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Entropy-stabilized ZrHfCoNiSnSb half-Heusler
alloy for thermoelectric applications: a theoretical
prediction†

Rajeev Ranjan

Half-Heusler (HH) alloys are potential thermoelectric materials for use at elevated temperatures due to their

high Seebeck coefficient and superior mechanical and thermal stability. However, their enhanced lattice

thermal conductivity is detrimental to thermoelectric applications. One way to circumvent this problem is to

introduce mass disorder at lattice sites by mixing the components of two or more alloys. Such systems are

typically stabilized by the entropy of mixing. In this work, using computational tools, we propose a mixed HH,

namely, ZrHfCoNiSnSb, which can be formed by the elemental compositions of the parent half-Heuslers

ZrNiSn/HfNiSn and HfCoSb/ZrCoSb. We propose that this new compound can be synthesized at elevated

temperatures, as its Gibbs free energy is reduced due to higher configurational entropy, making it more

thermodynamically stable than the parent compounds under such conditions. Our calculations indicate that it

is a dynamically stable semiconductor with a band gap of 0.61 eV. Its lattice thermal conductivity at room

temperature is 5.40 W m�1 K�1, which is significantly lower than those of the parent compounds. The peak

value of this alloy’s figure of merit (ZT) is 1.00 for the n-type carriers at 1100 K, which is 27% more than the

best figure of merit obtained for the parent compounds.

1 Introduction

An enormous amount of waste heat is generated in automotive
exhaust, home heating, and industrial processes. One of the
ways of utilizing this wasted heat is to convert it to electricity by
using the phenomenon of thermoelectricity. The efficiency of a
thermoelectric material is determined by its figure of merit
(ZT), which is a function of Seebeck coefficient (a), electrical
conductivity (s), thermal conductivity (kt), and temperature (T).
This figure of merit is given by the relation:1

ZT ¼ a2s
kt

T (1)

Thermal conductivity (kt) has contributions from both elec-
trons (ke) and phonons (kL). To achieve a high value of ZT,
which is required for being a good thermoelectric material, a
high Seebeck coefficient, a high electrical conductivity, and a
low thermal conductivity are required.

Half-Heusler alloys are one class of intermetallic com-
pounds that exhibit great promise as thermoelectric materials
suitable for high-temperature applications owing to their

remarkable attributes, including a high Seebeck coefficient,
exceptional mechanical strength, and thermal stability. On
the contrary, the increased lattice thermal conductivity of these
materials poses a disadvantage for thermoelectric applications.
These compounds, having a composition of XYZ where
X (Wyckoff position 4b (0.5, 0.5, 0.5)) and Y (Wyckoff position
4c (0.25, 0.25, 0.25)) are transition metals and Z (Wyckoff
position 4a (0, 0, 0)) is a p-block element, comprise of three
interlocking face-centred cubic sublattices and an additional
vacant sublattice in the same cubic structure. The semiconduct-
ing properties and stability of half-Heusler compounds can be
understood using the Zintl concept,2 according to which the
most electropositive element, X, acts as a cation and donates all
of its valence electrons to the tetrahedrally bonded YZ sublat-
tice, effectively forming the anionic part of the structure. Based
on this concept, a half-Heusler compound with a valence
electron count (VEC) of 18 may be a stable semiconductor with
potential for thermoelectric applications. TiNiSn,3,4 ZrNiSn,3,4

HfNiSn,3,5 TiCoSb,6,7 ZrCoSb6,7 and HfCoSb6,7 are some of the
well-studied VEC 18 half-Heuslers for thermoelectric applica-
tions. The crystal structure of half-Heusler alloy XYZ is shown in
Fig. 1.

To overcome the issue of lattice thermal conductivity, a
potential solution involves inducing mass disorder at lattice
sites by blending the elemental compositions of two or more
half-Heusler (HH) alloys, thereby forming a high-entropy alloy.
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The concept of high entropy has been applied to various classes
of materials, including chalcogenides8,9 and oxides.10,11 In
these systems, a high configurational entropy favors the for-
mation of a single-phase structure by contributing significantly
to the Gibbs free energy.12 Compared to conventional solid
solutions with low levels of elemental additions, the high-
entropy effect can overcome limitations in solubility. This was
demonstrated by the successful synthesis of a single-phase
(MgCoNiCuZn)O compound with a rock-salt structure,11 which
can be viewed as an equimolar mixture of MgO, CoO, NiO, CuO,
and ZnO. In this system, the typical solubility limits of binary
combinations such as MgO–ZnO and CuO–NiO were surpassed
due to entropic stabilization. Among half-Heusler compounds,
the high-entropy concept has also been successfully applied in
the synthesis of a single-phase (TiZrHfVNbTa)Fe0.5Co0.5Sb,13

which is based on six VEC 18 half-Heuslers: TiCoSb, ZrCoSb,
HfCoSb, VFeSb, NbFeSb, and TaFeSb. Similarly, stabilization of
the VEC 17.5 half-Heusler compound ZrTiNiFeSnSb14 is
achieved through the high-entropy effect, despite the individual
instability of its VEC 17 and VEC 19 parent phases. Another
notable example, though not a high-entropy alloy, is the synth-
esis of Ti2NiCoSnSb,15 which can be regarded as an equimolar
mixture of the parent HHs TiNiSn and TiCoSb. This alloy has a
lattice thermal conductivity of 7 W m�1 K�1 as compared to
24 W m�1 K�1 for TiCoSb7 and 13 W m�1 K�1 for TiNiSn3 at
room temperature. However, its power factor is significantly
reduced as compared to parent compounds, leading to the low
value of the figure of merit. Intriguingly, the question arises as
to whether it is feasible to synthesize a material by combining
the compositions of two half-Heusler compounds with reduced
lattice thermal conductivity while retaining the power factor of
the original parent compounds. The investigation also seeks to
ascertain the stability of this mixed compound in comparison
to its parent compounds. Additionally, it will be interesting to
understand how the blending process influences the electronic
transport properties of this composite material.

ZrHfCoNiSnSb, which can be seen as a mixture of
ZrNiSn/HfNiSn and HfCoSb/ZrNiSn, is dynamically stable and
predicted to be synthesized at high temperatures. The
lattice thermal conductivity of this compound is found to be
5.40 W m�1 K�1 at 300 K, which is much lower than the parent

compounds. Additionally, for the n-type case, its power factor
lies midway between the power factors of the constituent parent
compounds, resulting in a ZT value of 1.00 at a temperature of
1100 K.

