the
training dataset. As a result, the neural network potential model achieved a mean absolute error of 4.79
kJ mol™ in energy predictions compared to the DFT calculations. The model was further patched
through an active learning scheme during basin-hopping simulations. The structures discovered during
the simulations were optimized using the neural network model, leading to the identification of new
conformational minima. The newly found structures successfully explained the experimental IR-UV
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1. Introduction

The development of computational chemistry methods, com-
bined with the steadily increasing computational power over
recent decades, has facilitated accurate simulations of various
biomolecular systems." Nevertheless, these simulations are
often limited due to the escalating computational costs with
increasing system size. Even when simulating larger bio-
molecules becomes feasible, the intrinsic flexibility of these
systems poses significant challenges in thoroughly exploring
their extensive conformational spaces. The fragmentation
approach has emerged as a viable strategy for effectively
describing local atomic environments within large biomolecu-
lar systems. Numerous studies have demonstrated the effec-
tiveness of combining the fragmentation approach with the
inclusion-exclusion principle, enabling accurate estimation of
the energy of the parent system using calculations performed
on relevant fragments.>”> However, recalculation of fragment
energies becomes necessary whenever the geometry of the
parent structure changes.
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depletion spectra obtained via cryogenic ion spectroscopy.

Recent advances have shown deep learning methodologies
to be particularly beneficial in addressing the challenges asso-
ciated with conformational searches. Neural network potentials
(NNPs) trained through active learning schemes utilizing
high-accuracy computational data have proven to be powerful
tools for this task. Well-trained deep learning models enable
structural optimization with accuracy comparable to the com-
putational methods employed during training.°'® However,
generating extensive training datasets for large systems
remains computationally demanding, and efficiently describ-
ing structural diversity in these datasets is essential for
developing robust NNP models with reliable extrapolation
capabilities. NNP models trained using fragmentation strate-
gies have significantly advanced the exploration of large bio-
molecular systems, as demonstrated by several recent
studies."” ™ However, accurately modeling electrostatic
and van der Waals interactions in larger parent systems
remains challenging, as these interactions are not always fully
captured by fragment-based calculations. Consequently, reli-
ance on semi-empirical or molecular mechanics energy calcula-
tions becomes necessary for adequately representing such
interactions.

The Korean group previously conducted cryogenic ion
spectroscopy of a tryptic peptide from the kinase domain of
an enzyme, singly protonated DYYVVR, and measured
conformer-specific IR-UV depletion spectra for two distinct
conformer families."® (D stands for aspartic acid, Y for tyrosine,
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Scheme 1 Structures of three protonation isomers of singly protonated DYYVVR. (a) Dp, the carboxylate group of D is protonated; (b) Rp, that of R is

protonated; (c) DRp, those of D and R are protonated.

V for valine, and R for arginine.) There are 16 potential
hydrogen-bond donors (-NH and -OH groups) and numerous
hydrogen-bond acceptors, including the oxygens in five amide
groups, two carboxyl groups, and two phenolic OH groups, and
aromatic rings capable of NH- or OH-r interactions.” ™ Due
to the presence of many H-bond donors and acceptors, the
extensive number of possible H-bond arrangements combined
with the large size of the peptide significantly complicates a
thorough conformational analysis.

