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Improved modeling of battery electrolytes:
betting on model fitting or quantum effects?

Defne Saraç,ab Diego Moreno Martinez,†a Marie-Liesse Doublet *ab and
Christophe Raynaud *ab

The accurate modeling of solvent dynamics and ionic interactions is of crucial importance for the

development of novel electrolytes in next-generation metal-ion batteries. This study presents a critical

evaluation of the semi-classical computational approach, the adaptive quantum thermal bath (adQTB)

method, as a methodology for capturing the key properties of glyme-based solvents and their Ca2+-

based electrolyte solutions. Simulations reveal that the adQTB method is particularly effective in

accurately reproducing vibrational spectra, while offering good transferability across systems and

conditions without requiring empirical parameter adjustments. In the context of electrolyte solutions,

semi-classical adQTB simulations in combination with graph theory analysis indicate a distribution of the

various charge-carrying clusters that is closely aligned with the conductivity measurements previously

reported [Nguyen et al., Phys. Chem. Chem. Phys., 2022, 24, 21601], in sharp contrast to the empirically

scaled force field. These findings emphasize the necessity of incorporating nuclear quantum effects

for reliable electrolyte modeling, thereby paving the way for the advancement of post-Li battery

technology.

In the field of metal and metal-ion batteries, the development
of liquid, polymer, or solid electrolytes that address both safety
and lifespan concerns has emerged as a significant area of
research.1–5 Over the past decade, this field has experienced
substantial growth, driven primarily by advancements in post-
Li technologies that offer promising alternatives to conven-
tional Li-ion batteries.6–9 As the demand for more efficient and
safer energy storage solutions continues to increase, a compre-
hensive understanding of the mechanisms of ionic conductivity
and the influence of solvation properties on the possible
degradation of electrolytes during electrochemical charge/dis-
charge cycles has become critically important. Recent studies
underscore the need to model electrolyte behavior under
diverse conditions, including varying concentrations, tempera-
tures, and external potentials.10–13 While ab initio molecular
dynamics (AIMD) is widely regarded as the gold standard,
its computational cost makes it untractable for such high-
throughput screening. Classical molecular dynamics (MD) then
becomes the method of choice, provided that the simulation
setup used to investigate the interactions and the dynamic

behavior of ions and solvent molecules at the atomic scale
accurately capture the relevant physical effects. These simulations
offer atomistic insights into key phenomena such as ion trans-
port,14–17 solvation dynamics,18–20 and interfacial processes,21–23

all of which are critical to battery performance.24–30 Classical MD
simulations thus serve as a virtual laboratory, offering a cost-
effective means to complement experimental studies and improve
our understanding of metal-ion batteries.

In this context, the development of accurate force fields to
capture the dynamics of electrolyte solutions remains a vital
and ongoing area of research.31–39 Polarizable force fields such
as Drude oscillator,40–45 or induced dipole models46–50 are
required to explicitly account for the atomic polarizability and
to capture the molecular response to various electric fields,
including static and dynamic effects. This is particularly rele-
vant for electrolytes based on low-dielectric organic solvents,
where long-range electrostatic interactions dominate ion trans-
port and solvation phenomena.11 In a recent work, we investi-
gated the glyme solvents (glycol methyl ethers), a class of low
dielectric solvents used in post-Li battery electrolytes.51,52 Using
the AMOEBA model, we introduced a transferable fitting pro-
cedure to develop a universal interaction potential for the entire
glyme family (–O–(–CH2–CH2–O–)n–) from small oligomers (Gn)
to the PEO polymer (GN = PolyEthylene Oxide). Results showed
that the AMOEBA force field well captures local bonding inter-
actions and solvation structures, while unexpectedly overesti-
mating macroscopic properties, such as density and dielectric
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b Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459,

France

† Present address: CEA, DES, ISEC, DMRC, Univ Montpellier Bagnols-sur-cèze,
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constant. This discrepancy underscored the need for further
refinement to improve the alignment of computational predic-
tions with experimental data and our understanding of electro-
lyte behavior at both molecular and macroscopic scales.