2 Computational details

The calculations were carried out using plane-wave density
functional theory (DFT) based calculations as implemented in
the Quantum ESPRESSO16,17 software. The electron–ion inter-
actions were described using ultrasoft pseudopotentials. For
the wavefunction (charge density), we have used a basis set
whose size corresponds to a kinetic energy cutoff of 60 (480) Ry.
The electron–electron exchange and correlation effects were
treated using the Perdew–Burke–Ernzerhof (PBE)18 parametri-
zation of the generalized gradient approximation (GGA). For
electronic calculations, the Brillouin zone (BZ) was sampled
with a shifted 10 � 10 � 10 and 6 � 6 � 6 Monkhorst–pack
k-mesh for the conventional unit cell of the parent compounds
and ZrHfCoNiSnSb, respectively. To compute the density of
states (DOS) and the electronic transport properties we have
used 20 � 20 � 20 k-mesh grid for the parent compounds and
18 � 18 � 18 k-mesh grid for ZrHfCoNiSnSb. Since spin–orbit
interaction has a negligible effect in the HEA (as evident from
the band structure shown in Fig. S3 of the ESI†), it was not
included in the DFT calculations.

To study the dynamical stability, vibrational properties, and
lattice thermal conductivity, the phonons were computed using
density functional perturbation theory.19 The calculations were
performed on a 6 � 6 � 6 q-mesh for the primitive unit cell
of the parent compounds and a 3 � 3 � 3 q-mesh for
ZrHfCoNiSnSb.

Electronic transport properties were calculated by using the
semi-classical Boltzmann transport theory within the constant
relaxation time and rigid band approximations as implemented
in the BoltzTraP2 code.20 Under these approximations the (ij)th
component of projected conductivity tensor per unit relaxation

time
sij
t

� �
was calculated as

sijðeÞ
t
¼ e2

X
b

ð
d3~k

4p3
d e� eðb;~kÞ
� �

viðb;~kÞvjðb;~kÞ (2)

Here e is the charge of the electron and t is the constant

relaxation time. ~vðb;~kÞ ¼ 1

�h
rkðeðb;~kÞÞ is the group velocity of

the electron occupying the bth band at the kth k-point of the BZ

and e(b;
-

k) is the energy eigenvalue corresponding to that
electronic state. The (ij)th component of electrical conductivity

per unit relaxation time
sijðT ; mÞ

t

� �
; Seebeck coefficient

(aij(T;m)) and electronic thermal conductivity per unit relaxation

time
keijðT ; mÞ

t

� �
were calculated from eqn (2) as:

sijðT ; mÞ
t

¼ 1

O

ð
de �@f0ðT ; mÞ

@e

� �
sijðeÞ
t

� �
(3)

Fig. 1 Crystal structure of half-Heusler alloy XYZ.
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aijðT ; mÞ ¼ 1

eTO

� �X
k

tsik�1ðT ; mÞ
� �

�
ð
de �@f0ðT ; mÞ

@e

� �
ðe� mÞ skjðeÞ

t

� �� � (4)

and

keijðT ; mÞ
t

¼ kijðT ; mÞ
t

� T
X
a;b

nia
sba�1

t

� �
nbj (5)

where

kijðT ; mÞ
t

¼ 1

e2TO

� �ð
de �@f0ðT ; mÞ

@e

� �
ðe� mÞ2 sijðeÞ

t

� �
(6a)

and

nij ¼
1

eTO

ð
de �@f0ðT ; mÞ

@e

� �
ðe� mÞ skjðeÞ

t

� �
(6b)

In these equations f0(T;m) is the equilibrium Fermi–Dirac dis-
tribution at temperature T and chemical potential m and O is
the unit cell volume. The values of t for electrons and holes,
appearing in the above equations, were computed using defor-
mation potential theory21 as described in Sections 3.4 and 3.5.

3 Results and discussions
3.1 Structure, thermodynamic stability and bonding

To model the most disordered configuration of ZrHfCoNiSnSb,
we employed the Monte Carlo Special Quasirandom Structure
(McSQS) method, as implemented in the ATAT software.22 The
quasirandom structures were generated with the constraint
that the Zr and Hf atoms occupy the Wyckoff site 4b (0.5, 0.5,
0.5), Ni and Co atoms occupy the site 4c (0.25, 0.25, 0.25) and
Sn and Sb atoms occupy the site 4a (0, 0, 0). We constructed
four different quasirandom structures within this constraint.
Three of these structures are the 12-atom structure in the
conventional cubic HH supercell (Type I), the 24-atom quasir-
andom structure with the conventional cubic cell doubled
along the c-direction (Type II), and the 24-atom quasirandom
structure with a 2 � 2 � 2 primitive fcc supercell (Type III).
Additionally, we also generated a 24-atom SQS with no con-
straints on the particular choice of crystal structure (Type IV).
The initial structures of these unit cells are shown in Fig. S1 of
the ESI,† while the optimized structures are shown in Fig. 2.
The corresponding McSQSc transformation matrices for all the
generated structures are provided in eqn (S2)–(S5) of ESI.†

On optimizing the lattice parameters and the atomic posi-
tions of the above-mentioned unit cells, we find that the Type I
structure is the lowest in energy. The relative energies per
formula unit of the other structures with respect to that of
Type I (DE) and the lattice parameters of all the structures are
reported in Table 1. It is interesting to note that post-geometry
optimization, the lattice parameters and the angles between the
lattice vectors deviate from those observed in the supercells of
fcc lattice. For example, in the lowest-energy Type I structure,
all three lattice vectors are equal, and the interaxial angles are

90.0001 prior to geometry optimization. After optimization, the
structure relaxes into a monoclinic phase characterized by the C2

point group which includes only the identity and a 1801 rotation
about the Z-axis as its symmetry operations, due to slight variations
in the lattice parameters and a deviation of the angle g from
90.0001. Since Type I is the lowest energy structure amongst the
ones considered in this study, all subsequent calculations for
ZrHfCoNiSnSb were performed using this unit cell. To assess
whether the Type I structure accurately captures the extensive
disorder, a convergence analysis was performed by comparing
the Type I McSQS with truly disordered 96-atom McSQSs (con-
structed as a 2� 2 � 2 supercell of the conventional unit cell). The
results of this analysis are presented in Section S10 of ESI.† As
shown in Fig. S10 of the ESI,† the bond lengths and bond
orders—which indicate how charge is distributed between atoms
and thus partially characterize the local chemical environment---ex-
hibit excellent agreement between the 12-atom and 96-atom SQS
structures. This demonstrates that the 12-atom SQS effectively
captures the key features of the extensive configurational disorder
present in the larger 96-atom system.

