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Towards nature-inspired materials for adsorbing
pesticides: a multi-stage computational approach

J. R. C. Santos, P. E. Abreu and J. M. C. Marques *

The design of new materials that can be effective for adsorbing pesticides constitutes an important

contribution for water remediation. Amino acids are the building blocks of proteins that bind pesticides

in living organisms, and thus, they are expected to contribute to improve the adsorption properties of

materials for water remediation. In this work, we propose a multi-stage computational strategy, based

on docking, molecular dynamics (MD) simulations and electronic-structure calculations, to unveil

relevant interactions between pesticides and amino acids from typical target proteins. This allows us to

obtain detailed molecular-based insight about the binding complex and constitutes a straightforward

procedure to select amino acids that can be effective for the adsorption of pesticides. As a case study,

we applied the methodology to imidacloprid (IMI), a neonicotinoid insecticide used worldwide, and the

Aplysia californica acetylcholine-binding protein as the target biomolecule. The most promising amino

acids were then used to functionalize monomers and trimers of chitosan and the ability of the resulting

model systems to adsorb IMI was assessed by MD simulations.

1. Introduction

Throughout the past century, as an attempt to optimize food
production, chemical pesticides have been extensively used
worldwide for the prevention, elimination, or control of pests in
agriculture.1 According to the data made available by the Food
and Agriculture Organization of the United Nations (FAO),
the global use of pesticides in agriculture, in 2021, reached
3.5 million tonnes.1,2 From these applied pesticides, only a
minimal portion reach the final target, with the remaining
dispersing and accumulating in the environment. On top of
that, many of these pesticides also exhibit great stability
over time, allowing them to be transported by water and air
to areas distant from their origin, causing severe soil and water
pollution.3,4 As a result, these compounds can directly or
indirectly impact a wide range of organisms, including birds,
wildlife, domestic animals, fish, and livestock, and some pose a
considerable risk to human health.5,6 For instance, imidaclo-
prid (IMI) was the first commercially produced neonicotinoid7

and, since then, it has been extensively employed in agriculture
to combat insect pests, while it appears to be also harmful for
several other animals.8–12

To mitigate this challenging environmental problem,
advanced methodologies for the detection of contaminants13

and water remediation14 based on new adsorption materials
need to be developed. A first step in such an effort is to identify

molecules that are potentially promising for building up a
material with the desired adsorption properties. This requires
deep knowledge about the interactions between pesticides and
the candidate molecules, which can be achieved by employing
theoretical methods. Actually, computational chemistry has a
panoply of techniques that may be applied to calculate relevant
properties and provide molecular-level insight to the inter-
action between pollutants and molecules used as templates for
adsorption.15,16 Specifically, electronic-structure calculations
(either in the gas phase or in aqueous solution) as well as
molecular dynamics simulations are among the most relevant
methodologies that can be employed to understand the under-
lying adsorption processes and to help in the design of more
efficient adsorbent materials.

A natural source of information regarding pesticides arises
from the study of their interactions with the corresponding
target proteins. Indeed, the way a pesticide acts toward a living
organism is based on the interaction it can establish with a
specific binding site of a target protein that regulates a vital
function and, thus, acquiring detailed knowledge of these
pesticide–protein binding processes will contribute to guide
the functionalization with chemical species that may improve
the adsorption properties of the materials. In particular, the
mechanism of action of neonicotinoids, such as IMI (Fig. 1a), is
based on their interaction with the nicotinic acetylcholine
receptor (nAChR) in several insects, which leads to the disrup-
tion of nerve transmission. Due to structural and chemical
similarities, Aplysia californica acetylcholine-binding protein
(Ac-AChBP, Fig. 1b) has been consensually used as a functional
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and structural surrogate to model the interaction between
neonicotinoids and the extracellular ligand-binding domain
of the insect nAChR receptor.17 This surrogate is particularly
suitable when membrane effects are not the main focus and it
offers a significant reduction in computational cost compared
to the simulation of the full membrane-embedded receptor.
Moreover, high-resolution crystal structures of the full nAChR
are extremely challenging to obtain, further justifying the use of
Ac-AChBP in ligand-binding studies. Furthermore, Ac-AChBP
appears to be very sensitive to both neonicotinoids and nicoti-
noids, while Lymnaea stagnalis acetylcholine binding protein
(Ls-AChBP), another possible surrogate protein, is less sensitive
to neonicotinoids.18–20 The crystal structures of these IMI–
AChBPs complexes (PDB IDs: 3C79 and 2ZJU) reveal some
differences in the residues of the binding pocket of the two
proteins, such as the greater amount of Tyr residues in
Ac-AChBP as well as the presence of Ile106 and Val108 (that
are missing in Ls-AChBP).

Ac-AChBP is a homopentamer, consisting of five identical
subunits arranged symmetrically around a central axis (see
Fig. 1b), with the agonist binding site located between two
adjacent chains. Imidacloprid-AChBP binding has been subject
to both experimental and theoretical studies.19,21 Talley et al.19

reported for the first time the high-resolution crystal structures
of Ac-AChBP complexed with imidacloprid and thiacloprid
(PDB IDs: 3C79 and 3C84), being the only neonicotidois with
available crystallographic data that accurately describe their
specific interactions with Ac-AChBP at the atomic level.

Several studies have explored molecular docking within the
binding pocket of the IMI–AChBP complex, demonstrating a
significant alignment between the predicted poses and the
crystal structure.22–25 Although MD simulations can offer
detailed and dynamic insights into the interactions between
proteins and small molecules, only a few elementary investiga-
tions using this technique can be found in the literature
regarding the IMI–AChBP complexes.17,26,27 In particular, a
recent study used molecular docking and MD simulations for
the selection of peptides for the recognition of IMI, starting
from the structure of Lymnaea stagnalis acetylcholine-binding
protein Q55R mutant receptor-imidacloprid complex. The
results showed that the WQA34 peptide with 34 amino acids
is a viable candidate for the selective recognition of

imidacloprid (among other neonicotinoids), revealing a high
potential for application in biosensors.27 A few articles have also
used the crystal structure of Ac-AChBP as a template to build
several homology models of nAChRs, such as the cockroach
Pamea7 nAChR, and further employed MD simulations,17,28–30

but not directly investigate the interactions within the crystal
structure of Ac-AChBP.

The interaction of IMI with target proteins has been also
studied by performing electronic-structure calculations.17,31–33

Selvam et al.17 highlighted the role of the aromatic residues in
the stabilization of complexes of imidacloprid or thiacloprid
with nAChRs of cockroaches and honeybees. Wang et al.31

investigated the interaction between models of key residues
(Trp and Arg) and neonicotinoid-derivative analogues. At the
MP2/6-311++G** level of theory, hydrogen bonding (H-bond) of
neonicotinoids with Arg/Lys and p–p interactions with Trp were
identified as crucial interactions. A two-layer ONIOM approach32

used a Ac-AChBP binding pocket model, where the atomic posi-
tions of the polypeptide chain were kept frozen during optimiza-
tion, and pinpointed Trp and Cys as key residues (CH-p, van der
Waals, and H-bond interactions). A recent strategy,33 employing
local energy decomposition analysis at the DLPNO-CCSD(T)34,35

level, has been developed and applied to IMI–nAChR binding,
allowing the identification, quantification, and analysis of key
ligand–residue interactions for molecular recognition in the active
protein site.