In this work, NNP models were trained to predict the
energies and Cartesian forces of three protonation isomers of
singly protonated DYYVVR, as shown in Scheme 1, to facilitate
conformational searches. To reduce computational costs,
HCO-/NH,-capped dipeptides and capped single-residue clus-
ters (cluster size of two) were extracted from the parent struc-
tures. The dipeptides describe through-bond interactions and
the clusters represent short-distance through-space interac-
tions, while long-distance through-space interactions are con-
sidered later by the hydrogen bond patterns of the parent
molecule. The geometries and energies of the fragments were
obtained by density functional theory (DFT) calculations and
used for model training. The capped dipeptides and capped
single-residue structures considered in this work are illustrated
in Schemes S1 and S2 in the ESI,{ respectively. In Section 3.1,
two kinds of NNP models are compared to check the effect of
adding fragment data into the training set: one trained with
DFT data for randomly chosen parent structures only and
others trained with fragments along with the same parent
structures. In Section 3.2, the selection of parent structures
for model training was guided by the H-bonding information
within the peptide, aiming for extensive coverage of the con-
formational space of the dataset. After optimizing the model to
reduce the mean absolute error in energy to close to
1 kecal mol ™" relative to the DFT results from Section 3.2, the
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active learning approach, illustrated in Section 2.3, was
employed to further improve the predictive accuracy of the
NNP models, with a particular focus on the low-energy con-
formational region with relative energies below 100 kJ mol .
The newly identified structures from the active learning pro-
cess, along with the simulated frequencies of their DFT-
optimized structures, will be discussed in Section 3.3.

2. Methods

2.1 Dataset preparation

A summary of the preparation of the sub-datasets is provided in
Table 1. All sub-datasets were computed at the MO06-2X/
6-311+G(d,p) level of theory using the Gaussian16®° program
package. All sub-datasets except for Dip_1 and Cl_1 were
prepared by collecting structures from geometry optimization
trajectories. The Dip_1 and Cl_1 datasets were prepared by
extracting fragment structures from selected parent structures,
which were predicted by Model 1.1 (discussed in Section 3.1) to
have energy errors exceeding 20 kJ mol ™.

2.1.1 Collecting structures from optimization trajectories.
As the models were intended for conformational search, they
required training not only with local minima, but also with
intermediate geometries. Therefore, structures for the datasets
were collected from optimization trajectories and refined using
the following procedure. Conformational searches of parent
structures were done with the MMFF94s and MMFF94 force
fields implemented in the CONFLEX*' and Gaussian16 pro-
gram packages, respectively. The resulting structures were
further optimized using the PM6 method, also implemented
in Gaussian16. PM6 minima. The PM6-optimized minima were
then used as starting points for geometry optimization at the
M06-2X/6-311+G(d,p) level of theory. For each optimization
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Table 1 Summary of the preparation of the sub-datasets, which comprise the training, validation, and test datasets. The validation and test datasets
contain only parent structures, whereas the training dataset includes fragment structures along with selected parent structures split from the test dataset.
The number of distinct structures was obtained after duplicate screening with a similarity threshold of 0.99 (See text and ESI for details)

Number of
Type of structures Label Preparation methods distinct structures
Parent structures SP_0 Single-point calculations from optimization results in the previous work.'® 10000
Opt_0 Collecting structures directly from 600 optimization trajectories. 12583
Opt_1 Collecting structures directly from 680 optimization trajectories. (Different 16259
trajectories from Opt_0 were used.)
Capped dipeptides Dip_0 Collecting structures directly from optimization trajectories of capped 13488
dipeptides.
Dip_1 Extracting fragment structures from selected parent structures that Model 11821
1.1 predicted with high error.
Capped cluster ClL1 Extracting fragment structures from the same parent structures set used for 14499

set Dip_1.

trajectory, intermediate geometries with relative energies
within 100 k] mol™" of the corresponding energy minimum
were initially selected. The selected geometries were then
grouped into bins based on relative energy, using a bin size
of 1 k] mol~*. Subsequently, one representative structure was
collected from each energy bin. Duplicates in collected struc-
tures were then removed from the datasets using an ultrafast
shape recognition algorithm®* that estimates the structural
similarity of a pair of structures based on the similarity between
a pair of 16 structural moments ranging from 0 (least similar
pair of moments) to 1 (identical pair of moments). A detailed
description is provided in the ESL{ Based on this similarity,
structures with similarities higher than the threshold values
were regarded as duplicates and removed from the datasets.
The threshold values were initially set at 0.99 so that the trained
models could accurately predict energy changes due to subtle
geometry changes. During the active learning phase, the thresh-
old values were lowered to 0.97 for more efficient model
patching.

