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Assessing the materials properties of complex media, e.g. colloidal suspensions or intracellular fluids,
frequently relies on quantifying the diffusive motion of tracer particles. In particular, from the particles’
mean squared displacement (MSD) one may infer the complex shear modulus of the medium. Yet,
experimentally the same power-law forms of the MSDs emerge for tracer diffusion in very different
environments. For example, diffusive motion in a static maze of fractal obstacles (obstructed diffusion,
OD) and motion in viscoelastic fluids (often described by fractional Brownian motion, FBM) can show an
identical sublinear MSD scaling, but an MSD-derived complex shear modulus is meaningless for OD as
the system does not feature any viscoelasticity. Here we show that OD and FBM trajectories are highly similar
in many observables, including the MSD and the autocovariance function that reports on the memory of the
particle motion. The Gaussianity and/or the asphericity of trajectories, extracted with single-particle tracking,
allows for a proper discrimination of OD and FBM, facilitating a meaningful interpretation of the materials
properties of the medium. In contrast, techniques that only monitor particle number fluctuations in a region of
interest are not capable of discriminating highly similar random processes like FBM and OD as they only rely
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on the MSD. We therefore highly recommend the use of the more informative tracking of single particles
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|. Introduction

Quantifying diffusive motion is a versatile and often indispen-
sable tool for determining the (heterogeneous) materials prop-
erties of complex fluids, from artificial systems such as liquid
crystals, colloidal suspensions, and (semi)dilute polymer solu-
tions to fluids in living cells, e.g., the cytoplasm and nucleo-
plasm. In the most basic scenario, evaluating the Brownian
motion of spherical tracer particles with radius R in an iso-
tropic fluid at thermal equilibrium yields a diffusion constant
D, from which the local viscosity n can be retrieved via the
Stokes-Einstein relation D = kzT/(67yR)." Recent all-atom mole-
cular dynamics simulations demonstrate that a time-local
analog of the Stokes-Einstein relation even exists for simple
proteins with fluctuating shapes in water.

Considering more complex samples, e.g. viscoelastic fluids,
the diffusive transport often features anomalous characteristics
in the sense that the mean-squared displacement (MSD) of
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when aiming to asses materials properties of the medium under investigation.

tracer particles does not increase linearly in time but frequently
shows a sublinear power-law scaling (r’(t)) oc Kt* with o < 1, a
phenomenon called “subdiffusion”.® Several stochastic pro-
cesses can yield subdiffusive motion, with some processes even
showing signatures of weak ergodicity breaking (see ref. 4 for
review). For conciseness we will restrict ourselves here to
processes with stationary increment statistics that can be
linked directly to materials properties at thermal equilibrium.
The generalized diffusion coefficient K has units of area per
fractional time and only becomes identical to the familiar
diffusion constant D for « = 1 (“normal diffusion”). The sub-
linear MSD scaling and the unconventional units of K reflect
the multi-scale nature of the fluid’s materials properties that go
beyond a simple constant viscosity. In such cases, the complex
shear modulus G(w) = G'(w) + iG"(w) is an informative and
more extensive measure that reports on the fluid’s elastic (G)
and viscous (G”) response when shearing it at frequency w.”
At thermal equilibrium, the MSD of tracer particles may
actually be used to determine the complex shear modulus G(w)
via a Laplace transformation and an analytical continuation.® It
is worth noting, however, that this approach tacitly assumes
that the particles’ random motion is indeed governed by the
fluid’s viscoelasticity, hence causing a non-trivial MSD due to
the viscoelastic material property. Supposedly the best known
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stochastic model for describing diffusion in viscoelastic envi-
ronments is fractional Brownian motion (FBM) in its subdiffu-
sive form.” FBM is a non-Markovian Gaussian stochastic pro-
cess with an anti-persisent memory that is set by a single
parameter, the Hurst coefficient H (0 < H < 1/2 for subdiffu-
sion). The Hurst coefficient determines the MSD scaling expo-
nent as o = 2H. Translating this MSD into the complex shear
modulus yields the non-trivial scaling |G(w)| o« G'(w) o« G"(w)
oc @” reporting on the viscous and elastic material properties.

However, experimentally acquired trajectories of tracers in a
yet uncharacterized fluid may show a sublinear MSD scaling
that is not related to viscoelasticity at all, hence jeopardizing a
meaningful interpretation in terms of the MSD-derived
complex shear modulus. This may already occur for Brownian
diffusion, when the (“static’’) noise from inaccuracies in deter-
mining the particle position effect an apparent subdiffusion at
shorter times.*>® Another prime example is “obstructed diffu-
sion” (OD), when particles move in a fractal maze of (immobile)
obstacles: randomly placing immobile obstacles with a density
near or at the percolation threshold is known to result in a long-
lasting or even asymptotically long subdiffusion of tracers as
they can only explore a fractal subset of space.'®'" Although
this scenario creates a stationary and subdiffusive random
motion, the system contains no viscoelastic medium at all.
Therefore, calculating G(w) from the MSD would erroneously
suggest that the particles moved in a viscoelastic fluid, albeit
this was not the physical nature of the observed random
motion. This situation becomes even more critical in cases
when a macroscopic rheological assessment, i.e., an alternative
means to assess G(w), cannot be used to complement the
diffusion measurements—as the two approaches probe differ-
ent length scales. An example is the motion of tracers in a fully
polymerized hydrogel that features a typical mesh size, that is
similar to the diameter of the tracer particle. While here the
tracer may report a sublinear scaling of the MSD due to OD,
macroscopic rheology will only report a rubber-like elasticity
without any viscosity. It is therefore expedient to extract all
necessary information from the diffusion measurement itself
when determining the materials properties of a complex
fluid—yet without falling into the trap of misinterpreting the
data by focusing solely on the MSD.