Despite the great number of studies on the IMI–AChBP
complex, it is relevant to establish a standard protocol that
can be applied to any pesticide–protein system in order to
assess the most important interactions and further incorporate
this knowledge in the design of new adsorption materials. In
fact, such an abundance of available information makes the
IMI–AChBP complex a good system to test a new protocol. In
this work, we propose a multi-stage computational approach to
assess the interactions that contribute most to the stability
of the pesticide–protein complexes (here applied to the IMI–
AChBP complex), with the aim of selecting a relevant set
of amino acids to be incorporated into pesticide-adsorbing
materials. As a proof of concept, the selected amino acids were
used to incorporate chitosan-based material models, which
were then tested by MD simulations for their ability to promote
IMI adsorption. In fact, chitosan has gained significant atten-
tion as an effective material for pesticide adsorption,36 because
it can be derived from chitin, which is an abundant and
biodegradable natural resource.37,38

2. Systems and methodology

We employ a multi-stage computational methodology that uses
freely available software to identify the amino acids from the
Ac-AChBP protein that should be preferentially incorporated in
a chitosan-based material to promote the adsorption of IMI.
First, the crystal structure of the IMI–Ac-AChBP complex was
downloaded from the Protein Data Bank (PDB ID: 3C7939); the
structures of both IMI and Ac-AChBP are displayed in Fig. 1.

Fig. 1 Representation of the (a) imidacloprid molecule and (b) crystal
structure of Aplysia californica acetylcholine-binding protein (Ac-AChBP,
PDB ID: 3C79), with each chain of the pentamer displayed in a different
color.
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Calculations were performed for a reduced model of the
Ac-AChBP protein to maintain an affordable computational
burden. In this work, we considered an Ac-AChBP model
composed by chains A and B of the protein (hereafter desig-
nated as AChBP_AB), which is the smallest model that
describes the entire binding pocket.

The next stage of our strategy consists of applying blind and
targeted molecular docking to identify promising configura-
tions that are then tested by running long molecular dynamics
(MD) simulations within the GROMACS framework.40,41 The
MD trajectories of the most stable configuration encountered
for the complex are analyzed in detail to obtain the ligand
interaction-network with the protein residues by using the
ProLIF code.42 In addition, the effective free energies were
calculated with both MM-PBSA and MM-GBSA methods43–45

by using the gmxMMPBSA program.46,47 With these data in
consideration, it is possible to choose the most relevant amino
acids, whose interactions with the pesticide are then further
studied at higher levels of theory by employing electronic-
structure calculations.

Finally, we verified whether the functionalization of chito-
san with such promising amino acids is relevant for promoting
the IMI adsorption in this type of materials. The tests were
carried out using long MD simulations for one IMI molecule
and several models of chitosan-based systems in aqueous
solution. Specifically, the adsorbing model systems employed
in the simulations are formed by one or three monomers of
chitosan that can be then functionalized in their –NH2 groups,
respectively, with one or three amino acids.

2.1. Molecular docking

In order to identify the most promising poses of imidacloprid
in protein structure, docking was performed with Autodock
Vina,48,49 using its built-in scoring function. We conducted
semi-flexible docking with the protein molecule treated as a
rigid structure during the docking process. Before docking,
chains A and B of the protein crystal structure were extracted
from the PDB, and then hydrogens were added to the polar
atoms. The analysis and visualization of the results, including
binding affinity values, were performed, and the relevant
structures were saved for later use in MD. Using the AChBP_AB
protein model, three variations of docking were performed.
Blind docking, where the entire protein was placed within a
defined grid box with dimensions of 80 Å � 80 Å � 80 Å.
Afterwards, we conducted a target docking with the grid box
centered on the interface of the two chains, with the following
dimensions 24 Å � 22 Å � 48 Å. After identifying the prefer-
ential binding region of the protein, we carried out a final
docking with a grid box centered at the selected binding site
(16 Å � 16 Å � 16 Å).

2.2. Molecular dynamics simulations

2.2.1. Topology construction and systems preparation. For
the generation of the protein topology, the pdb2gmx tool of
GROMACS 2019.640,41 was used, and hydrogens were added
according to protonation states automatically determined by the

pdb2gmx module. For both protein and ions, the Amber99SB-
ILDN50 force field was used. This is an updated version of the
Amber99 force field51 with Stony Brook modifications (for better
protein backbone performance)52 and additional side-chain tor-
sion potential refinements, known as ILDN, for the amino acids
isoleucine, leucine, aspartate, and asparagine. To construct the
topologies of the IMI and chitosan-based models, we follow the
standard procedure for the Amber force field using GAFF2 (gen-
eral Amber force field) parameters.53 GAFF2 extends Amber
capabilities to model a wide range of organic molecules and is
designed for compatibility across different Amber-based force
fields, such as Amber99SB-ILDN. This force field has been exten-
sively validated against experimental data for various organic
molecules across multiple studies,54,55 including protein–ligand
simulations.56,57 The construction of these topologies included
the following steps: (i) molecules were optimized at the RHF/
6-31G* level of theory, using GAMESS-US package;58 (ii) using the
RESP fitting protocol implemented in the R. E. D. package,59 the
partial charges were derived; (iii) finally, the ACPYPE script60 was
used to convert the geometry and generate the topologies to the
GROMACS input format.

All molecular dynamics simulations were performed using
GROMACS 2019.6,40,41 which has support for NVIDIA GPUs,
that are available in modern computing laboratories. The
protein–ligand complex was placed in a cubic simulation box,
ensuring a minimum distance of 10 Å between the complex and
the box boundaries. Each system was then hydrated with TIP4P-
EW61 water molecules and 19 sodium ions were added to
ensure overall charge neutrality of the system. The box dimen-
sions were approximately 107 Å � 107 Å � 107 Å for the
simulations with AChBP_AB.

Similar procedures were also applied in the preparation of
the simulations with chitosan-based model systems, except that
each trajectory now begins with the IMI well separated from the
adsorbent molecule inside a box of dimensions 50 Å � 50 Å �
50 Å (see Fig. S1 of the SI).

2.2.2. Minimization, equilibration and production. After
the preparation of the simulation box, an energy minimization
step was carried out to relax the system and reduce molecular
repulsions, followed by two consecutive equilibrium simula-
tions of 10 ns each (NVT followed by NPT). The temperature
was maintained at 298.18 K using the v-rescale62,63 temperature
coupling scheme. The pressure was maintained at 1 bar using
a Parrinello–Rahman barostat64 with a coupling constant of
0.2 ps and an isothermal compressibility of 4.5 � 10�5 bar�1.
The protein and ligand were coupled separately from water and
ions, with a relaxation time constant of 0.1 ps, while chitosan
models and IMI were coupled separately from water. The
production phase of the MD simulation was run for 500 ns.
A total of 3 (10) trajectories were run for MD simulations of
protein–IMI complexes (chitosan-based model systems with
IMI). The classical equations of motion were integrated using
the leapfrog method, with a time step of 2 fs. Bond constraints
during trajectory integration were employed through the LINCS
(i.e., linear constraint solver) algorithm.65 Periodic boun-
dary conditions were used in all simulations. The long-range
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electrostatic energy was evaluated using the particle mesh
Ewald method,66,67 with a 10 Å cut-off applied to both the
Coulombic and van der Waals interactions.