2.1.2 Dataset preparation for parent structures. Parent
structure datasets were constructed three times with different
sets of optimization trajectories. For the SP_0 dataset, optimi-
zation trajectories from the previous work'® computed at the
®B97X-D/cc-pVDZ level were collected. Single-point force com-
putations for the collected structures were performed at the
M06-2X/6-311+G(d,p) level of theory. The Opt 0 and Opt_1
datasets were prepared from 600 and 680 distinct optimization
trajectories, respectively, calculated at the M06-2X/6-311+G(d,p)
level of theory. DFT data collected from these trajectories were
directly utilized after removing duplicate structures. The SP_0
and Opt_0 datasets were used to extract fragment structures
comprising the Dip_1 and Cl_1 datasets. The SP_0, Opt_0, and
Opt_1 have no duplicate structures between them. Randomly
chosen parent structures from these datasets were used to train
Models 1.x.

2.1.3 Dataset preparation for Dip_0, Dip_1, and CI_1.
Conformational searches for capped dipeptide structures were
done using the DFTB3 method implemented in the GAMESS*
program package, and DFTB3 minima were further optimized
at the M06-2X/6-311+G(d,p). The same procedure that was used
to prepare the Opt_0 and Opt_1 sets was used. Additional
fragment structures were extracted from selected parent
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structures in the SP_0 and Opt_0 datasets. Parent structures
for which Model 1.1 predicted energy errors higher than
20 kJ mol™" were extracted, and HCO- and NH,- caps were
applied (except for the N-end in D and C-end in R). A detailed
procedure for structure extraction and capping is provided in
the ESI.{ Single-point force computations for capped fragments
were done at the M06-2X/6-311+G(d,p).

2.2 Parent structure selection based on hydrogen bonds

The target molecule in this study possesses 336 internal
degrees of freedom, making the conformational space prohibi-
tively large for comprehensive exploration. Consequently, con-
structing a training dataset with extensive conformational
coverage would require an impractically large number of struc-
tures. Conversely, selecting parent structures at random for
model training as in Models 1.x will result in a trained model
with poor predictive performance because it cannot adequately
represent the conformational diversity of the peptide. As pep-
tide conformations are largely influenced by hydrogen bonds, a
strategically chosen subset of structures selected based on their
H-bond patterns can efficiently represent a broader conforma-
tional space. To achieve this, our approach involves identifying
H-bond information across all parent structures in the SP_0,
Opt_0, and Opt_1 datasets and selecting a representative subset
of parent structures based on these data, ensuring coverage of
the diverse H-bond combinations present within the datasets.
All H-bonds (XH-: - -Y) of the structures within the datasets were
identified with distance (XY) and angle (/ XHY) thresholds
of 3 A and 120° respectively. We found that there are
130 combinations of different H-bonds in the datasets out of
203 possible ones. Missing hydrogen bonds had too high
energy, and some examples are shown in Fig. S3 in the ESL7
The most abundant type of H-bond is C7 interaction between
the amide NH in the 2nd valine and the amide oxygen in the
2nd tyrosine. The training and validation sets were constructed
to include nearly all distinct types of H-bonds present in the
dataset, with a larger number of structures containing H-bond
types frequently found in the distribution, such as the C7
interaction mentioned above. The most abundant C7 structure,
for instance, occurred 18975 times in the dataset and was
included 2158 times in the training set for Model 2.1. The six
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least-frequent H-bonds occurred only once in the total dataset.
Five of them were included in the training set, while the
remaining one was used for validation. Parent structures stra-
tegically chosen in this way were used to train Models 2.x.
Details of the H-bond selection procedure are described in the
ESL