These alloys are typically synthesized experimentally via arc
melting of the elemental precursors. Hence, to check the
stability of the HEA against segregation into the individual
bulk components, we have computed their average formation
energy (Ef),

23 which is given as:

Ef ¼
EZrHfCoNiSnSb � aEHf � bEZr � cENi � xECo � yESn � zESb

ðaþ bþ cþ xþ yþ zÞ
(7)

Fig. 2 Crystal structure of the optimized SQSs (a) conventional unit cell
(b) 2 � 2 � 2 supercell (c) double conventional unit cell (d) unconstrained
SQS with 24 atoms.
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where EZrHfCoNiSnSb is the total energy of the HEA and Ei, i = Hf,
Zr, Ni, Co, Sn and Sb, are the energy per atom of the ith element
in its bulk. a, b, c, x, y and z are the number of atoms of Hf, Zr,
Ni, Co, Sn and Sb, respectively, in the HEA. The conditions used
for calculating Ef in the above equation—including the ele-
mental standard states, crystal structures, and tempera-
ture—are provided in Section S9 of the ESI.† We find that our
proposed HEA has a formation energy of �0.75 eV per atom,
suggesting that this is highly stable with respect to the segrega-
tion into individual atomic phases.

Additionally, the proposed HEA might also be thought of as
a mixture of two stable HHs, namely, HfNiSn and ZrCoSb HHs
or ZrNiSn and HfCoSb HHs. Hence, it is also imperative to
study the stability of the HEA with respect to phase segregation
into these HHs. To do so, we considered the following chemical
reactions:

ZrHfCoNiSnSb - HfNiSn + ZrCoSb (8)

ZrHfCoNiSnSb - ZrNiSn + HfCoSb (9)

and computed the enthalpy of formation (DHe), which is
given by:

DHe = EHfNiSn/ZrNiSn + EZrCoSb/HfCoSb � EZrHfCoNiSnSb (10)

where the first, second and third terms on the right-hand side
of eqn (10) are the total energies of the HHs into which they can
phase segregate and HEA, respectively. For reactions (8) and (9),
we obtain DHe to be �70 meV and �86 meV per formula unit.
While the negative values of DHe might initially suggest that
ZrHfCoNiSnSb will phase segregate to either HfNiSn and
ZrCoSb or ZrniSn and HfCoSb, the role of configurational
entropy (DSconfig) at elevated synthesis temperatures become
crucial in reducing the Gibbs free energy and contributing to
the overall thermodynamic stability12 of ZrHfCoNiSnSb over
HfNiSn/ZrNiSn and ZrCoSb/HfCoSb. This configurational
entropy is given by:13

DSconfig ¼ �kB
Xm
x¼1

Xm
i¼1

f xi ln f xi
� � !

(11)

In eqn (11), kB is the Boltzmann constant. The summation over
x runs over all the sublattices (here it is 3) and f x

i is the fraction
of element i in the sublattice x. For the case of ZrHfCoNiSnSb,
in Type-I, each of Hf/Zr, Ni/Co, and Sn/Sb forms fcc sublattice.
Using eqn (11), DSconfig for the Type-I structure of the HEA
comes out to be 2.079kb. The temperature above which this

system can be synthesized will be the one at which the change
in the Gibbs free energy (DG) is positive. This Gibbs free energy
difference, DG, is expressed as:

DG = DGe + DGp (12)

where the contributions of electronic energy and configura-
tional entropy to the Gibbs free energy, DGe, are given by

DGe = DHe � TDSconfig (13)

and DGp represents the phonon contribution to the Gibbs free
energy, defined as:

DGp = DHp � TDSp (14)

Here, Hp and Sp denote the phonon energy (or vibrational
energy) and phonon entropy (or vibrational entropy) of the
respective structures, given by:

Hp ¼
ðomax

0

gðoÞ�ho 1

e�ho=kBT � 1
þ 1

2

� �
do (15)

and

Sp ¼
ðomax

0

gðoÞkB
�ho=kBT

e�ho=kBT � 1
� ln 1� e��ho=kBT

� �� 	
do (16)

In these expressions, g(o) represents the phonon density of
states corresponding to the frequency o, and omax is the
maximum phonon frequency.

Fig. 3 illustrates the variation of DG with temperature for the
cases described in eqn (8) and (9).

As can be seen from the Fig. 3, DG is positive when T is
greater than 367 K and 436 K for reactions (8) and (9),
respectively. We note that these temperatures are only 67 K
and 136 K above room temperature, and are much lower than
the synthesis temperatures of half-Heusler systems. Thus, our
analysis suggests that these materials will be stable towards
segregation into the HHs. A more detailed discussion on
segregation kinetics and the potential formation of secondary
phases is provided in Section S11 of the ESI.†

At this point, it would be interesting to compare the local
geometry of this HEA with those of conventional HHs.
A conventional HH can be thought of as a combination of
two zinc blende structures formed by the YZ elements and the
XY elements. In each of the zinc blende structures, the
Y element is at the centre of the tetrahedra formed either by
the X or the Z element. Moreover, these are perfect tetrahedra,
i.e., in each tetrahedra, the four Y–Z or Y–X bonds have the

Table 1 Computed relative energy per formula unit (DE), lattice parameters and angle between the lattice parameters for the different SQS structures
considered in this study

Structure Type-I Type-II Type-III Type-IV

DE (in eV) 0.000 0.028 0.014 0.026

Lattice parameters
(in Å)

a = 6.109, b = 6.107,
c = 6.115

a = 6.101, b = 6.108,
c = 12.199

a = 8.623, b = 8.628,
c = 8.626

a = 4.318, b = 8.626,
c = 12.204

Angles a = b = 90.0001,
g = 90.0041

a = 90.0061, b = 90.0011,
g = 89.9791

a = 60.0841, b = 60.0651,
g = 60.0751

a = 90.0441, b = 90.0001,
g = 90.0001
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same bond lengths. In contrast, for the HEA, the introduction
of the disorder at each of the atomic sites distorts these
tetrahedra because two of the vertices are occupied by Hf (Sb)
while the other two by Zr (Sn). In ZrNiSn and HfNiSn, the Ni–Sn
bond lengths are 2.665 Å and 2.647 Å, respectively, while in the
HEA we find the bond length to be 2.656 Å. Similarly, the Co–Sb
bond length in HEA is 2.625 Å which is slightly shorter (similar)
than (to) that of 2.642 Å (2.624 Å) in ZrCoSb (HfCoSb). More-
over, we also observe formation of new Ni–Sb and Co–Sn bonds
with bond lengths of 2.625 Å and 2.662 Å, respectively. In the
X–Y sublattice of the HEA, the Zr–Ni (Zr–Co) bonds are elon-
gated (shortened) compared to those observed in ZrNiSn and
ZrCoSb (dZr–Ni = 2.688 Å in HEA vs. 2.665 Å in ZrNiSn; dZr–Co =
2.609 Å in HEA vs. 2.642 Å in ZrCoSb). In contrast, both the Hf–
Ni and Hf–Co bonds in HEA are shortened compared to those
observed in the parent HHs. However, the Zr–Ni (Zr–Co) bond
is elongated (shortened) than that observed in ZrNiSn (ZrCoSb).
These asymmetries in the local geometry result in deviation
from the cubic symmetry. Further, such a wide variation of
bond lengths suggests that there is significant heterogeneity in
terms of bonding and bond strength in the HEA, the implica-
tions of which on the thermoelectric properties are
discussed later.