2.2.3. Trajectory analysis. For the evaluation of stability of
the protein–ligand complex and characterization of the inher-
ent intermolecular interactions, we calculated several physical
quantities with the software tools available in GROMACS,40,41

such as root-mean-square deviation (RMSD) and number of
hydrogen bonds over the simulation. We calculated the RMSD
of the protein backbone for each system (see Fig. S2 of SI) and
no significant conformational modifications were detected,
either in the simulations of the protein alone or in the presence
of the ligand. In the context of stability assessments of protein–
ligand complexes, we have considered for each trajectory the
RMSD of the ligand in relation to the protein backbone. The
VMD package68 was used for visual inspection of the trajec-
tories and image generation. Schematic diagrams of the ligand
interaction-network with protein residues during the simula-
tions, and the respective frequency at which the interactions
occur, were generated using the ProLIF code 2.0.3.42 ProLIF
generates interaction fingerprints by detecting and classifying
non-covalent interactions based on predefined geometric rules
from structural chemistry literature. These include specific
distance and angle thresholds for each interaction type, such
as hydrogen bonds, p–p stacking, cation–p, and hydrophobic
contacts, applied across molecular dynamics trajectories. In
this study, we used the default geometric criteria provided by
ProLIF version 2.0.3 without any modification.42

To assess the ability of chitosan-based model systems to
adsorb IMI, we calculated radial distribution functions (RDFs)
using the default settings of GROMACS.40,41 We also performed
a clustering analysis on the chitosan trajectories to identify the
most significant chitosan-IMI configurations observed over the
entire simulation time. The occurrence of specific configura-
tions was assessed using the default GROMACS ‘‘single link-
age’’ method, with an RMSD cut-off of 0.15 nm (0.20 nm)
for monomer-chitosan (trimer-chitosan) model simulations.
These cut-off values were optimized through a trial-and-error
approach to ensure that only a limited number of dominant
structures emerged.

2.2.4. MM/PB(GB)SA methods. The calculation of binding
free energy was carried out by utilizing the gmxMMPBSA
program,46,47 after removing the periodic boundary conditions
of the MD trajectory obtained with GROMACS.40,41 For this
calculation, we have used both molecular mechanics Poisson–
Boltzmann surface area (MM/PBSA) and molecular mechanics
generalized Born surface area (MM/GBSA) methods43–45 that
are available in the gmxMMPBSA program.46,47

The MM/PBSA and MM/GBSA methods are considered as
end-point approaches for the calculation of binding free
energy, since only the ending structures of a reaction are taken
into account for estimating both the ligand binding free energy
and relative free energy differences among distinct conforma-
tional states.46,47 Accordingly, these methods are computation-
ally affordable for calculating binding free energies at a
reasonable level of accuracy. Because of this, MM/PB(GB)SA

approaches have been used in the investigation of protein–
ligand systems,69,70 and are also applied in the present work
to calculate average values of the binding free energy of the
IMI–Ac-AChBP complex.

Basically, assuming that the bound and unbound states
share similar conformational characteristics, the dynamics of
both protein and pesticide may be derived from the same
trajectory of the complex. The average binding free energy of
the complex can be calculated by using the equation47,71

DGbind = hGcompi � hGproti � hGpesti (1)

where hGcompi is the total free-energy of the complex, and the
terms hGproti and hGpesti refer, respectively, to the protein and
pesticide, when isolated in water. We further note that the total
free-energy terms are estimated, as an average over a specified
time interval of the MD trajectory, by employing the following
formula:

hGxi = hEMMi + hGsolvi � hTSi (2)

where hEMMi represents the average of the molecular
mechanics potential energy in vacuum (i.e., given by the
corresponding force field), hGsolvi is the free energy of solvation,
and hTSi corresponds to the contribution of entropy (S) to the
free energy in vacuum at the simulation temperature (T);
x represents the label for each free-energy term appearing in
eqn (1). In the calculation of hGsolvi, the MM/PBSA method
employs the Poisson-Boltzman equation, while the MM/GBSA
approach uses a generalized Born model (GBOBC2 was used in
this study),72 as implemented in the gmxMMPBSA program.46,47

In turn, the entropic term in eqn (2) is not expected to be relevant
when comparing relative binding free energies for similar
systems47 and, usually, it may be neglected (which happens in
the present work). In this case, the second member of eqn (2)
reduces to the first two terms and DGbind is then designated as
effective binding free energy.

We should also emphasize that, within the MM-GBSA frame-
work, it is possible to decompose the binding free energy into
the contributions of each residue of the protein. This allows us
to identify the amino acids that contribute the most to the
binding free energy of the complex, which is particularly
relevant in the context of the present work. For this calculation,
we have considered only amino acids that are within 6 Å
from IMI.

2.3. Electronic-structure calculations

We have performed electronic-structure calculations to obtain
further insight into the interaction of IMI with the amino acids
revealed as the most important by the MD simulations starting
from the IMI–AChBP_AB complex extracted from the crystal
structure. All the electronic-structure calculations were carried
out with the ORCA 5.0.4 package73,74 and most of them
employed the conductor-like polarizable continuum solvation
model (CPCM),75 using values of 80.4 and 1.33, respectively, for
the dielectric constant and refractive index of water. For com-
parison purposes, single-point calculations in vacuum were
also performed. The calculations were conducted according to
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the following procedure: (i) the geometry of the selected amino
acids or complexes involving IMI was extracted from the last
frame of the MD simulations. The structure of the amino acids
must be completed as they are no longer involved in the peptide
bond, which was done by adding a hydrogen atom to the amine
group and a hydroxyl to the carboxylic acid group with the
wxMacMolPlt program.76 (ii) The geometries of the individual
amino acids, IMI, and IMI complexes with one, two, and three
amino acids were optimized at the HF-3c level of theory,77

which we showed to be adequate for the present purpose (see
Section 3.2); for the complexes, the optimizations were carried
out by constraining the internal coordinates of each individual
molecule, but the Cartesian coordinates of any atom were not
restricted to their original values in the protein. (iii) The linear
scaling domain-based local pair natural orbital CCSD(T)
method, i.e., DLPNO-CCSD(T),34,35 was employed for the calcu-
lation of accurate energies, using the def2-TZVPP basis set78

with matching def2/C auxiliary basis set;79,80 this type of single-
point calculation, both in vacuum and using the CPCM
approach, is now available in ORCA.81 (iv) Finally, the
DLPNO-CCSD(T) energies were corrected for the basis set
superposition error (BSSE) with the counterpoise method,82

according to the following equation:

Ebind = EAB
AB(AB) � EAB

A (AB) � EAB
B (AB) (3)

where EY
X(Z) means the energy of the specie X calculated at the

optimized geometry of fragment Z with the basis set of frag-
ment Y, i.e., EAB

AB(AB) stands for the energy calculated to the AB
species with the AB basis set at the geometry of the AB complex,
and EAB

A (AB) and EAB
B (AB) correspond to the energy of the species

A and B, respectively, with the AB basis set at the geometry of
the complex AB.82,83 Note that eqn (3) refers to the particular
case where only two monomer molecules (A and B) were
considered, but the correction is straightforward when more
monomers are involved.

3. Results and discussion

We applied docking techniques to discover promising IMI–Ac-
AChBP binding configurations. Although docking studies (and
especially blind docking) are particularly relevant for discover-
ing stable configurations of the pesticide–protein complex
when little information is available in the literature, we should
emphasize that they may still provide complementary details at
the molecular level even for systems with resolved crystal
structure (like IMI–Ac-AChBP). Indeed, the molecular-docking
stage can be applied for two purposes, i.e., blind docking is
employed to localize the preferential binding region (usually
designated as the binding pocket) for the specific protein
model, while targeted docking allows discovery of the most
promising pesticide configurations within the binding pocket.

The stability of the configurations obtained from the docking
procedure have to be then evaluated by MD simulations. Once the
most stable configurations are identified, we further look into the
dynamical details of the corresponding pesticide–protein complex

system. From the analysis of the MD trajectories with ProLIF, we
identified and classified the interactions that, based on geome-
trical criteria, are established between atoms of the protein and
pesticide. In addition, pesticide–protein binding energies are
calculated by employing the MM/GBSA and MM/PBSA methods;
the MM/GBSA method also estimates the contribution of each
amino acid for the pesticide–protein binding energy, which allows
identification of the most relevant residues on a more quantitative
basis. Thus, in Section 3.1, we present detailed docking and MD
investigations for the interaction of imidacloprid with the AChB-
P_AB protein model, seeking to complement the results already
published in the literature.