Accurately capturing nuclear quantum effects (NQE), both
in ab initio or classical MD simulations is a critical step
when modeling light atoms, like hydrogen, especially at low
temperatures.53–57 Among existing methodologies that expli-
citly incorporate NQE, path integral molecular dynamics
(PIMD) stands out as a powerful, albeit computationally expen-
sive, approach that accounts for all possible quantum paths of
the system. A widely used approximation of PIMD is ring
polymer molecular dynamics (RPMD),58 which makes use of
multiple interacting copies of the system. However, the com-
putational cost of RPMD still remains prohibitive for large
systems, particularly at low temperatures where the number
of required copies increases with the temperature decrease.
This issue has driven the search for more practical alternatives.
The quantum thermal bath (QTB) method,59 based on Langevin
dynamics, offers a computationally affordable solution with
limited extra-cost compared to NQE-free MD simulations.
Unlike the classical Langevin thermostat, which applies ran-
dom forces (white noise) on all nuclei,60 the QTB method
incorporates frequency-specific adjustments via colored noise
to ensure a reliable (i.e. quantum-mechanics) energy partition
of vibrational modes. By modifying the random-force ampli-
tudes, the QTB method can supply or withdraw quanta of
energy from each mode, aiming to reproduce the correct zero-
point-energy (ZPE). However, the original QTB approach, which
treats vibrational modes in a unified manner, leads to the so-
called ZPE leakage, particularly from high to low-frequency
modes,61 thereby compromising the method’s accuracy and
applicability. To address this challenge, Mangaud et al.62 intro-
duced the adaptive quantum thermal bath (adQTB), an
advanced version of the QTB method. The adQTB incorporates
frequency-dependent friction coefficients, derived from the
fluctuation-dissipation theorem, which are dynamically adjusted
(i.e. ‘‘on the fly’’) during the MD simulations to prevent ZPE
leakage. By overcoming this limitation, adQTB significantly
improves upon traditional QTB, therefore offering better accuracy.
As a result, it represents a valuable tool for incorporating nuclear
quantum effects into MD simulation of complex electrolyte
systems, with no substantial extra-cost.

In this letter, we discuss the influence of explicitly incorpor-
ating NQE via the adaptive quantum thermal bath (adQTB) for
two systems having experimental reference data available: pure
liquid glymes63–66 and glyme-based electrolyte solutions with a
Ca(TFSI)2 salt.11 Results are compared to the commonly used
van der Waals (vdW) scaling approach,67–69 which adjusts the
vdW parameters of the force field to fit various experimental
data. Although the vdW-scaling approach is popular and rela-
tively straightforward to implement, the parameter optimization
process relies on the availability and accuracy of experimental
data. Moreover, such empirically-optimized force fields often
lack transferability across different systems, hence limiting their
versatility compared to methods introducing the quantization of

nuclei either from first-principles (e.g. PIMD) or in an effective
manner (e.g. adQTB). Despite its limitations, the vdW-scaling
approach can still capture key electrolyte properties, as nuclear
quantum effects are inherently reflected in the experimental data
used to fit the force field parameters. While both vdW-scaling and
adQTB approaches are expected to improve the match between
simulations and experiments compared to unscaled and purely
classical approaches, the correction offered by each method may
vary, particularly at low temperatures where nuclear quantum
effects are significant. The Boltzmann distribution on its own
becomes a more satisfactory description of the energy partition at
higher temperatures, where the gap between classical and semi-
classical approaches should close.

For the sake of clarity, the previously reported AMOEBA
force field will be used as a reference and hereafter referred to
as ‘‘initial’’. The force field resulting from the scaling of its vdW
parameters will be denoted ‘‘vdW-sc’’, while the use of adQTB
with the initial force field will be denoted ‘‘adQTB’’. The
performance of these three approaches is exemplified in the
following on local and macroscopic properties, including bond
distributions, vibrational structure, density, dielectric constant,
and solvation structures. For this specific study, a vdW-scaling
factor of k = 1.06 was extracted from the experimental tetra-
glyme (G4) densities,64 as the estimation of this quantity is
highly sensitive to intermolecular interactions (see SI, Fig. S1).
As shown in Fig. 1, this scaling factor improves the reproduc-
tion of the experimental density for both diglyme (G2) and
tetraglyme (G4) compared to the initial approach, with relative
errors below 1.4% across the temperature range from 273 to
363 K. Incorporating nuclear quantum effects also improves
the results, though densities are still slightly overestimated
(around 2% error for both G2 and G4). As expected, the adQTB
method offers a good transferability across systems and