2.3 NNP model training

An atomistic SchNet architecture®*2°

was employed to train
NNP models for predicting the energies and Cartesian forces of
diverse structures of the singly protonated hexapeptide
DYYVVR. A feature dimension (number of neurons) of 128
was used, and four interaction blocks were applied to describe
atomic environments. Within each interaction block, 75 Gaus-
sian basis functions with a cutoff radius of 15 A were utilized to
construct continuous convolutional filters. All training was
performed using a cosine annealing schedule with warm
restarts, allowing models to explore adjacent loss minima
during model optimizations. The performance of a trained
model was validated by comparing the energies and Cartesian
forces of the structures in a validation dataset computed by the
NNP model and by DFT calculation at M06-2X/6-311G(d,p).
Validation datasets were SP_0 + Opt_0 for Models 1.x and
SP_0 + Opt_0 + Op_1 for Models 2.x. The mean absolute error
in energy (MAE_E) and Cartesian force (MAE_F) therefore
indicate the difference between an NNP model and the DFT
calculation. A detailed description of the model training is
provided in the ESL¥

2.4 Active learning scheme

After the trained model achieved a prediction performance near
1 keal mol ™! relative to DFT results in Model 2.1, an active
learning scheme was applied to patch the model, while finding
new structures. The NNP models were used as an external
program during geometry optimizations by Gaussian16. In
the 1st cycle of active learning, the latest NNP model before
active learning (Model 2.1) was used to optimize 38416 PM6
minima. In the optimization results, 3632 unphysical struc-
tures were found with several broken bonds or extremely short
interatomic distances in the NNP-optimized minima. The NNP
model was patched as follows. For each of 35 randomly chosen
optimization trajectories containing broken structures, an
intermediate structure was taken one optimization step before
the problem occurred. The single-point energy of each inter-
mediate structure was calculated at M06-2X/6-311+G(d,p) and

Table 2 Compositions of training sets used to train NNP models
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implemented into the training set. As a result, 605 structures
that previously had broken structures were successfully opti-
mized after the patch. After screening duplicate structures, the
single-point energies of 599 distinct minima were calculated at
the DFT level and added to the training set, resulting in Model
2.1.1. From the 2nd to 6th cycles, conformational searches were
done with a basin-hopping algorithm®” at the PM6 level. The
PM6 minima found in each cycle were optimized with the
preceding NNP model. In the second cycle, 572 structures,
including intermediate geometries, were patched. From the
third to sixth cycles, optimization trajectories containing
unphysical structures were used to further patch the model
using the same procedure as in the first cycle. Intermediate
structures were included only if their relative NNP energies
were below 200 k] mol . From the third and sixth cycles, the 50
lowest distinct NNP minima were also used for the patch to
enhance the model performance in the lower energy region. As
a result, 1553 structures, including intermediate structures,
were added to the training set during the active learning
process. The resulting NNP model, Model 2.1.6, represents
the latest version.

3. Results and discussion
3.1 Effect of adding fragment structures to the training set

Four models (from Model 0 to Model 1.2) were trained with four
different training sets composed of fragments and randomly
chosen parent structures. The compositions of these sets are
shown in Table 2. Model 0, which was trained with the Dip_0
dataset without any parent structures, showed poor prediction
results on the test set composed of the SP_0 and Opt 0
datasets, with a MAE in energy of 573 k] mol . The scatter
plots of the prediction results by Model 0 in Fig. S4 in the ESI,
show that there is almost no correlation between the DFT and
NNP level data. This implies that the data of parent structures
should be added into the training set. Thus, Model 1.0 was
trained with 3033 randomly chosen parent structures as a
starting model, and the prediction results of Model 1.0 were
first compared with those of Model 1.1 trained with DYYVVR +
Dip datasets. Prediction results of the two models are shown in
Fig. 1. The results show that Model 1.1 shows slightly higher
errors compared to Model 1.0. The Dip_0 structures were
simply collected from optimization trajectories, whereas parent
structures have many intermolecular interactions that can
change the local structures, deviating from the structures in

Composition

Name Description Parent structures Fragment structures
Model 0 Dip only None Dip_0

Model 1.0 DYYVVR only Randomly chosen 3033 structures from SP_0 and Opt_0 datasets None