In turn, Section 3.2 presents and discusses electronic-
structure calculations on interactions between IMI and the five
most relevant amino acids that were selected based on the MD
simulations. The study of the interactions comprise structure
optimization with the HF-3c method, followed by single-point
calculation with the DLPNO-CCSD(T) method and a triple-zeta
basis set.

As a proof of concept, the promising amino acids regarding
the interactions with IMI (cf. the study in Section 3.2) were used
to functionalize chitosan; then, MD simulations were per-
formed to assess how IMI adsorption is enhanced with the
new chitosan-based material models. The results are presented
and discussed in Section 3.3.

3.1. Imidacloprid–protein complex

To ensure the robustness of our computational protocol,
we first evaluated whether our docking and MD strategy could
accurately reproduce the well-established crystal structure
of the IMI–Ac-AchBP complex. This validation is particularly
important, as it provides a solid foundation for extending the
same procedure to other pesticide–protein systems that lack
experimentally resolved structures.

The complexes that may be formed between AChBP_AB and
IMI were initially investigated using a blind-docking procedure.
The IMI–AChBP_AB complexes corresponding to the six best
scoring docking poses were then studied by MD simulations in
order to evaluate their stability. The results for RMSD as a
function of time displayed in Fig. 2A indicate that most of the
starting configurations are not stable. For instance, configura-
tions where IMI is close to the a-helix of the protein (pose 4 and
pose 5) tend to break down after a very short simulation time.
In turn, pose 1, pose 2, and pose 6 also appear to be generally
unstable, although some trajectories show RMSD values that
remain approximately constant, on average, over a long time
interval. As a general trend, the formation of a stable complex
similar to the crystal one occurs whenever the IMI closely
approaches the binding pocket. For example, in the case of t2
of pose 6, IMI escapes from its initial position (which leads to
an increase in the RMSD values in the first 150 ns) and then
forms a stable complex inside the binding pocket for the
remaining part of the trajectory. In contrast, the third best-
scoring pose (i.e., pose 3) corresponds to an IMI–AChBP_AB
complex that keeps small values of the RMSD for most of the
simulation time; the exception occurs only in the final part of
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t1, where the RMSD becomes larger. Actually, a complex of pose
3 seems to be essentially stable, even though IMI presents a
certain degree of mobility within the binding pocket (as shown
by the oscillations of RMSD).

Since these results point to an increase in the stability for
complexes when IMI is located in the interface of chain A and
chain B of AChBP_AB, the next step of the present approach
consists of performing targeted docking within the dashed-line
region represented over poses P1 and P2 in panel B. This means
that targeted docking is somehow guided by the MD simula-
tions. Actually, the main idea is to verify if the targeted docking
within a small promising region is able to generate poses
associated to more stable IMI–AChBP_AB complexes. Thus,
we also ran three MD trajectories starting from the structure
of the IMI–AChBP_AB complex corresponding to the two best-
scoring poses, P1 and P2, obtained in the targeted-docking
procedure (Fig. 2B). Although P1 (which is similar to pose 3
obtained in the blind docking) presents the best scoring para-
meter, we conclude from the MD simulations that the complex
corresponding to P2 is the most stable one. Clearly, this
emphasizes the need for always using MD simulations to
validate docking results. It is also important to notice that
moving from blind to targeted docking leads to approaching
closer to the structure extracted from the crystal, which is
represented in Fig. 2C. The MD simulations for P2 and crystal
structures show similar trends regarding the stability of the
complex. In both cases, the pesticide molecule appears to be

confined in the same pocket of the protein during the whole
simulation, even though IMI is oriented in a different manner
in the initial configurations (as shown by the red IMI repre-
sentations in the zoom insert of panel B and C of Fig. 2).
Indeed, the chlorine atom is oriented upwards in both P1 and
P2, while it is downwards in the crystal. Despite the above
mentioned mobility of IMI within the binding pocket, we notice
that a change in the chlorine orientation from upwards
to downwards does not occur in the simulation (see also the
snapshots in Fig. S3–S5 of the SI). Actually, a complete rotation
of IMI leading to a downwards orientation of the chlorine atom
was not observed within the binding pocket in any of the
trajectories. In t3 of P1 (and similarly for t2 of P2), IMI attempts
to perform this kind of rotation within the binding pocket,
but apparently there is not enough room to be successful.
Curiously, t2 of P1 ends up with the chlorine oriented down-
wards, but this was only achieved because IMI has previously
exited the pocket and then entered again with the new orienta-
tion. These achievements on the rotation of the IMI associated
with the dynamics of the binding pocket are illustrated in
Fig. S6 and S7 of the SI.

In order to obtain some quantitative insight about the
relative stability of the P1, P2 and crystal IMI–AChBP_AB
complexes, we have employed both MM/GBSA and MM/PBSA
to calculate the effective binding free energy, i.e., DG; the
calculated values and the associated errors are presented
in Table 1. We note that the calculation of DGMM/GBSA and

Fig. 2 Docking and MD results for the complexes of AChBP_AB with IMI (red). Panel A: Best scoring blind-docking poses (pose 1 to pose 6) used as
starting structures for the MD simulations. Panel B: Best scoring targeted-docking poses (P1 and P2) used as starting structures for the MD simulations.
Panel C: Starting structure extracted from the crystal (PDB ID: 3C79) used for the MD simulations. The scoring value of each pose is represented in
parenthesis. The pink dashed lines correspond to schematic representations of the docking search-box (panels A and B). For each starting structure and
three distinct trajectories (t1, t2, and t3), the respective RMSD of the IMI heavy-atoms in relation to the protein backbone is represented as a function of
the simulation time (panels A–C). The IMI starting structures for the simulations of P1 and P2 (panel B) and crystal (panel C) are also displayed in red as
inserts to the corresponding RMSD plots, with chlorine atom in green. For comparison purposes, the same scale is maintained in all RMSD plots.
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DGMM/PBSA was carried out over part of the trajectories where
the dynamic equilibrium was assured (by the inspection of the
RMSD plots shown in Fig. 2). Except for t2 of P1 which appears
to be rather unstable in the last part and where the most stable
complex occurs in the time interval between 225 ns and 335 ns,
as a general procedure the last 100 ns of each trajectory were
used for the calculation of the effective binding free energy;
Fig. S3–S5 of the SI show the effective binding free energy as a
function of time for the interval used in the calculations of both
DGMM/GBSA and DGMM/PBSA. It is apparent from Table 1 that the
results obtained with the MM/GBSA approach are qualitatively
similar to those of the MM/PBSA method, which is considered
most accurate. For instance, Fig. S4 of the SI shows that, in
contrast with MM/GBSA, the MM/PBSA method is able to
account for the change of a dihedral angle, which leads to
the internal reorientation of the imidazole ring of IMI in
relation to the chloropyridine group and, consequently, to a
decrease in the average values of the effective binding energy
during the last 100 ns of t3. However, since the MM/PBSA
method is more time consuming by a factor of B4.4, the results
in Table 1 show that MM/GBSA is more advantageous than MM/
PBSA for ranking the different complexes according to their
relative stability. The values of the average binding free energy
confirm that the complex from P2 of the targeted docking is

more stable than the corresponding one from P1, while pre-
senting similar stability to the complex from the crystal struc-
ture. However, as already mentioned, the relative orientation of
IMI within the binding pocket in the case of P2 varies from one
trajectory to the other (cf. snapshots of Fig. S4), which may
explain some small differences among the corresponding aver-
age binding energies. By contrast, the orientation of IMI is
essentially the same (despite sometimes involving the rotation
of the imidazole and the chloropyridine rings) in the three
trajectories of the crystal structure (see Fig. S5 of the SI). Thus,
it appears that the crystal structure is dynamically more stable
than the P2 complex. Given these results, we wonder whether it
is possible to obtain a structure similar to the crystal one by
docking. Actually, we manage to obtain this kind of structure by
reducing the region of the target docking to essentially coincide
with the binding pocket of the best docking pose P2 previously
obtained (see Fig. S8 in the SI). This structure is very similar to
the crystal one (cf., Fig. S8) and it presents a lower docking
score-value (�7.7 kcal mol�1) in comparison to P2. Thus, it
appears that for the present system a more realistic configu-
ration of the complex is obtained when targeted docking is
applied with a successive reduction of the searching region.