Fig. 1 Evolution of the liquid diglyme G2 (top) and tetraglyme G4 (bottom)
densities with respect to temperature, as obtained from MD simulations using
the initial (yellow), vdW-sc (green) and adQTB approaches (red). The horizontal
dotted lines represent the experimental density64 for both systems at different
temperatures. Relative errors compared to experiments are also indicated on
each plot.
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temperatures with relative errors remaining stable in the
whole test-case study (see SI, Tables S1 and S2 for exact density
values).

To have a more complete comparison of the three appro-
aches, it is interesting to study the macroscopic properties that
were not explicitly considered for the vdW-parameter optimiza-
tion. As shown in Table 1, both vdW-sc and adQTB perform
similarly for the vaporization enthalpies of G2 and G4, and
slightly improve the initial results. For the dielectric constants,
results are consistent with the density results, i.e. the larger the
density, the larger the dielectric constant. This is consistent
with the positive linear relationship between density and
dielectric constant (illustrated in Fig. S2) as both properties
vary with inverse volume. Compared to the density results, the
larger differences for the dielectric constants observed between
the different methods suggest that dipole moment fluctuations
are highly sensitive to even slight changes in intermolecular
interactions. Note that the good agreement between experi-
mental and simulation data for the initial valence-fit force field
without accounting for NQE (both for G2 and G4) reconcile the
conflicting results discussed in our previous work51 where
dielectric constants were erroneously overestimated.52

Quantifying nuclear motion is crucial for vibrational proper-
ties, especially for intramolecular vibrations. The difference
between the classical and semi-classical methods is reflected
in the simulated infrared (IR) spectra of liquid G2 and G4 given
on Fig. 2. The discrepancy between computed and experimental
relative intensities reflects an intrinsic limitation of the force
field approach, which cannot reproduce charge redistribution
along vibrational modes. This may result in inaccurate dipole
moments variations as illustrated in SI, Tables S4 and S5 for the
C–H bonds. The initial and vdW-sc approaches lead to nearly
superimposed IR spectra in the low- and high-frequency
regions, consistent with the fact that the vdW-scaling primarily
alters intermolecular interactions (see SI, Fig. S3, S4 and
Table S3). The adQTB method shows clear improvement in the
prediction of peaks frequency and broadening with a red-shift
of the high-frequency modes around 1110, 1455, 2880 cm�1 for
both G2 and G4. This red-shift is particularly significant for
the C–H stretching modes around 2880 cm�1, which lower by
approximately 100 cm�1, hence falling within the expected
range of 2750–3000 cm�1.

Overall, these results underline the importance of a semi-
classical approach for accurately capturing the vibrational
behavior of light atoms such as hydrogen. This improved
vibrational representation is associated with the adQTB’s

ability to sample a wider range of bond lengths, as demon-
strated in Fig. 3 for both G2 and G4 chain lengths. Such a wider
sampling suggests that incorporating NQE should be particu-
larly beneficial for highly hydrogenated organic compounds
used as electrolyte solvents in post-Li batteries or any other
organic systems, including ether chains, hydroxyl groups, alkyl
chains, and even cyclic alkanes.