Model 1.1 DYYVVR + Dip Dip_0

Model 1.2 DYYVVR + Dip + highE Dip_0 + Dip_1 + CL_1
Model 2.0 H-bond (3Kk) 3001 structures selected based on H-bonds Dip_0 + Dip_1 + CL_1
Model 2.1 H-bond (4.5k) 4503 structures selected based on H-bonds Dip_0 + Dip_1 + CL_1
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Fig. 1 Scatter plots of the relative energy (a), (c) and (e) and Cartesian force (b), (d) and (f) prediction for 22 583 DYYVVR structures (SP_0 and Opt_0
datasets) using Model 1.0 (a) and (b), Model 1.1 (c) and (d), and Model 1.2 (e) and (f). Relative energies are referenced to the lowest DFT energy. Shaded
regions in (c) indicate the structures that have energy errors higher than 20 kJ mol~! and were used to generate the Dip_1 and Cl_1 datasets for Model
1.2. MAE_E, mean absolute error in energy; MAE_F, mean absolute error in force.
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the Dip_0 dataset. Moreover, noncovalent interactions between
residue pairs that are not directly bonded with each other can
only be described by parent structures as there is no such
interaction in the Dip_0 dataset. Therefore, additional tests in
which more relevant fragment structures were added to the
training set were necessary to determine the effect of fragment
structures on model training.

To select parent structures for generating the Dip_1 and
Cl_1 datasets, which are more relevant to the parent system,
Model 1.1 was used to collect parent structures with a high
prediction error in energy larger than 20 k] mol . 2165 parent
structures located in shaded regions of Fig. 1 were used for
fragment structure generation, and Model 1.2 was trained. The
prediction results of Models 1.0 and 1.2 are shown in Fig. 1.
Adding Dip_1 and Cl_1 to Model 1.2 slightly improved the
energy prediction, by only 0.22 k] mol~! when compared with
Model 1.0. However, considering only ~9.6% of parent struc-
tures in the test set were patched with relevant fragments, this
approach will enable efficient model improvement at signifi-
cantly lower computational cost compared to directly using
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additional parent structures. On average, DFT calculations for
all fragments extracted from a single parent structure took 13.4
core hours, whereas a calculation for a single parent structure
took 42.4 core hours on an Intel Xeon Phi 7250 1.40 GHz.

3.2 Effect of parent structure selection for training set based
on H-bonds

To improve the performance of the model in the prediction of
energy and force, three NNP models with different training sets
(Model 1.2, Model 2.0, and Model 2.1 in Table 2) were investi-
gated to check the effect of the structure selection discussed in
Section 2.2. To validate the assumption described in Section
2.2, the predictions of Models 2.0 and 2.1 (H-bond 3k and 4.5k
models) on the total parent dataset (SP_0 + Opt_0 + Opt_1) are
compared in Fig. 2. Model 2.0 had a significantly lower MAE in
energy than Model 1.2 (by 3.21 k] mol '), demonstrating that
Model 2.0 exhibited better extrapolation quality compared to
Model 1.2. The lower MAE indicates improved correlation
between the NNP Model 2.0 and DFT energies, demonstrating
that H-bond-based structure selection better represents the
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Fig. 2 Scatter plots of the relative energy (a) and (c) and Cartesian force (b) and (d) prediction for 38 842 DYYVVR structures using Model 2.0 (a) and
(b) and Model 2.1 (c) and (d). Relative energies are referenced to the lowest DFT energy. MAE_E, mean absolute error in energy; MAE_F, mean absolute

error in force.
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dataset than random sampling. However, while this method
yields an efficient representative subset, it may not fully capture
the entire conformational space. For additional improvement
of the model, Model 2.1 trained with the H-bond (4.5k) dataset
was tested with the same total parent dataset. Most outliers in
Model 2.0 moved near the diagonal in Model 2.1, although the
added parent structures in the training set were not intention-
ally focused on these outliers. As a result, the latest model in
this section reached a MAE in energy of 4.79 k] mol ™' com-
pared to the M06-2X/6-311G(d,p) level, which has been shown
to be appropriate to assess the accuracy of an NNP model.”