The amino acids of the protein that contribute the most to
stabilizing the complex may be identified by performing the
decomposition of the effective binding free energy for each
residue using the MM/GBSA method. In Fig. 3, we show the
energetic contribution of each residue for the value of
DGMM/GBSA presented in Table 1 for each trajectory of the crystal
structure. Only the residues with a contribution higher than
0.5 kcal mol�1 are represented. Analogous plots for the trajec-
tories of P1 and P2 are shown, respectively, in Fig. S9 and S10 of
the SI. Due to the similarities between P2 and the crystal
structure discussed above, the residues that mostly contribute
for DGMM/GBSA do not differ too much in both cases. Conversely,
distinct amino acids arise in the case of P1 as the most relevant
ones, which could be anticipated by the different binding
position of IMI in the protein.

Additionally, it is apparent from Fig. 3 that all the values of
the effective binding energies for the three trajectories agree
with each other within the error bars. The main residues from
chain A that contribute to the effective binding energy include

Table 1 Effective binding free energy for the three trajectories (t1, t2, and
t3) in the MD simulations starting from P1 and P2 of the targeted docking,
and the crystal structure. This was estimated by employing the molecular
mechanics Poisson–Boltzmann surface area (MM/PBSA) and molecular
mechanics generalized Born surface area (MM/GBSA) methods. All the
values were calculated over a time interval of 100 ns, which is shown for
each MD trajectory in Fig. S3–S5

P1 P2 Crystal

DGMM/GBSA/kcal mol�1

t1 �23.79 � 2.27 �32.25 � 2.36 �34.24 � 3.17
t2 �22.79 � 2.18 �33.90 � 2.53 �33.34 � 2.65
t3 �22.46 � 2.40 �28.63 � 2.07 �34.06 � 2.64

DGMM/PBSA/kcal mol�1

t1 �18.41 � 3.24 �22.24 � 2.63 �25.44 � 3.10
t2 �17.17 � 2.91 �25.44 � 3.15 �23.60 � 2.94
t3 �17.55 � 2.79 �18.08 � 4.66 �26.62 � 2.69

Fig. 3 Contribution of the residues to the IMI–AChBP_AB binding energy calculated by using the MM/GBSA method for the MD simulations starting
from the crystal structure. Only the residues with an energy contribution higher than 0.5 kcal mol�1 are represented. Results from the three trajectories
(t1, t2, and t3) are identified by different colors (red, green, and blue). Letters A and B label the protein chain (e.g., Tyr55.A means residue Tyr55 of chain A,
while Val148.B stands for residue Val148 of chain B).
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Tyr55, Gln57, Val108, Met116, and Ile118. In turn, the main
residues from chain B are Trp147, Val148, Tyr188, Cys190, and
Tyr195. It is worth mentioning that residue Ile118 from chain A
and Tyr188 from chain B present the most significant contribu-
tions to DGMM/GBSA, with absolute values higher than
2 kcal mol�1. On average, this accounts for B8% of the total
effective binding energy of the complex, which is similar to the
value (B7%) previously found for the residues Met114 and Tyr185
that are the most relevant ones for the binding complex of IMI with
the Ls-AChBP protein.26 Actually, Tyr is present in both protein
models as a key residue for establishing the complex with IMI, but
Met (which is also available in Ac-AChBP) appears to comprise an
important role only in the case of the Ls-AChBP protein. We
should note that Tyr, Ile and Met have a hydrophobic side chain,
but the first (second) amino acid is classified as aromatic (alipha-
tic), while the third one contains a sulfur atom.

To complement the previous discussion, we performed an
additional analysis using ProLIF, a computational tool that
identifies and classifies interactions based on geometric pat-
terns between groups of atoms in the protein and ligand. The
main results for the analysis of the MD simulations starting
from P1 and P2, and the crystal structure are summarized in
Fig. 4. We represent in this figure the interaction network
between IMI and the amino acids of AChBP_AB that are present
for at least 30% of the simulation time. The average percentage
of the simulation time that an interaction type is occurring is
also shown at the bottom of the figure; more detailed plots that
include all detected interactions as a function of the simulation
time for the trajectories of P1, P2, and the crystal structure can
be seen in Fig. S11–S19 of the SI. In all simulations, inter-
actions classified as hydrophobic and van der Waals can be
associated to the IMI–AChBP_AB complex during the whole
time of the trajectories. In addition, for trajectories starting
from P1 (P2), hydrogen bonding (p-stacking) is also present
during 42% (48%) of the simulation time. In the case of P1,
residues classified as either polar (Thr91, Gln105, Gln121) or
aliphatic (Ile90, Val99, Leu102, Pro104) are the most relevant
for the interaction with IMI. In turn, we may also observe in
Fig. 4 that trajectories starting from either P2 or the crystal
structure show similar interactions. In both cases, aromatic
(Tyr188, Tyr93, Tyr195, Trp147, Tyr55), sulfur-containing (Cys190,
Met116) and aliphatic (Ile118) residues are frequently in contact
with IMI. However, two additional aliphatic residues (Val108 and
Val148) appear to play an important role regarding the interaction
with IMI for the simulation starting from the crystal structure. In
summary, we may say that a hydrophobic environment, generally
composed by both aromatic (which also allows for p-stacking) and
aliphatic residues, around the pyridine ring of IMI as well as the
presence of cysteine and glutamine nearby the nitro group appear
to stabilize the complex in the binding pocket. Actually, both the
P2 and the crystal structure tend to have IMI confined in the
binding pocket, encased by loop C (formed by Gln186 up to
Tyr195 residues of chain B), which allows optimal exposure of
conjugated and hydrophobic regions of the ligand to aromatic
side chains of the protein, as previously described by Talley et al.19

Although the configuration of the crystal structure may allow the

IMI to establish hydrogen bonds simultaneously with residues
Cys190.B, Gln57.A and Tyr55.A, it is clear by the low values of the
average number of H-bonds (cf. Table S1 of the SI) that such an
event does not occur with high frequency during the simulation.

Conversely, p-stacking is not significant for MD trajectories
with P1, being the hydrophobic environment guaranteed by
aliphatic residues, while important hydrogen-bonding is now
established between the Gln residue and nitrogen of the
imidazole ring. Indeed, the relative relevance of hydrogen-
bonding for P1 in comparison with P2 or the crystal structure
has been generally confirmed by calculating the average number
of H-bonds along each trajectory (see Table S1). However, since P1
is less stable than P2 (and also the crystal structure), it is expected
that amino acids favoring p-stacking interactions are the most
relevant for incorporating IMI-adsorbing materials.