Another interesting question is whether the changes
observed in the average response of molecular bonds due to
the method specificity have any impact on the overall confor-
mation of individual glyme chains. In the case of the highly
flexible tetraglyme (G4), a key intramolecular parameter is the
extent to which its conformation tends toward linearity or
crown shape. As shown in Fig. 4, the overall profile of the

Table 1 Vaporization enthalpies (DHvap in kJ mol�1) and dielectric con-
stants (e) calculated at 298.15 K for liquid G2 and G4 using the initial, vdW-
sc and adQTB approaches and compared to experimental values65,66

Exp. Initial vdW-sc adQTB

DHvap,G2 54.6 � 3.8% 47.3 � 8.0% 51.4 � 8.2% 54.4 � 9.6%
DHvap,G4 76.9 � 3.4% 90.2 � 2.6% 89.3 � 2.9% 87.6 � 1.8%
eG2 7.40 � 0.10 7.34 � 0.03 6.10 � 0.19 6.76 � 0.03
eG4 7.78 � 0.01 8.10 � 0.25 6.34 � 0.15 7.98 � 1.15

Fig. 2 IR spectra calculated for the liquid diglyme (G2) (top) and tetra-
glyme (G4) (bottom) as explained in computational details using the vdW-
sc (green) and adQTB (red) methods. The dotted lines correspond to
experimental peaks63 (see SI, Fig. S3 and S4 for full experimental spectra,
and Table S3 for peak lists).

Fig. 3 Distribution of intramolecular C–H distances for all CH2 and CH3

groups of diglyme (left) and tetraglyme (right) molecules, using the vdW-sc
(green) and adQTB (red) methods.
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density graph remains almost identical for all three simulation
setups with, however, a slight elongation of the most abundant
CH3� � �CH3 distances for vdW-sc. This corresponds to a small
linearization of the ether chains which can be more likely
correlated to the slightly lower density obtained with this force
field (see Fig. 1), than to a fundamental difference in the
conformational exploration during the MD simulation.

In the context of electrochemical energy storage, the inves-
tigation of the solvation environment of charge carriers is
particularly compelling, as a change in dominant structures
may affect ion diffusion within battery electrolytes.11,70 The
nature and the relative occurrence of these charge carriers may
depend on the force field and on whether NQE are explicitly
taken into account in the MD simulations. For this purpose, an
electrolyte model of B1 M of Ca(TFSI)2 salt in tetraglyme (G4)
was studied at different temperatures, with the initial, vdW-sc
and adQTB methods (see SI, Section S3 for TFSI� force field
parameters, and Table S7 for exact molar concentrations).
A graph theory based code, developed by Vatin et al.,71 was then
used to identify and count the different contact and solvent-
separated ion pairs occurring in the solution, in order to deter-
mine the distribution of neutral and charged species. Based on
the radial distribution functions (RDF), different cutoff distances
characteristic of the cation–anion (Ca2+� � �O(TFSI�)), cation–
solvent (Ca2+� � �O(G4)) and solvent–anion (O(G4)� � �O(TFSI�))
interactions were applied to capture the different pair asso-
ciations that may occur in the solution (see SI, Fig. S5 and
Table S6). The charge carrying clusters containing at least one
Ca2+ ion were then reconstructed, and their total charges were
deduced from the presence of one or more TFSI� anion as
contact or solvent-separated counter-ions.

As illustrated in Fig. 5, the relative abundance of the charged
and neutral clusters strongly depends on the force field and
the incorporation of NQE. Indeed, noticeable differences are
observed between the different approaches, not only in the

species relative ratio, but also in their evolution upon tempera-
ture increase. The vdW-sc approach clearly promotes ion-pair
association, as evidenced by the constant decrease of 2+
charged clusters as temperature increases. The distribution
obtained with the initial method qualitatively compares with
vdW-sc with, however, a smoother decrease in the number of 2+
charged clusters with temperature increase. For both methods,
this monotonic temperature-dependent ion-pairing behavior
leads to a continuous increase in the number of neutral
clusters, with neutral species becoming dominant at the high-
est simulated temperature. This is in sharp contrast with the
adQTB approach which first displays a notable augmentation of
2+ charged species with temperature increase followed by a
diminution above a temperature threshold between 328 and
388 K. At 298 K, the average cluster size and the occurrence
of multi-cationic clusters increase greatly by the inclusion of
NQEs, highlighting their influence on long-range interactions
(see Table S8 and Fig. S6). Between 298 K to 328 K, the adQTB
also shows a 14% increase in free TFSI� anions in the electro-
lyte, suggesting a more complex dependence of cluster for-
mation on temperature than the mere acceleration of ion
pairing kinetics. This is consistent with the non-monotonous
variation of the average cluster size and the occurrence
of multi-cationic species (Table S8) with temperature across
all three approaches.