3.3 Active learning and newly found minima

Through the series of active learning cycles, 21 distinct NNP
minima with relative NNP energies lower than 20 k] mol ™" were
newly found. The Korean group previously conducted geometry
optimizations and harmonic frequency calculations for candi-
date structures at the ®wB97X-D/cc-pVDZ level of theory to
explain the experimental IR-UV depletion spectra.'® For further
investigation using the newly found minima, 21 NNP minima
and the structure that was tentatively assigned to the experi-
mental data in the previous research were used for geometry
optimizations and harmonic frequency calculations at the M06-
2X/6-311+G(d,p) level of theory. As a result, 22 minima includ-
ing the previously assigned structure were converged to 19 DFT
minima. The electronic energy and sum of electronic and
thermal free energy at 300 K of the 10 lowest-electronic-
energy minima are summarized in Table 3.

The Prev structure, found at a different DFT level but now
optimized at the same level as the other Conf_x, still has a low
relative electronic energy close to that of the Conf_0 structure,
which is the global minimum found so far. However, in terms
of thermal free-energy correction, the corrected energy of the
Prev structure is much higher than that of Conf_0. Comparison
of corrected energies at room temperature does not seem to be
logical at first glance. However, considering the experiment was

Table 3 Relative energies (in kJ mol™) calculated at the M06-2X/6-
311+G(d,p) level of theory for 10 DFT-optimized structures at 300 K.
Energies are reported as electronic energies and electronic energies with
thermal free-energy corrections. Structures labeled as "Conf_x" represent
conformers optimized from newly identified NNP minima, whereas “Prev”
refers to a conformer re-optimized from the previously reported™® struc-
ture. Rows containing at least one relative energy value below 5 kJ mol™
are highlighted in yellow

Relative energy

Electronic + thermal

Label Electronic energy free energy
Conf 0 0 0

Prev 0.785 27.3
Conf_1 2.13 10.1
Conf_11 2.29 27.5
Conf_12 4.70 29.7
Conf_13 6.27 371
Conf_2 6.87 3.17
Conf_3 7.33 5.76
Conf_4 8.20 4.33
Conf_14 9.01 35.1
14450 | Phys. Chem. Chem. Phys., 2025, 27, 14444-14454
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conducted using electrospray ionization and cryo-cooling, the
conformation population at room temperature can be partially
captured and certain conformations can be kinetically trapped
due to fast cooling of ions in the ion trap.>®

The harmonic vibrational frequencies of the DFT minima
were calculated and multiplied by the following scaling factors.
For phenolic OH stretches, a scaling factor of 0.9375 was used
to locate harmonic frequencies of free phenolic OH close to
3650 cm™ ', which is validated by other experimental data.?=°
In the case of carboxylic OH, a factor of 0.9357 was used to
locate free carboxylic OH frequencies near 3570 cm ™', which is
also validated by spectroscopic studies with a different
system.>"*> NH stretches in the sidechain of arginine were
given a scaling factor of 0.9500 so that the harmonic frequen-
cies of the solvated guanidinium ion, Gdm*(H,0);_,, calculated
at the M06-2X/6-311+G(d,p) level of theory would have the best
agreement with the corresponding experimental data.’® Lastly,
for the rest of the NH stretches, a factor of 0.9484 was
used to locate harmonic frequencies of free amide NH close
to 3480 cm '.** After applying the scaling factors, the simu-
lated frequencies of the minima structures were compared with
the experimental data. Two conformations, which are depicted
in Fig. S5 (ESIt), were found to have vibrational frequencies
that agree well with the experiment. Their vibrational frequen-
cies above 3000 cm ™" are shown in Fig. 3 and summarized in
Tables S3 and S4 (ESIT). As the scaling factors were fitted with
free stretches (except for the guanidinium NHs), the perturbed
NH stretches can be more red-shifted. Considering that the two
structures have relatively low energies after thermal free-energy
corrections, the potential energy surface around these minima
is expected to be shallow, allowing multiple conformations to
coexist, which might explain the broad feature from 3100 to
3450 cm ™. Detailed explanations of the assighment can be
found in Sections S9 and S10 of the ESI.}