3.2. Insights from electronic-structure calculations

Once the residues of AChBP that appear to be the most relevant
for stabilizing the complex with IMI were identified in the MD
simulations, further insight into the interaction between such
amino acids and the pesticide is desirable for materials model-
ing purposes. We note that while previous studies32,33 were
focused on individual residue contributions for the AChBP–IMI
complex (i.e., keeping the entire structure of the binding
pocket), we are mainly interested in exploring the geometric
flexibility and optimal configurations of selected amino acids
approaching IMI in water media, outside the protein environ-
ment, by applying electronic-structure methods.

The residues to be investigated through electronic-structure
calculations were selected using the crystal structure as the
reference conformation, as it is the most stable among the
poses analyzed in Section 3.1. The selection of residues was
guided by a combination of two key criteria: (i) top percentage
of occupancy as obtained from the ProLIF analysis, and (ii) top
per-residue contributions to the binding free energy as deter-
mined by MM/GBSA energy decomposition. Accordingly, the
residues Ile118.A, Trp147.B, Val148.B, Tyr188.B, and Cys190.B
were identified as key interaction partners with IMI; note that
we maintain the numbering of the amino acids as they appear
in the protein, in order to facilitate their identification and
discussion. We performed electronic-structure calculations for
the isolated amino acids and their complexes with IMI, which
include all combinations of IMI with one, two, and three amino
acids. Because Trp147.B and Val148.B are contiguous residues
of the protein chain, they are treated as being bound in all
complexes where both are present. In order to reduce the
computational cost of the calculations, geometry optimiza-
tion was carried out at the HF-3c level of theory for all systems.
In an attempt to validate the application of the HF-3c approach
to the present systems, we performed geometry optimization
for the smallest complexes employing the Møller–Plesset per-
turbation theory using the resolution of identity (RI-MP2)
method and the def2-TZVPP basis set78 along with the def2-
TZVPP/C auxiliary basis set.79,80 For the optimized geometries
with both HF-3c and RI-MP2, improved binding energy values
were obtained by single-point calculations and BSSE correction
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at the DLPNO-CCSD(T)/def2-TZVPP78 (including the def2-TZVPP/C
auxiliary basis set79,80) level of theory. All calculations were carried
out using the conductor-like polarizable continuum model
(CPCM).81 A comparison of the two sets of results is shown in
Table S2 of the SI. In general, the RMSD values are small, thus
indicating that optimized structures obtained with the HF-3c
approach do not differ significantly from the RI-MP2 ones.
Furthermore, the order of the binding energies is essentially
the same for both methods; the only exception arises for the
complexes IMI–Trp147.B and IMI–Tyr188.B whose binding
energies are close to each other. In turn, we have also verified
that, at the HF-3c level of theory, the structures of the com-
plexes obtained by the optimization with the individual mole-
cules considered as rigid are not significantly different from
those resulting from full optimization (see Fig. S20). Based on
these results, we believe that the structures arising in the
optimization of complexes with IMI and the selected amino
acids at the HF-3c level of theory by constraining the internal

coordinates of each individual molecule are reliable enough for
the present purposes.

In Fig. 5–8, we represent the structures that were optimized
with the HF-3c method by starting from the corresponding
geometries in the IMI–AChBP_AB complex; the differences
between the initial and optimized structures are shown in
Fig. S21–S24 of the SI. The optimized geometries of the amino
acids (Fig. 5) resemble their structures in the protein. In turn,
the effect of the optimization can be better understood by
looking at Fig. S21. It is apparent that the optimized IMI and
amino acid structures are similar to the analogous ones in the
protein, with the largest RMSD (calculated over C, N, and Cl
atoms) of 0.70 Å for the Trp147.B–Val148.B peptide. In what
concerns the complexes of one, two, or three amino acids with
IMI (Fig. 6–8), the amino acids tend to closely approach IMI in
the optimized structures. Some orientational rearrangements
are also observed, especially in the case of complexes involving
the Trp147.B amino acid (e.g., complexes in panels a and f of

Fig. 4 Interaction-network of IMI with the residues of the AChBP_AB obtained with ProLIF for the MD simulations starting from P1, P2, and the crystal
structure. The class of residues and type of interaction is identified by different colors. The percentage of the trajectory where the interaction is detected
is also shown. Below the panels, we represent the percentage of the trajectory where each interaction type is present. Only the residues and interaction
types present for at least 30% of the trajectory time are shown. Each value is an average over the three trajectories. Letters A and B in the name of residues
indicate the chain to which they belong.
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Fig. S23, and panel g of Fig. S24 of the SI). It is also interesting
to observe in Fig. 6 that, in optimal configurations, Trp147.B
and Val148.B occupy essentially the same regions around the
IMI molecule, while the remaining residues stand in non-
overlapping positions (cf. panel f of Fig. 6).

In Table 2, we represent the interaction energies for all the
IMI–amino acids complexes shown in Fig. 6–8 that were
calculated by employing the DLPNO-CCSD(T) method and the
def2-TZVPP basis set78 with the matching def2-TZVPP/C aux-
iliary basis set,79,80 while the effect of water solvation was taken
into account using CPCM.81 For comparison purposes, analo-
gous single-point DLPNO-CCSD(T) calculations were also con-
ducted in vacuum (see Table S3 of the SI). As a general trend,
the results of Table 2 and Table S3 are qualitatively equivalent,
although the calculations in vacuum tend to give lower energy
values than the corresponding CPCM ones. Accordingly, we
only analyze the results from the CPCM calculations in the
following discussion.

We may observe from Table 2 that, for complexes of one
amino acid with IMI (panels a–e of Fig. 6), the weakest

interaction occurs with the aliphatic residues Ile118.A and
Val148.B (�4.13 kcal mol�1 and �3.96 kcal mol�1). In turn,
the sulfur-containing residue (Cys190.B) exhibits an intermediate
binding energy, while the strongest interactions arise with the
aromatic residues (Trp147.B and Tyr188.B) whose complexes with
IMI show values of�7.91 kcal mol�1 and�7.16 kcal mol�1 for the
corresponding binding energies. Comparison of these results with
the contributions of the residues to the effective binding energy of
IMI–AChBP_AB during MD simulations (see Fig. 3) confirms that
Tyr188.B may have an important role as an adsorbent of IMI in
water media. Conversely, Ile118.A does not show significant
importance in binding to IMI, although it is revealed to be the
residue that contributes the most to the effective binding energy
of the IMI–AChBP_AB complex during the MD simulations. This
discrepancy may be attributed to the confinement of IMI within
the binding pocket, which ensures proximity to the Ile118.A
residue during the MD simulation. As for Trp147.B, its movement
is also restricted within the binding pocket during MD simula-
tions, preventing the residue from adopting an optimal position
regarding the interaction with IMI. By contrast, the HF-3c opti-
mization leads Trp147.B to adjust its orientation, enabling a more
favorable interaction with IMI (cf. the large value of the binding
energy presented in Table 2).

The addition of a second amino acid contributes to stren-
gthen the complex with IMI in different ways (see Table 2). The
best combination of two amino acids is the pair formed by
Trp147.B and Tyr188.B (cf. entry 7f in Table 2), closely followed
by the Ile118.A/Trp147.B pair (entry 7a). We should emphasize
that the first complex has two aromatic amino acids and,
specifically, Trp147.B is also present in the second complex.
This result appears to reinforce the general idea that the
presence of aromatic amino acids contributes to the formation
of stronger complexes with IMI. Nonetheless, such a simple
assumption is not clear when looking at the other pairs of
amino acids involving Tyr188.B (cf. entries 7c, 7h and 7j in
Table 2) and especially in the case of the complex of IMI with
the pair Trp147.B–Val148.B (entry 7e), which corresponds to the
weakest interaction. We note that Trp147.B and Val148.B were
kept linked through the peptide bond during the HF-3c opti-
mization, which may have hindered the possibility of adopting
the optimal positions of both amino acids in the complex with
IMI. Indeed, Trp147.B and Val148.B tend to occupy the same
region nearby IMI when individually optimized at the HF-3c
level (see panels b and c of Fig. 6).