Fig. 4 Distribution of intramolecular end group (CH3� � �CH3) distances
extracted from room-temperature MD simulations of bulk liquid using the
initial (yellow), vdW-sc (green) and adQTB (red) approaches.

Fig. 5 Distribution of charges carried by the clusters reconstructed by
graph theory from MD simulations performed at different temperatures.
From top to bottom, initial force field (yellow), vdW-scaled force field
(green), initial force field with adQTB (red).
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According to the experimental data reported by Nguyen
et al.,11 the ionic conductivity of Ca(TFSI)2@G4 electrolyte
solutions first increases with temperature, prior to slightly
decreasing above a temperature threshold which rises with
the salt concentration. For concentrations ranging from 0.5 to
0.8 M, this temperature threshold is consistently observed
between 343, 383 K which is consistent with the adQTB results.
The amount of charge carriers being related to the ionic
conductivity, all other parameters assumed equal for a given
temperature, the trend obtained with the vdW-sc approach –
and to a lower extent with the initial method – deviates from
experimental data, therefore indicating a substantial inter-
dependence between the vdW and other intermolecular
parameters of the AMOEBA model. This indicates that the
application of a scaling factor to selected-only contributions
has a detrimental impact on the accuracy and transferability of
the force field and cannot fully replace the explicit inclusion of
nuclear quantum effects in complex systems like electrolytes.
This is consistent with recent reports showing that the explicit
inclusion of NQE, using Path Integral MD method, improves
self-diffusion constant estimation.72 Although the current
implementation of adQTB is not suitable for the calculation of
dynamic properties such as conductivity, these results suggests
that indirect ionic conductivity predictions may be practical for
various electrolyte solutions, at least from a comparison per-
spective, based on the statistics of charged species distributions.
It is known that different ion association motifs, ranging from
contact or solvent separated ion pairs to extended clusters,
behave differently in the electrolyte, affecting the transport
properties as well as the possible decomposition mecha-
nisms.73–76 As briefly illustrated in Fig. S7, we have a zoology
of clusters that carry the same number of charge. Their distinc-
tion and identification via graph theory based methods71,77,78 is
therefore of interest for future work. It is not possible to directly
associate these clusters to diffusion constants as suggested by
previous works,73,74 due to the limitations of the adQTB frame-
work. However, one could aim to approximate diffusion con-
stants and ionic conductivity by exploiting the relevant physical
properties of the clusters such as mass, charge, and morphology,
as well as those associated to their environment such as viscosity
and temperature. Machine-learning algorithms may prove
invaluable in this respect to predict trends in conductivity as a
function of these properties. Such an approach could provide an
efficient, albeit qualitative, way to screen novel electrolytes
currently under development for Li and post-Li batteries, with-
out engaging in computationally expensive simulations of trans-
port properties.14

In conclusion, this study compares the direct incorporation
of nuclear quantum effects (NQE) via the adaptive quantum
thermal bath (adQTB) method with the conventional approach
of scaling van der Waals (vdW) parameters, evaluating their
influence across three key areas: macroscopic properties, spec-
troscopic response, and molecular conformations. For pure
liquids, both methods performed comparably on a macroscopic
level. However, adQTB offers a critical advantage in transferability,
as it does not require system-specific parameter adjustments,

whereas vdW-scaling does. This is especially valuable for systems
lacking experimental data, such as those at an early stage of
development. Nonetheless, for chemically similar systems, such
as different glymes, a predetermined scaling factor remains valid
for a specific macroscopic property. On a molecular level, vdW-
scaling alone proves inadequate for accurately capturing high-
frequency vibrational peaks in the infrared spectrum, where the
explicit inclusion of NQE significantly improves peak frequency
and broadening with respect to experimental spectra.