3.4 Performance of the latest model

To estimate the performance of the NNP models in geometry
optimizations, the NNP minima and corresponding DFT
minima were compared. The Cartesian root mean square
deviations (RMSD) between pairs of minima structures were
calculated after applying the Kabsch-Umeyama algorithm®?
and are summarized in Table S2 (ESIf). The average of the
Cartesian RMSDs is 0.1966 and the standard deviation is
0.1200. Pairs of structures with the lowest (0.0556, Conf 20),
median (0.1710, Conf_16), and highest (0.5261, Conf_8) RMSDs
are shown in Fig. 4. For (a) and (b) in Fig. 4, the pairs of
structures are nearly overlapped except for the boxed phenol
groups in (b) that slightly deviate from each other. Even in (c),
which has the highest RMSD, both minima are similar to each
other except for the boxed carboxylic (left) and phenol (right)
groups.

To further investigate the optimization quality, the latest
NNP Model 2.1.6 after active learning was used to predict the
single-point energy and Cartesian forces of the 21 newly found
NNP minima and corresponding DFT minima structures dis-
cussed in 3.3. In the case of DFT minima that were not included
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Fig. 3

IR-UV depletion spectra from the previous study'® are shown as solid lines (a) and (c), and simulated scaled harmonic frequencies of Conf_0 and

Conf_2 are shown as color-coded bars (b) and (d). (Red: phenolic OHs, blue: NHs in the sidechain in arginine, green: other NHs, black: carboxylic OHs).
The depletion spectra were obtained by monitoring the UV photodissociation signal at two different vibronic bands, while scanning the IR laser.

Experimental details are explained in the ESI.{

a) Conf 20
RMSD: 0.0556 A

b) Conf 16
RMSD: 0.1710 A

c)Conf 8
RMSD: 0.5261 A

Fig. 4 Pairs of structures (NNP minima and corresponding DFT minima) with (a) the lowest (Conf_20), (b) median (Conf_16), and (c) highest (Conf_8)
values of Cartesian RMSDs. DFT minima are colored red, whereas NNP minima are colored blue. Deviated sidechains are boxed in (b) and (c).

in the training set, the model could not predict the energy
accurately, yielding an MAE value of 12.0 kJ mol . However,
the model predicted the Cartesian force much more accurately,
with an MAE value of 1.42 k] mol~* A%, which is close to the
default threshold value of maximum force for geometry opti-
mization in ab initio computation packages. Thus, the model
can significantly reduce computational costs by bringing struc-
tures close to the DFT minima, thereby decreasing the number
of DFT optimization steps required for convergence.

Parent structures in the total dataset were also used to
estimate the performance of the latest model. The prediction
results are shown in Fig. 5. In this case, the DFT-calculated
structures during active learning along with the SP_0, Opt_0,
and Opt_1 datasets were screened out with a similarity thresh-
old of 0.97 and used as a validation dataset to estimate the
generic performance of the model. The number of structures

This journal is © the Owner Societies 2025

was reduced to 14 562 for the entire energy range, and 5103 for
AE < 100 k] mol ™. As distinct structures were added sequen-
tially during the active learning process, the MAEs in energy are
increased. However, MAEs in the Cartesian force remain at low
values, showing that the accuracy of the model in the Cartesian
force is focused more on the low-energy region. Therefore, the
NNP model can still be used to pre-optimize structures that can
be further optimized at the DFT level with a reduced number of
DFT optimization steps.