Furthermore, the presence of a third amino acid in the
complex with IMI (Fig. 8 and entries 8a–8j in Table 2) leads
to conclusions consistent with those observed above for com-
plexes involving two residues. While in general aromatic resi-
dues tend to enhance the stability of the complex, the aliphatic
residue Val148.B consistently contributes to weaker interac-
tions with IMI, regardless of the amino acid combination. Once
again, the combination Trp147.B–Val148.B is clearly unfavor-
able, except when the third amino acid is Tyr188.B (entry 8g).
The synergistic effect of Trp147.B/Tyr188.B (already mentioned
for the complex shown in Fig. 7f) is also apparent in the
complexes involving these two amino acids and Ile118.A

Fig. 6 Structures of the complexes of IMI with one amino acid that were
optimized at the HF-3c/CPCM-water level of theory: (a) IMI + Ile118.A;
(b) IMI + Trp147.B; (c) IMI + Val148.B; (d) IMI + Tyr188.A; (e) IMI + Cys190.B;
(f) overlap of structures a, b, d, and e. For visualization purposes, IMI is
represented in magenta and the chlorine atom is highlighted in green.

Fig. 5 Structures of imidacloprid and selected amino acids optimized at
the HF-3c/CPCM-water level of theory: (a) IMI; (b) Ile118.A; (c) Trp147.B;
(d) Val148.B; (e) Tyr188B; (f) Cys190.B; (g) Trp147.B–Val148.B.
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Fig. 8 Structures of the complexes of IMI with three amino acids that were optimized at the HF-3c/CPCM-water level of theory: (a) IMI + Ile118.A +
Trp147.B–Val148.B; (b) IMI + Ile118.A + Trp147.B + Tyr188.B; (c) IMI + Ile118.A + Trp147.B + Cys190.B; (d) IMI + Ile118.A + Val148.B + Tyr188.B; (e) IMI +
Ile118.A + Val148.B + Cys190.B; (f) IMI + Ile118.A + Tyr188.B + Cys190.B; (g) IMI + Trp147.B–Val148.B + Tyr188.B; (h) IMI + Trp147.B–Val148.B + Cys190.B;
(i) IMI + Trp147.B + Tyr188.B + Cys190.B; (j) IMI + Val148.B + Tyr188.B + Cys190.B. For visualization purposes, IMI is represented in magenta and the
chlorine atom is highlighted in green.

Fig. 7 Structures of the complexes of IMI with two amino acids that were optimized at the HF-3c/CPCM-water level of theory: (a) IMI + Ile118.A +
Trp147.B; (b) IMI + Ile118.A + Val148.B; (c) IMI + Ile118.A + Tyr188.A; (d) IMI + Ile118.A + Cys190.B; (e) IMI + Trp147.B–Val148.B; (f) IMI + Trp147.B +
Tyr188.B; (g) IMI + Trp147.B + Cys190.B; (h) IMI + Val148.B + Tyr188.B; (i) IMI + Val148.B + Cys190.B; (j) IMI + Tyr188.B + Cys190.B. For visualization
purposes, IMI is represented in magenta and the chlorine atom is highlighted in green.
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(entry 8b in Table 2) or Cys190.B (entry 8i). Nonetheless, the
most favorable complex with IMI involves the amino acids
Trp147.B, Ile118.A, and Cys190.B. It is worth noting that, as
mentioned above (Fig. 6f), Trp147.B, Tyr188.B, Ile118.A, and
Cys190.B create optimal confinement of IMI by wrapping it
around and, hence, allowing different groups of the pesticide to
contribute to the binding energy. During the optimization
process, the three amino acids can move to positions slightly

different from those of the corresponding single-residue com-
plexes (Fig. 6 and 8) so that amino acid–amino acid interactions
might be promoted and, hence, the synergistic effect will even
be improved.

3.3. Imidacloprid adsorption on amino acid-modified
chitosan

We investigated how the most promising amino acids incorpo-
rated in chitosan-based material models may contribute to
promote the adsorption of IMI. From the insights of the
electronic structure calculations, we have selected Trp, Tyr, Ile
and Cys as promising amino acids.

Independent MD simulations were performed to study the
adsorption of IMI by various chitosan-based model systems
(cf. Fig. S25 of the SI). We have considered monomers of
chitosan (CTS1) functionalized with each of the promising
amino acids that, henceforward, will be designated as
CTS1_Trp1, CTS1_Tyr1, CTS1_Ile1 and CTS1_Cys1, respectively.
We note that chitosan functionalization is achieved by
covalently linking the carboxyl (–COOH) group of the amino
acids to the amine (–NH2) group of chitosan, leading to the
formation of an amide bond (cf. peptide bond).

The bottom panel of Fig. 9 displays the average RDFs for 10
independent trajectories of each of the systems mentioned
above, with the corresponding standard deviation given by
the shaded area; the corresponding plots for the distance
between the IMI molecule and the chitosan-based monomers
are shown in Fig. S26–S30 of SI. It is apparent from Fig. 9 that
the probability of having the IMI near the non-functionalized
monomer of chitosan is very small. This is in agreement with
the limited effectiveness of chitosan in adsorbing imidacloprid
reported in previous works.36,84 In contrast, we observe that
chitosan functionalized with amino acids consistently leads to
a noticeable increase in the RDF peak located at approximately
0.5 nm, indicating greater efficiency of these material models to
capture IMI. Specifically, the introduction of the amino acids
Tyr and Trp leads to a significant enhancement in the strength
of the interaction with IMI, resulting in an increase in the RDF

Table 2 Interaction energies, i.e., DE (kcal mol�1) for the studied IMI-
amino acids systems. Calculated at the DLPNO-CCSD(T) def2-TZVPP basis
with the auxiliar basis def2-TZVPP/C level of theory in water (CPCM), with
BSSE counterpoise correction

Panel System Energy (kcal mol�1)

IMI + 1 amino acid
6a Ile118.A �4.13
6b Trp147.B �7.91
6c Val148.B �3.96
6d Tyr188.B �7.16
6e Cys190.B �5.28

IMI + 2 amino acids
7a Ile118.A; Trp147.B �15.18
7b Ile118.A; Val148.B �13.37
7c Ile118.A; Tyr188.B �11.57
7d Ile118.A; Cys190.B �13.64
7e Trp147.B–Val148.B �9.20
7f Trp147.B; Tyr188.B �16.38
7g Trp147.B; Cys190.B �12.93
7h Val148.B; Tyr188.B �11.04
7i Val148.B; Cys190.B �10.52
7j Tyr188.B; Cys190.B �13.10

IMI + 3 amino acids
8a Ile118.A; Trp147.B–Val148.B �15.35
8b Ile118.A; Trp147.B; Tyr188.B �22.43
8c Ile118.A; Trp147.B; Cys190.B �24.88
8d Ile118.A; Val148.B; Tyr188.B �18.27
8e Ile118.A; Val148.B; Cys190.B �17.79
8f Ile118.A; Tyr188.B; Cys190.B �20.85
8g Trp147.B–Val148.B; Tyr188.B �19.62
8h Trp147.B–Val148.B; Cys190.B �14.67
8i Trp147.B; Tyr188.B; Cys190.B �23.10
8j Val148.B; Tyr188.B; Cys190.B �18.21

Fig. 9 (bottom panels) Average RDFs between IMI and chitosan-based monomer obtained from 10 trajectories per system: (a) CTS1; (b) CTS1_Cys1;
(c) CTS1_Ile1; (d) CTS1_Tyr1; (e) CTS1_Trp1. The shaded area represents the standard deviation. (upper panels) Main structures arising from the clustering
analysis of the complexes formed in the MD simulations of the above systems, with a RMSD cut-off of 0.15 nm. The average frequencies of the
represented structures are about 2%, 3%, 13%, and 16% for simulations of panels (b) to (e), respectively. All simulations include one molecule of IMI and
one chitosan-based monomer solvated with water.
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peak by a factor of 5 and 7, respectively, compared to non-
functionalized chitosan. The amino acids Cys and Ile are not
as efficient in capturing IMI, showing a smaller increase of the
RDF peak (by a factor of B2) in comparison with non-
functionalized chitosan. This behavior was already anticipated
from the weaker interaction energies of the IMI-Cys and IMI-Ile
complexes compared to the IMI-Trp and IMI-Tyr systems, as
revealed by the electronic structure calculations presented in
Section 3.2.