For chemically diverse systems such as electrolyte solutions,
the vdW-scaling approach may fall short, as the vdW-scaled
force field predicts significantly different solvation environ-
ments for charged species at different temperatures in a way
that contradicts experimental observations. In contrast, the
adQTB method is in line with experimental trends and could
be used as a powerful way to qualitatively estimate ionic
conductivity with respect to increasing temperature while pre-
dicting different occurrences of charged species. The influence
of NQE accounted for through adQTB therefore goes beyond a
simple shift in simulated temperature that could be assimilated to
the zero point energy. Further investigations are needed to under-
stand how NQE impact long-range interactions in the electrolyte,
particularly with respect to charge distribution among supermole-
cular carriers. In particular, the accurate determination of the
distribution of various aggregates and charges could be a
particularly fruitful endeavour. Coupled with machine-learning
algorithms, the characteristic descriptors of these aggregates (size,
charge, composition) determined by graph theory could signifi-
cantly enrich the databases, with the aim of moving towards more
rational design of electrolytic solutions.

Computational details

Molecular dynamics simulations were performed using the
Tinker-HP program package (version 1.2).79 Liquid densities
were calculated by performing 1 ns of NPT simulation and
averaging the value over the last 125 ps of the trajectory. It has
been verified that this average remains within 2 standard
deviations (s) of the previous 250 ps. A time step of 1 fs has
been used.

An NVT simulation of 48 ns was then performed on the NPT
equilibrated system, conserving the 1 fs time step. The dielectric
constants were calculated over the two 24 ns halves, based on the
fluctuation of the total dipole moment as shown in eqn (1):

e ¼ e1 �
M2
� �

þ Mh i2
3e0VkBT

(1)

where for polarizable models such as AMOEBA, the optical
dielectric constant eN is given by the Clausius–Mossotti relation:

e1 � 1

e1 þ 2
¼ 4p

3V

X

i

ai

The molecular polarisability ai was calculated using the
polarize module of Tinker (version 8.10).80 In the case of G4,
the same NVT trajectory was used to calculate the average
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potential energy of liquid (Uliq) for the vaporization enthalpy
(DHvap,G4). A 4 ns NVT trajectory of a single G4 molecule in a
50 � 50 � 50 Å box was performed to obtain the potential
energy for the ideal gas (Ugas). The average values for Ugas and
Uliq were calculated over the last 1/4 of their respective trajec-
tories, ensuring that they stay within 2s of the previous average.

As suggested by Wang & Hou81 the calculation of DHvap,G4 at
298.15 K follows eqn (3):

DHvap,G4 = Egas(T) � Eliq(T) + p(Vgas � Vliq) (2)

Given that Vliq { Vgas and the kinetic energies tgas = tliq

according to the equipartition theorem, this expression can be
reduced to:

DHvap,G4 = Ugas(T) � Uliq(T) + RT + C (3)

where the correction term related to vibrational motion C is
very small, hence omitted in this work. The distances between
CH3 end groups were also calculated over 12 ns of this same
NVT trajectory.

In parallel, an NVT simulation of 2 ns was launched using
the NPT equilibrated simulation box, with a timestep of 0.5 fs.
The IR spectra were generated automatically for the last 500 ps
using the register_spectra keyword, from the autocorrelation of
the box dipole moment. The spectra were calculated on the fly
from the average of 2.0 ps segments (tseg 2.0) which corre-
sponds to a precision of 5 cm�1 on the final spectra. The
influence of friction coefficient coupling the system and the
thermostat was offset via the IR_Deconvolution keyword.82

Note that the spectra were not modified when a total time of
500 ps, 2 ns or 5 ns was chosen for the calculation. The C–H
bond lengths were evaluated over the last 1 ns.

For purely classical calculations (valence fit and valence +
van der Waals fit) the Berendsen barostat and the Bussi
thermostat were chosen, as well as the velocity-Verlet integra-
tor. For IR spectra exceptionally, the Langevin thermostat was
used. For the semi-classical simulations, the adQTB thermostat
was used in conjunction with a Langevin barostat. The BAOAB-
RESPA integrator was employed for these simulations.
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