In order to understand the nature of the bonding between
the different elements in the HEA, we have computed the
difference between the charge density distribution and super-
position of the atomic densities (Dr) for the HEA and the parent
compounds. Dr provides information as to how the atomic
charge densities are rearranged when the different elements
interact to form a compound. Fig. 4 shows the Dr for the HEA,
while those for the parent compounds are shown in Fig. S5 of
the ESI.† In the Co-containing parent compounds, namely
ZrCoSb and HfCoSb, we observe that there is charge depletion
from the Co atom (Turquoise isosurfaces in Fig. S5(b) and (d) of
ESI†). Further, both charge depletion and accumulation can be
observed around the Hf/Zr atoms, with the former dominating.
Charge depletion is also observed around Sb. Importantly, we
observe charge accumulation in between the Zr/Hf and Co
bonds, suggesting a covalent nature of bonding between them.
No such charge accumulation is observed between the Co–Sb
bonds. Similarly, in the Ni-containing compounds, i.e., in
ZrNiSn and HfNiSn, we primarily observe charge depletion
around Zr/Hf and Sn. However, in contrast with Co, we observe
both accumulation and depletion of charges from Ni, with the

former dominating. Additionally, charge accumulation is also
observed along the Ni–Zr/Hf bonds. The charge cloud, in this
case, is more directional compared to the Co-containing HH
and is localized closer to the Ni atom. Thus, in the Ni(Co)
containing parent compounds, the X–Y bond is ionic (covalent)
in nature. Interestingly, in the HEA, the electron rearrangement
around the Ni and Co atoms remains similar to the parent
compounds with slight deviations due to local distortion in its
structure. This shows the presence of a bonding hierarchy in
the HEA.

3.2 Phonon dispersion and lattice thermal conductivity

In order to assess the dynamical stability of the HEA, we have
computed its phonon spectrum, which is shown in Fig. 5.
Further, in order to understand how the lattice vibrations are
altered in the HEA in comparison with the parent HHs, we have
also computed the phonon spectra of the latter (Fig. S2 of the
ESI†). Since both the parent compounds and the HEA lack a
center of inversion, LO–TO splitting corrections were included
in all phonon calculations. The absence of any imaginary
modes in the HEA vibrational spectrum throughout the BZ
suggests that the HEA is dynamically stable. A LO–TO splitting
of approximately 25 cm�1 was observed in ZrNiSn and HfNiSn,
around 50 cm�1 in HfCoSb and ZrCoSb, and about 21 cm�1 in
the HEA ZrHfCoNiSnSb, as shown in Fig. S12 of the ESI.†
Additionally, the Born effective charges—which determine the
strength of the coupling between phonons and the macroscopic
electric field (the main origin of LO-TO splitting)—were com-
puted and compared with previously reported values3,6 in
Tables S10 and S11 of the ESI.† Our results for the high-
frequency dielectric tensor and Born effective charges of the

Fig. 3 (a) Individual components of DG as a function of temperature.
(b) Total Gibbs free energy as a function of temperature.

Fig. 4 Isosurfaces of charge density difference (Dr) between the electron
density of the HEA and that obtained from the superposition of the atomic
densities. Yellow (Turquoise) isosurfaces denote accumulation (depletion)
of charge density. The isosurfaces correspond to an isovalue of
0.009 e bohr�3.
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parent HHs are in excellent agreement with previously reported
values, as shown in Table S10 of the ESI.† Compared to the
parent HHs, where there is either nil or negligible mixing of the
acoustic and optical phonons, the HEA spectrum shows a
significant overlap of these phonon modes. This enhanced
mixing can be attributed to the softening of the low-
frequency optical modes. Usually, this mixing between the
heat-carrying acoustic modes with the optical ones results in
scattering of the former, thereby reducing the lattice thermal
conductivity. Moreover, in the HHs, the high-frequency optical
phonon bands are flat, giving rise to sharp peaks in the phonon
density of states (PhDOS). In contrast, in the HEA, the optical
phonon bands become more dispersive, giving rise to the
broader peaks in PhDOS. The atom projected PhDOS show that
for the modes that have frequencies less than 125 cm�1, the
major contribution is from the heaviest element Hf. The other
heavy elements like Sb, Sn and Zr also have reasonable con-
tributions in lower frequency modes. The Sb and Sn atoms have
a dominant contribution to the phonon modes lying between
125 cm�1 and 175 cm�1. For 175 o o o 200 cm�1, the lattice
vibrations are dominated by the vibrations of the Zr atoms,
while those having frequency beyond 200 cm�1, the major
contributions are from the displacements of the lightest Ni
and Co atoms.

In order to understand whether the nature of localization of
the phonon modes in the HEA changes compared to the HH,
we have computed the inverse participation ratio for each mode
(IPR). This IPR is computed as:24

IPR ¼
X
i

X
a

eia;ne�ia;n

" #2
(17)

Here eia,n represents the eigenvector component along the
a-direction for mode n.

IPR = 1 (IPR C 1/N, N being the number of atoms in the unit
cell) implies a completely localized (delocalized) phonon mode.
Fig. 5 shows the IPR for the HEA, while those of the HHs are

shown in Fig. S2 of ESI.† While for the HHs, all the phonon
modes till about 130 cm�1 are completely delocalized, in HEA
the phonon modes with frequency greater than 50 cm�1 tends
to localize. However, relative to the HHs where we observe that
the high-frequency phonon modes are highly localized (IPR = 1
for some modes), the overall degree of delocalization of the
modes is relatively lower in the HEA suggesting that the modes
are more diffusive in nature.

The effect of hierarchical bonding, discussed in the previous
section, is reflected in the computed the mode resolved Gru-
neisan parameter (gk

i ), which for the phonon of the ith branch
with wave vector k is given by:

gki ¼ �
V0

ok
i

@ok
i

@V
(18)

where V0 is the equilibrium volume of the unit cell and ok
i is the

frequency corresponding to the phonon of the ith branch with
wave vector k. The derivative in eqn (18) is evaluated numeri-
cally by using the central difference method. To achieve this, we
computed the phonon spectra by applying strain, varying the
lattice parameters by �1%. The gk

i of the parent HH and the
HEA are plotted in Fig. 6. While for the HH gk

i typically
lies between 0 and 2.5, in the HEA, it varies from �1.4 to 7.4,
i.e. an overall spread of 8. Moreover, this enhancement in
the spread of gk

i is primarily restricted to the heat-carrying
acoustic phonons. This suggests that the HEA lattice becomes
significantly more anharmonic compared to that of the
parent HHs.