In the upper panels of Fig. 9, we represent illustrative
examples of the main structures obtained from the clustering
analysis of the simulations, within a 0.15 nm RMSD cut-off. The
average probability of each cluster observed during the simula-
tions was 2%, 3%, 13% and 16% for CTS1_Cys1, CTS1_Ile1,
CTS1_Tyr1 and CTS1_Trp1, respectively. The most stable struc-
tures are those with either CTS1_Tyr1 or CTS1_Trp1, which
exhibit interactions primarily between the aromatic rings of the
amino acids with either the imidazole group or the chloro-
pyridine ring of IMI (see the upper panel of Fig. 9). Conversely,
in the simulations with the CTS1_Ile1 system, IMI exhibits
weak interactions with the hydrophobic groups of Ile. In turn,
in the rare cases where CTS1_Cys1 captures IMI, the interaction
mainly involves the sulfur atom of Cys and the six-membered
ring of IMI (see the upper panel of Fig. 9). Then, amino acids
containing aromatic groups appear to be the most relevant to
incorporate in chitosan-based materials for removing IMI
from water.

We performed additional MD simulations to assess the effect
on IMI adsorption of using multiple amino acids in chitosan. For
that, we used a trimeric chitosan model functionalized with three
residues of tyrosine (CTS3_Tyr3) or three residues of tryptophan
(CTS3_Trp3), as shown in Fig. S25 of the SI. We chose these amino
acids to functionalize chitosan, because they yielded the best

results with respect to the adsorption of IMI. For comparison
purposes, a simulation with a non-functionalized chitosan trimer
(CTS3) was also carried out. The analysis of the RDF plots of
Fig. 10 and the distance plots (see Fig. S30–S32 of SI) reveals that
the functionalization of the chitosan trimer with three amino
acids (CTS3_Tyr3 or CTS3_Trp3) contributes to a further increase
in IMI adsorption. In fact, the maximum values of the RDFs for
CTS3_Tyr3 and CTS3_Trp3 surpass those for CTS1_Tyr1 and
CTS1_Trp1, respectively. Now, the RDF peaks increase by a factor
of approximately five compared to CTS3. The main structures
arising from the clustering analysis for simulations with
CTS3_Tyr3 or CTS3_Trp3 (within a RMSD cut-off of 0.20 nm)
are shown in the upper panels of Fig. 10. These structures occur in
simulations with an average probability of about 46% and 53%,
respectively, and suggest that IMI is captured mainly due to the
synergistic contribution of two amino acids, which capture the
pesticide molecule between them (see the upper panel of Fig. 10).
In summary, the presence of Trp and Tyr clearly contributes to the
enhancement of the adsorption efficiency of IMI, which is suffi-
ciently convincing to say that they should be used in future
chemical modifications of materials such as chitosan.

4. Conclusions

In the present study, we devise a computational strategy that
can be generally employed to unveil relevant interactions between
pesticides and amino acids from a typical target protein, which
could form the basis for the design of new adsorbing materials for
water remediation. The proposed approach begins with the
selection of the protein system that is likely to form a stable
complex with the pesticide. In doing this, we aim to adopt a
minimal protein model that allows us to maintain an affordable

Fig. 10 (bottom panels) Average RDFs between IMI and chitosan-based trimer obtained from 10 trajectories per system: (a) CTS3; (b) CTS3_Tyr3; (c)
CTS3_Trp3. The shaded area represents the standard deviation. (upper panels) Main structures arising from the clustering analysis of the complexes
formed in the MD simulations of the above systems, with a RMSD cut-off of 0.20 nm. The average frequencies of the represented structures are about
46%, and 53% for simulations of panels (b) and (c), respectively. All simulations include one molecule of IMI and one chitosan-based trimer solvated with
water.
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computational cost, while being sufficiently realistic to guarantee
the dynamical stability of the pesticide in the binding pocket.
Ultimately, the reduction strategy adopted for the protein should
lead us to identify the amino acids that contribute the most to
binding to the pesticide. To pursue such a goal, three consecutive
main stages, corresponding to different levels of theory, are
covered: (i) molecular docking, (ii) molecular dynamics simula-
tions, and (iii) electronic-structure calculations. As a case study,
we have applied this methodology to investigate the interaction
between imidacloprid (IMI) and the typical target Aplysia californica
Acetylcholine Binding Protein (Ac-AChBP). However, this computa-
tional strategy is general and, hence, it can be applied in studies
involving other proteins and pesticides.

The blind-docking procedure is particularly necessary when
information about the crystal structure of the protein–pesticide
complex is not available. Conversely, whenever a crystal struc-
ture is available (as in the case of the IMI–Ac-AChBP complex),
computational time may be saved by just applying targeted
docking within the binding-pocket region and then probing
the stability of the highest-scoring configurations upon MD
simulations. The configurations so obtained led actually to
the most stable protein–pesticide complexes, alongside the
structure taken from the crystal.

Based on the ProLIF and MM/GBSA analysis carried out over
MD simulations of the IMI–Ac-AChBP crystal structure, it
appears that Ile118.A, Tyr188.B, Trp147.B, Val148.B, and
Cys190.B are the amino acids that assume a major role in the
stabilization of the complex. Then, we studied the interactions
of these relevant amino acids with IMI by employing electronic-
structure calculations and concluded that tryptophan shows
the greatest binding affinity to IMI, followed by tyrosine,
isoleucine, and cysteine.

Moreover, the simultaneous presence of some of such
amino acids tends to produce a synergistic stabilization of
the complex, which may be due to an optimal confinement of
IMI. Conversely, the presence of valine leads to an opposite
effect, since it preferentially occupies the same region near the
IMI as that of tryptophan.

In a final step, we use the previous knowledge to build
chitosan models functionalized with the amino acids that
present the strongest interaction with IMI. These chitosan-
based models were tested for the adsorption of IMI employing
MD simulations. The calculations showed that non-function-
alized chitosan exhibits negligible interaction with IMI, while
incorporation of the aromatic amino acids Tyr and Trp led to a
substantial increase of the IMI adsorption. Furthermore, MD
simulations for trimeric chitosan models functionalized with
multiple units of Tyr or Trp present a synergistic effect, which
promotes IMI adsorption. The present findings suggest that the
functionalization of chitosan with specific amino acids can
effectively improve its performance in the adsorption of pesti-
cides, and that the proposed computational pipeline may serve
as a robust strategy to guide the design of bio-based materials
for environmental remediation applications. In future work, we
will explore the heterogeneous functionalization of chitosan
and other materials with different amino acids, aiming at

investigating potential synergistic effects on the efficiency of
neonicotinoid adsorption.
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