During the active learning phase, 48726 parent structures
were optimized using NNP models. A single-point force calcula-
tion for a parent structure using an NNP model takes approxi-
mately 0.97 s (2.7 x 10~ core hours) on average using an Intel
Xeon Gold 6226R CPU at 2.90 GHz. Assuming that a geometry
optimization job typically requires about 45 cycles per struc-
ture, the total computational time required for optimizing all

Phys. Chem. Chem. Phys., 2025, 27,14444-14454 | 14451


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cp01632k

Open Access Article. Published on 13 June 2025. Downloaded on 11/9/2025 2:43:32 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

PCCP Paper
a) b)
2000000 F
8500+ 2
k= <
& 250 8 1000000 F
8 8
0 : 606 : - == . :
00l MAE: 5.34 kJ/mol MAE: 2.04 kJ/molA
400} A
A
300 — 200 > A 1
) oL . .
5 g q
22001 > of i e
: s
Z | . e . |
100k -200 2
—400} . 1+
ok
0 100 200 300 400 0 500 ~8%%00 —400 —200 0 200 400 6@ 20000
M062X/6-311+9(d,p) [k)/mol] Datapoints M062X/6-311+g(d,p) [k}/molA] Datapoints
c) d)
£ 500} £ 500000
& g
£ 100} £ 250000
© ©
[=] [a]
sl MAE: 6.39 kJ/maol MAE: 1.84 kJ/mol-A
R 400} g
100 [y
= 75} @i = 200 J
g 2
> 50 > of ——
= =
=z . o
Z 25t N =
R = -200f E
O -
sl —400} 4+
%50 0 50 100 190 200 ~8%%00 —400 —200 0 200 400 6@ 500000
M062X/6-311+g(d,p) [kJ/mol] Datapoints M062X/6-311+g(d,p) [K)/molA] Datapoints

Fig. 5 Scatter plots of relative energy (a) and (c) and Cartesian force (b) and (d) prediction for 14 562 (a) and (b) and 5103 (c) and (d) DYYVVR structures
using the latest Model 2.1.6. MAEs are displayed for each plot. Both the NNP and DFT relative energies were calculated using the DFT energy of the lowest

energy structure.

48726 structures using NNP models would be only about 1245
core hours, which is achievable within two days using a single
32-core processor.

4. Conclusions

In this work, we developed an NNP model to efficiently explore
the conformational space of a hexapeptide, singly protonated
DYYVVR. A fragmentation approach was applied to a subset of
parent structures that the initial parent-only model was unable
to accurately describe. Incorporating fragment structures into
the training dataset resulted in a modest improvement in
prediction performance, primarily due to the limited number
of parent structures used for generating fragments relevant to
the overall parent system. However, this approach is expected
to become particularly important when applied to larger pep-
tide systems, for which computations of the full parent systems
at sufficient accuracy become prohibitively expensive. Follow-
ing the implementation of the fragmentation approach, the
parent structures selected for model training were further

14452 | Phys. Chem. Chem. Phys., 2025, 27, 14444-14454

refined based on the H-bond distribution present in the
dataset. Although representing a (3N-6)-dimensional conforma-
tional space using the number of unique H-bonds is inherently
approximate, this strategy substantially enhanced the perfor-
mance by effectively covering a broader conformational space.
After constructing a representative and structurally diverse
training set based on the identified H-bond patterns, we carried
out 48726 optimizations while continuously improving the
NNP model. Performing such a huge number of optimizations
at DFT-level accuracy would have been nearly impossible using
conventional high-level computations. The improved NNP
model was found to be able to optimize structures to minima
closely matching the geometries obtained from high-level com-
putations, significantly reducing computational costs. This
improvement was primarily due to the high accuracy of the
model in predicting Cartesian forces, which is essential for
geometry optimization. Furthermore, the refined model suc-
cessfully identified structures that can support the previously
reported experimental spectra. Our approach is expected
to be applicable to other biomolecular systems with minor
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modifications, beginning with the generation of high-quality,
structurally diverse training datasets computed at lower levels
of theory. This strategy is feasible because hydrogen bonds can
be readily identified using simple distance and angle calcula-
tions, significantly reducing the computational cost.
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