The effect of the changes in bonding of the HEA lattice and
thereby their vibrational properties also affect thermal trans-
port in these materials. We have computed the lattice thermal
conductivity (kL) for all the systems using the Debye–Callaway
model.25–27 According to this model, kL is the sum over the
contribution to lattice thermal conductivity from one long-
itudinal acoustic (kLA) and two transverse acoustic branches
(kTA and kTA0). For the ith phonon branch (where i = LA, TA, or TA0),

Fig. 5 (a) Irreducible Brillouin zone showing the path marked in green for the HEA (b) phonon dispersion, inverse participation ratio (IPR) of the phonon
modes and phonon density of states of the HEA.
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the contribution to lattice thermal conductivity (ki) is
given by

ki ¼
1

3

kB
4T3

2p2�h3vi

� � ðYi
D
T

0

ticðxÞx4ex

ex � 1ð Þ2
dxþ

ÐYi
D
T
0

ticðxÞx4ex

tiNðxÞ ex � 1ð Þ2
dx

 !2

ÐYi
D
T
0

ticðxÞx4ex

tiNðxÞtiRðxÞ ex � 1ð Þ2
dx

2
666664

3
777775

(19)

where h� is the Planck constant, kB is the Boltzmann con-
stant, vi is the long wavelength velocity of the ith mode, and
ti�1

c , ti�1
N and ti�1

R are the scattering rates for the ith mode
related to the total, normal and dissipative scattering pro-

cesses. x in eqn (19) is given as x ¼ �ho
kBT

where T represents

temperature and o the phonon frequency. Further, in
eqn (19), Yi

D is the Debye temperature corresponding to
the ith mode. This Yi

D is given by:28–30

Yi
D ¼

�homax
i

kB
(20)

where omax
i is the maximum phonon frequency for the

ith mode.
The tc, tN and tR in eqn (19) are related as:

tc
�1 = tN

�1 + tR
�1 (21)

For normal phonon scattering, the corresponding relaxation
time for the longitudinal (tLA

N ) and transverse acoustic

tTAN
.
tTA

0
N

� �
modes:

1

tLAN ðxÞ
¼ kB

3gLA
2Va

Ma�h2vLA5

kB

�h

� �2

x2T5 (22)

1

tTA=TA
0

N

¼
kB

4gTA=TA0
2Va

Ma�h3vTA=TA0
5

kB

�h

� �
xT5 (23)

where gi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gki
� �2D Er

is the mode averaged Gruneissan para-

meter, Ma is the average atomic mass per unit cell and Va is the
volume per atom.

In most crystalline solids, the dissipative scattering is pri-
marily due to Umklapp processes and the corresponding
relaxation time (ti

U) for the ith mode is given by:

1

tiUðxÞ
¼ �hg2

Mavi2Yi
D

kB

�h

� �2

x2T3e�
Yi

D
3T (24)

Hence, for the parent HHs, for ith mode, the total phonon

scattering rate t�1
HH;i

c

� �
depends on the scattering rates asso-

ciated with the normal (N) and the Umklapp (U) processes and
is given by:

1

tHH;i
c

¼ 1

tiN
þ 1

tiU
(25)

However, in the case of ZrHfCoNiSnSb HEA, significant mass
fluctuation (MF) occurs at the Wyckoff position 4b (0.5, 0.5, 0.5),
which can now be occupied either by Hf or Zr, the latter having
a mass half of that of Hf. Further, the 4a (0, 0, 0) position, which
is now occupied by either Sb or Sn will also exhibit mass
fluctuations due to their different atomic masses. Hence, we
expect that the propagating phonons will be scattered also by
these mass defects in HEA caused by these mass fluctuations
plays a crucial role in phonon scattering. Hence, to compute
the scattering rates for dissipative processes in the HEA, we
have also incorporated the effect of mass fluctuation scattering.
Using Klemens31 formalism, the relaxation time for mass
fluctuation scattering (ti

M) is given by:

1

tiM
¼ VakB

4

4p�h4vi3

� �
x4T4GM (26)

where the disordered scattering parameter GM is given by:

GM ¼

Pn
j¼1

cj
Mj

M

� �2

f 1j f
2
j

M1
j �M2

j

Mj

 !2

Pn
j¼1

cj

(27)

where cj represents the relative site degeneracy, fj denotes the

fractional occupation, Mj is the average mass at the site j, and

M is the average atomic mass of the compound. We note that
these corrections have been successfully applied to double HHs
previously.29,32 Consequently, the total relaxation time for the
ith mode of ZrHfCoNiSnSb is given by:

1

tHEA;i
c

¼ 1

tiN
þ 1

tiU
þ 1

tiM
(28)

The values of the different parameters used to compute kL in
eqn (19) are given in Table 2.

Fig. 7 shows the lattice thermal conductivity of the HHs and
the HEA. Since the lattice thermal conductivity is primarily
governed by acoustic phonon modes—while optical modes
contribute minimally due to their low group velocities—the

Fig. 6 Mode resolved Gruneisen parameters for the parent HHs (a) ZrNiSn
(b) HfCoSb (c) HfNiSn (d) ZrCoSb and (e) ZrHfCoNiSnSb.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 8

/3
/2

02
5 

4:
00

:3
3 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cp01601k


This journal is © the Owner Societies 2025 Phys. Chem. Chem. Phys., 2025, 27, 15622–15634 |  15629

parameter reported in Table 2 is largely influenced by the
acoustic modes. Consequently, as the Debye–Callaway model
accounts only for acoustic contributions, the LO–TO splitting
corrections have a negligible effect on the lattice thermal
conductivity, as illustrated in Fig. S13 of the ESI.† We
observe that at 300 K the kL of the HHs lie between 20.37 and
28.65 W m�1 K�1 with HfNiSn (ZrCoSb) having the lowest
(highest) value. We note that our computed values of kL is in
reasonably good agreement with those reported in the litera-
ture using the solutions of the semiclassical Boltzmann trans-
port equations for phonons that are more computationally
demanding but accurate.3,6,33 For all the systems, the lattice
thermal conductivity is reduced with an increase in tempera-
ture. For the HEA, when we compute the lattice thermal
conductivity by including only the Umklapp scattering, we
obtain a value of 11.03 W m�1 K�1 at 300 K. We note that this
is less than half of the values observed in the HHs. This drastic
reduction in lattice thermal conductivity can be attributed to
the different types of chemical bonding observed in the
HEA lattice that resulted in enhanced anharmonicity. On
incorporation of the scattering effects due to mass fluctua-
tions, the lattice thermal conductivity is further reduced to
5.40 W m�1 K�1 at 300 K. Thus, our results suggest that the
synergistic effect of the changes in bonding in the HEA lattice
and the mass fluctuations can drastically reduce kL. At room
temperature, the kL of the HEA is reduced by a factor of three

compared to the parent HHs Hf/ZrNiSn, and by a factor of five
compared to Zr/HfCoSb. Interestingly, in line with the findings
reported by Anand et al.34 for double Heusler alloys, the HEA
ZrHfCoNiSnSb exhibits lattice thermal conductivity values that
are comparable to those of double Heusler compounds with the
lowest KL. In fact, its lattice thermal conductivity is lower than
that of most double Heusler systems discussed in the same
reference.

3.3 Electronic properties

Fig. 8 shows the band structure of ZrHfCoNiSnSb, along with
the contributions from the d-states of the transition metals and
the p-states of the p-block elements. Those for the parent HHs
are shown in Fig. S4 of the ESI.† In accordance with the
literature report, we observe that all the HHs are semiconduct-
ing in nature, with HfCoSb having the largest band gap of
1.12 eV,6 followed by 1.05 eV for ZrCoSb,6 0.51 eV for ZrNiSn3

and 0.40 eV for HfNiSn.3 The conventional unit cell of these
HHs have the conduction band minima (CBM) at the G point of
the BZ. However, their valence band maxima (VBM) occurs at
different points of the BZ. Similar to the CBM, the VBM of
ZrNiSn and HfNiSn is at the G point of the BZ, making these
two HHs as a direct band gap semiconductor. In contrast,
ZrCoSb has VBM at the R point of the BZ making it an indirect
band gap semiconductor. In the case of HfCoSb, there are two
degenerate VBMs, namely at G and the R point of the BZ.
Additionally, the VB and CB edges of Zr/HfNiSn are closer to the
Fermi energy than those of Zr/HfCoSb. The band structure
characteristics of the corresponding primitive unit cell,
obtained using the unfolding technique,35 are presented in
Section S13 of the ESI.†

Similar to the HHs, the CBM of the HEA is at the G point of
the BZ while the VBM is at E-point (Fig. 8). Since the lattice
parameters of this monoclinic lattice are very close and the
deviation of the g from 901 is negligibly small, the E point of the
BZ of this monoclinic lattice is the same as that of the R-point
of the BZ of the cubic lattice. The HEA is an indirect semi-
conductor with a band gap of 0.61 eV, which is less than that of
the Zr/HfCoSb and more than that of Zr/HfNiSn. Additionally,
the maxima of the valence band at the G-point is only 60 meV
below the VBM, suggesting that at high temperatures, p-type
carriers belonging to this hole pocket will also contribute to the

Table 2 Mode resolved Debye temperature (Yi
D), long wavelength phonon velocity (vi) and Gruneisen parameter (gi) for the parent systems and the HEA.

The values given in square brackets are from (ref. 30)

Property ZrNiSn HfCoSb HfNiSn ZrCoSb ZrHfCoNiSnSb

YLA
D (K) 217 [214] 210 201 [196] 238 153

YTA
D (K) 170 [166] 161 147 [145] 185 146

YTA0
D ðKÞ 186 [184] 171 160 [160] 200 148

vLA (m s�1) 5338 [5323] 5115 4830 [4746] 5746 5224
vTA (m s�1) 3080 [2852] 2843 2540 [2508] 3115 2499
vTA0 (m s�1) 3080 [3600] 2843 2540 [3120] 3115 2683
gLA 1.46 [1.69] 1.62 1.53 [1.55] 1.54 1.41
gTA 1.22 [1.30] 1.36 1.28 [1.35] 1.23 1.45
gTA0 1.27 [1.36] 1.43 1.41 [1.38] 1.25 1.58
g 1.61 [1.71] 1.64 1.59 [1.59] 1.59 1.70

Fig. 7 Lattice thermal conductivity as a function of temperature. N, U and
MF represent Normal, Umklapp and Mass fluctuation scattering processes.
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transport properties. We note that these features of the valence
band are very similar to those observed in ZrCoSb (Fig. S4(e) of
ESI†) and HfCoSb (Fig. S4(c) of ESI†). Furthermore, the con-
duction band of the HEA have additional electron pockets at
the B and Z points of the BZ. These are about 280 and 250 meV
higher in energy compared to the CBM. These high symmetry
points of the BZ of the HEA are analogous to the X-point of the
cubic BZ of the HHs. While the VBM at E-point have contribu-
tions from Co-d states, the hole pocket at the G point has a
contribution from Zr and Hf-d states (Fig. 8 and Fig. S4(a) of
ESI†). The Ni-d states lie deep inside the valence band. This is
in contrast to that observed in Hf/ZrNiSn, where Ni-d orbitals
contributed to hole pockets at the R-point of the cubic BZ. The
CBM at G and the electron pockets at B and Z-points in the BZ
of the HEA have contributions from the d-orbitals of all the
transition metal elements.

3.4 Conductivity and density of states effective masses

Effective masses (m*) of charge carriers, which is a key compo-
nent of transport properties like conductivity, mobility, Seebeck
coefficient, etc., had been computed at the different valence and
conduction band extrema. Within the parabolic band approxi-
mation m* is given by:

1

m�
¼ 1

�h2
@2e
@k2

(29)

Near the extrema, the isosurfaces of energy are ellipsoids, and
hence the effective mass is different along the longitudinal or
transverse directions. The conductivity effective mass, which
affects relaxation time and electrical conductivity, m�s; is given

by the harmonic mean of the longitudinal effective mass m�l
� �

and the two transverse effective masses m�t1 and m�t2
� �

as:

1

m�s
¼ 1

3

1

m�l
þ 1

m�t1
þ 1

m�t2

 !
: (30)

Similarly, the density of states (DOS) effective mass m�D is given
by the geometric mean of the three masses weighted by the
2

3

� �
power of the valley degeneracy (Nv) as:

m�D ¼ Nv

2
3 ml �mt1 �mt2

� �1
3 (31)

The conductivity and DOS effective masses at the different
extrema of the BZ are listed in Tables S1–S6 of ESI,† for the
normal HHs and the HEA.

3.5 Carrier relaxation times

The relaxation times (t) of the charge carriers in these materials
were calculated using the deformation potential theory,21

which takes into account of their scattering by the acoustic
phonons only. The relaxation time of carriers in a band
b having dos effective mass m�D is given by:36

tb ¼
2 2pð Þ

1
2�h4C

3X2 kbTð Þ
3
2 m�D
� �3

2

(32)

In the above equation, the elastic constant C and deformation
potential X are computed as:

C ¼ 1

V0

@2E

@
Da
a0

� �2

0
BBB@

1
CCCA

a¼a0

; X ¼ @Eedge

@
Da
a0

� �
0
BB@

1
CCA

a¼a0

(33)

Here E is the total energy of the system obtained from DFT
calculation, a0 is the optimized lattice constant, Da = a � a0 is
the lattice distortion from its equilibrium value, V0 is the
equilibrium volume of the unit cell, and Eedge is the energy of
VB or CB extrema. The carrier mobility corresponding to this
band mb is expressed as:

mb ¼
etb
m�s

(34)

When there are many bands that are either degenerate or near
degenerate to valence band (VB) or conduction band (CB),

Fig. 8 Band structure of HEA showing contributions from (a) Zr-d (red), Ni-d (blue), and Sn-p (turquoise) orbitals (b) Hf-d (green), Co-d (pink), and Sb-p
(orange) orbitals.
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average carrier mobility mav and average conductivity effective
mass m�s;av are given by:37

mav ¼
X
b

nb

n
mb;

1

m�s;av
¼
X
b

nb

n

1

m�s;b
(35)

In the above equations, nb is the number of charge carriers in
the valley of the band b and n ¼

P
b

nb is the total number of the

charge carriers. The fraction of the charge carriers carried by
the valley of the band b and VB/CB is given by

nb

nVB=CB
¼

m�D;b
m�

D;VB=CB

 !3
2

exp �DE
kbT

� �
(36)

where DE is the difference in energy between the valley extrema
and VBM/CBM. Finally, the average relaxation time, which
considers the contributions from all the valley extrema is given
by:37

tav ¼
m�s;avmav

e
(37)

The average relaxation time (tav) was calculated by including all
electronic bands located within 150 meV above CBM (for
electrons) and 150 meV below the VBM (for holes). The quan-
tities required to compute tav using the above equations and
the values of tav and mav for electrons and holes at 300 K for all
the compounds are given in Tables 3 and 4, respectively. It is
observed that all the parent HHs, except HfCoSb, the average
conductivity effective mass of electrons is greater than that of
holes. In contrast, for the HEA HHs m�s;av of electrons are

smaller than that of holes. Further, we observe that the magni-
tude of the deformation potential of electrons and holes, which
is a measure of the coupling between the charge carriers and
acoustic phonons are similar. However, we find that |X| of
electrons for all the compounds are larger than that observed in
holes. This suggests that in these materials, the electron–
acoustic phonon coupling is larger than that between holes
and acoustic phonons.

Fig. 9 shows the variation of tav as a function of temperature.
We find that tav of electrons in the HEA is smaller (larger) than
that in ZrNiSn and HfNiSn (ZrCoSb and HfCoSb). For the holes,
we find that while tav of the HEA is larger than that observed in
ZrCoSb, it is smaller than that observed in the other parent
HHs, namely ZrNiSn, HfCoSb and HfNiSn.

3.6 Electronic transport calculation

Full electronic transport calculations were performed by com-
bining the Boltzmann transport equation with a constant
relaxation time approximation and a relaxation time derived
from the deformation potential theory. Fig. 10(a)–(d) illustrates
the variation in the electronic transport properties of
ZrHfCoNiSnSb with carrier concentration, ranging from
1019 to 1022 cm�3, at different temperatures. The Seebeck
coefficient exhibits an initial increase followed by a decrease
at elevated temperatures as the carrier concentration increases.
With increasing temperature, the peak position shifts towards
higher carrier concentrations while the peak magnitude
decreases. At 900 K, the maximum Seebeck coefficient reaches
372 mV K�1 for n-type carriers and 413 mV K�1 for
p-type carriers, occurring at carrier concentrations of
3.19 � 1019 cm�3 and 5.29 � 1019 cm�3, respectively. These
concentrations correspond to chemical potentials of 0.16 eV
below the conduction band minimum (CBM) for n-type carriers
and 0.22 eV above the valence band maximum (VBM) for p-type
carriers.

Fig. 10(b) presents the electrical conductivity (s) as a func-
tion of carrier concentration at different temperatures for both
n-type and p-type carriers. The plot reveals that s for n-type
carriers is higher than that for p-type carriers. This is evident
from the fact that the average effective conductive mass of
electrons is smaller than that of holes, as indicated in Tables 3
and 4. The electrical conductivity for both types of carriers
remains low up to a carrier concentration of approximately
1020 cm�3. This behavior arises because the chemical potential
remains within the bandgap in this carrier concentration
range, leading to a negligible value of the projected conductivity
tensor sij(e), as defined by eqn (2), at the peak of the selection

Table 3 Average conductivity effective mass m�s;av

� �
, deformation poten-

tials (|X|), elastic constants (C), average mobility (mav) and average relaxation
time (tav) for electrons in the different materials. The values of mav and tav

reported in the table had been computed at 300 K

Property ZrNiSn HfCoSb HfNiSn ZrCoSb ZrHfCoNiSnSb

m�s;av 2.13 4.37 2.10 3.46 0.92
|X| (eV) 16.12 15.51 16.20 15.42 15.75
C (GPa) 233 275 242 264 247
mav (cm2 V�1 s�1) 42.8 6.65 48.17 7.47 60.02
tav (fs) 51.73 16.52 57.61 14.72 31.45

Table 4 Average conductivity effective mass m�s;av

� �
, deformation poten-

tials (|X|), elastic constants (C), average mobility (mav) and average relaxation
time (tav) for holes in the different materials. The values of mav and tav

reported in the table had been computed at 300 K

Properties ZrNiSn HfCoSb HfNiSn ZrCoSb ZrHfCoNiSnSb

m�s;av 0.75 5.74 0.61 1.54 1.27
|X| (eV) 15.51 14.82 15.70 14.84 15.17
C (GPa) 233 275 242 264 247
mav (cm2 V�1 s�1) 153.3 8.33 241.68 3.91 5.30
tav (fs) 65.23 27.20 83.61 3.41 3.83

Fig. 9 Average relaxation time (tav) of (a) electrons and (b) holes in the
parent HHs and the HEA.
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function f = �qf0(T;m)/qe. Consequently, only the tail of the
selection function contributes to the electrical conductivity,
resulting in extremely low values of s. Beyond a carrier concen-
tration of approximately 1020 cm�3, the electrical conductivity
increases with increasing carrier concentration. This suggests
that the chemical potential has shifted into the conduction or
valence bands, where sij(e) makes a significant contribution to
the overall electrical conductivity sij(T;m) at the peak of the
selection function. According to the Wiedemann–Franz law, the
electronic contribution to the thermal conductivity (ke) follows
a similar trend as s, as depicted in Fig. 10(c).

The performance of a thermoelectric device is characterized
by the power factor (S2s), which directly influences its effi-
ciency. As shown in Fig. 10(a), the Seebeck coefficient generally
decreases with increasing carrier concentration across most of
the concentration range. Meanwhile, Fig. 10(b) indicates that
electrical conductivity increases consistently throughout the
entire carrier concentration range. Consequently, the power
factor exhibits an optimal value, as observed in Fig. 10(d). With
increasing temperature, the peak position of the power factor
shifts toward higher carrier concentrations. From Fig. 10(d), it
is evident that for both n-type and p-type carriers, the peak
power factor initially increases and then decreases with rising
temperature. For the n-type case, ZrHfCoNiSnSb achieves a
maximum power factor of 3.32 (3.88) mW K�2 m�1 at a carrier
concentration of 1.26 � 1021 (1.54 � 1021) cm�3 at 300 (900) K,
for the chemical potential is located 0.24 (0.23) eV
above the conduction band minimum (CBM). In contrast,
for the p-type case, the maximum power factor reaches

1.16 (1.06) mW K�2 m�1 at a carrier concentration of
1.37 � 1021 (2.08 � 1021) cm�3 at 300 (900) K, corresponding
to a chemical potential of 0.13 (0.09) eV below the valence band
maximum (VBM). For comparison, the transport properties of
different systems were plotted against the carrier concentration
at 900 K in the ESI.† As shown in Fig. S7(a) (ESI†), which depicts
electrical conductivity, HfNiSn exhibits the highest electrical
conductivity across all carrier concentrations for the n-type
case, followed by ZrNiSn, ZrHfCoNiSnSb, HfCoSb, and ZrCoSb.
Similarly, for the p-type case, HfNiSn again shows the highest
electrical conductivity, followed by ZrNiSn, HfCoSb, ZrHfCo-
NiSnSb, and ZrCoSb. Fig. S8(a) (ESI†) illustrates the variation of
the Seebeck coefficient as a function of carrier concentration at
900 K for different structures. For the n-type case, ZrCoSb
exhibits the highest Seebeck coefficient, followed by HfCoSb,
ZrHfCoNiSnSb, ZrNiSn, and HfNiSn. In the p-type case, HfCoSb
has the highest Seebeck coefficient, followed by ZrCoSb,
ZrHfCoNiSnSb, ZrNiSn, and HfNiSn. These trends in electrical
conductivity and the Seebeck coefficient are explained using the
projected conductivity tensor sii(e), the selection function
f = �qf0(T;m)/qe, and the projected Seebeck tensor aii(e) (as
defined in eqn (S1) of the ESI†). Fig. S9(a) in the ESI,† presents
the variation of the electronic component of thermal conduc-
tivity as a function of carrier concentration for different struc-
tures at 900 K. In accordance with the Wiedemann–Franz law,
this electronic contribution to thermal conductivity follows a
similar trend to that of s, with the structural hierarchy remain-
ing consistent. Fig. S9(b) (ESI†) illustrates the variation of the
power factor as a function of carrier concentration for different
structures. As observed in the plot, HfNiSn and ZrNiSn exhibit
the highest power factor for the n-type case, primarily due to
their high electrical conductivity, followed by ZrHfCoNiSnSb,
HfCoSb, and ZrCoSb. Similarly, for the p-type case, HfNiSn and
ZrNiSn again demonstrate the highest power factor, followed by
HfCoSb. However, for the p-type case, ZrHfCoNiSnSb and
ZrCoSb show a power factor approximately an order of magni-
tude lower than the other systems, predominantly due to their
lower electrical conductivity.

3.7 Figure of merit

The electronic transport properties, in combination with the
lattice thermal conductivity, were used to compute the figure of
merit (ZT) as a function of carrier concentration for different
temperatures, as shown in Fig. 10(e). With increasing tempera-
ture, the ZT peak shifts toward higher carrier concentrations for
both n-type and p-type carriers. At all temperatures, the ZT
value for n-type carriers remains higher than that for p-type
carriers. A comparison of ZT as a function of carrier concen-
tration at 900 K among different structures is provided in the
ESI.† As depicted in Fig. S9(c) (ESI†), for n-type carriers,
ZrHfCoNiSnSb exhibits the highest ZT value up to a carrier
concentration of 4 � 1021 cm�3, followed by ZrNiSn and
HfNiSn, which display nearly identical ZT values across all
carrier concentrations. Despite their high Seebeck coefficients,
HfCoSb and ZrCoSb exhibit relatively low ZT values for n-type
carriers due to their lower electrical conductivity and higher

Fig. 10 (a) Seebeck coefficient, (b) electrical conductivity, (c) electronic
thermal conductivity, (d) power factor and (e) figure of merit as a function
of carrier concentration at different temperatures for ZrHfCoNiSnSb.
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lattice thermal conductivity, as seen in Fig. S9(c) of ESI.† For
p-type carriers, up to a concentration of 1 � 1021 cm�3, ZrNiSn
and HfNiSn attain the highest and nearly identical ZT values,
followed by HfCoSb. However, ZrHfCoNiSnSb and ZrCoSb dis-
play comparatively lower ZT values across all carrier concentra-
tions, primarily due to their lower electrical conductivity.
Fig. 11 presents a comparison of the peak ZT values for all
structures at different temperatures. As observed, for n-type
carriers, ZrHfCoNiSnSb consistently exhibits the highest peak
ZT value across all temperatures, followed by HfNiSn and
ZrNiSn. In contrast, HfCoSb and ZrCoSb show comparatively
lower peak ZT values due to their lower electrical conductivity
and higher lattice thermal conductivity. For p-type carriers,
HfNiSn attains the highest peak ZT value, followed by HfCoSb
and ZrNiSn, whereas ZrHfCoNiSnSb and ZrCoSb maintain
lower peak ZT values across all temperatures due to their lower
electrical conductivity. The peak ZT value of ZrHfCoNiSnSb for
n-type carriers reaches 1.00 at 1100 K, which is 27, 104, 32, and
170% higher than that of ZrNiSn, HfCoSb, HfNiSn, and ZrCoSb,
respectively. The optimized carrier concentration corres-
ponding to this maximum ZT value at 300 K and 900 K is
provided in Tables S7 and S8 in the ESI.†

4 Conclusions

ZrHfCoNiSnSb exhibits greater stability at high temperatures
compared to its parent compounds, largely due to the entropic
contribution to the Gibbs free energy at elevated temperatures.
The absence of imaginary modes in the phonon dispersion
curve also confirms its dynamical stability. Additionally, based
on both mode-resolved and average Gruneisen parameters, it is
suggested that ZrHfCoNiSnSb possesses stronger anharmoni-
city and higher lattice thermal resistance than its parent
compounds. The Seebeck coefficient and the other electronic
transport properties of ZrHfCoNiSnSb exhibit comparability to
the half-Heusler compounds from which it is composed (i.e.,
ZrNiSn/HfNiSn and HfCoSb/ZrCoSb). Notably, the lattice ther-
mal conductivity of ZrHfCoNiSnSb is approximately one-third
of ZrNiSn/HfNiSn and one-fifth of HfCoSb/ZrCoSb at room
temperature, and it has significantly reduced lattice thermal
conductivity compared to the parent half-Heusler compounds
across all temperatures. For the case when the charge carriers
are electrons, at 1100 K, the ZT value of ZrHfCoNiSnSb is 1.00,
surpassing the values of all of the parent compounds.
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