Here we demonstrate that this may a priori be somewhat
delicate, even when dealing with spatiotemporally homogenous
systems. Namely, we show that FBM and OD display very
similar features in surprisingly many experimentally accessible
observables, e.g., a sublinear MSD and a distinct anti-persistent
autocovariance function, hence impeding a simple discrimina-
tion of the two scenarios. We find, however, that a detailed
analysis of an ensemble of trajectories can be used to identify
FBM, hence supporting a proper interpretation of an MSD-
derived complex shear modulus via single-particle tracking
experiments. In contrast, ensemble-based measurement tech-
niques that do not yield individual trajectories basically only
exploit the MSD and are hence inadequate for distinguishing
scenarios that have very similar properties like FBM and OD. We
emphasize this aspect by considering techniques that rely on
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fluctuating particle numbers in a fixed observation volume. From
our data we advocate single-particle tracking as the method of
choice if one wishes to arrive at a meaningful interpretation when
translating MSDs to complex shear moduli.

Il. Methods

To simulate OD random walks, we used two-dimensional ran-
dom mazes on a square lattice with an obstacle density of
¢ = 40%, close to the percolation threshold of obstacle
percolation.'" Specifically, we randomly chose 40% inaccessible
sites on a 400 x 400 square lattice with periodic boundary
conditions in which ten tracers were allowed to move according
to the blind ant algorithm (i.e., 100% probability for nearest-
neighbor-hopping attempt, acceptance only if new site is not
blocked by an obstacle). Tracers were treated as ghosts that do
not see each other but only interact with the impenetrable
obstacles. Moreover, tracers were checked to not leave the first
unit cell of the lattice on average even in the most mobile case,
i.e., finite size effects due to the periodic boundaries were
negligible. In total, 100 runs of this setting were performed,
yielding a total of M = 1000 trajectories. Each run consisted of
5 x 10° sweeps (all particles try to move once per sweep), and
positions were stored every 100th step, i.e., the trajectory length
was fixed to N =5 x 10%

To also consider non-static mazes, the same amount of runs
were performed with obstacles moving according to the blind
ant algorithm every Qth sweep (Q = 10%, 10%, 10°). For a move-
ment attempt of an obstacle, all other obstacles and the tracers
were treated as impenetrable to avoid inconsistencies. For
comparison, an ensemble of FBM trajectories with the same
statistics and a Hurst coefficient H = 0.35 was obtained as
described previously.'> FBM trajectories of length N with a
scrambled memory kernel were obtained by concatenating
independent FBM trajectories with only 50 positions, i.e., every
50 time steps the memory is randomized for the next step
increment. For the analysis of these ensembles of trajectories,
we used our recently introduced toolbox of Matlab routines."

Time steps and lattice constants for OD were adjusted to
reach experimentally reasonable values. To this end, the time
interval between successive positions in the analyzed trajec-
tories was set to At = 125 ms and the lattice constant was set in
such a way that tracers had a diffusion constant D = 2 um* s™" in
the absence of obstacles. Step increments for FBM trajectories
were assigned the same time increment and step increments were
chosen in such a way that the MSDs of OD and FBM overlapped.
Since only stationary stochastic processes are considered, time-
and ensemble-averaged quantities were not distinguished but
rather ensemble-averages of time-averaged quantities (indicated
by (-)) are reported for improved statistics.

I1l. Results and discussion

Starting from the fact that FBM (with an appropriately chosen
Hurst coefficient) and OD in a fractal percolation cluster have
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the same sublinear scaling of the MSD, we wanted to test by
means of simulations in which (experimentally accessible)
observables a clear discrimination between the two random
motions is possible. For technical simplicity, we restricted our
simulations to tracer motion in two dimensions when simulat-
ing FBM trajectories and OD tracer motion in random mazes
with an obstacle density close to the percolation threshold (see
Methods for details).

A. Mean-squared displacement

In agreement with the literature on diffusion in static fractal
percolation clusters,"”"® we observed a subdiffusive MSD
(r(1)),p oc v with o ~ 0.7 (Fig. 1) for OD in a maze of immobile
obstacles. The same sublinear MSD scaling is obtained for FBM
with a Hurst coefficient H = 0.35.” Hence, if only an experimen-
tally determined MSD is at hand, one cannot decide which of
the two processes is underlying the data.

Upon mobilizing obstacles, i.e.,, when updating obstacle
positions every Qth step, the subdiffusive scaling of the emer-
ging OD was seen to become transient (Fig. 1): beyond a
crossover time ¢, oc Q the trivial scaling of normal diffusion
(« = 1) was seen to emerge, in line with previous results."* On
time scales below t. the tracers therefore experienced an
effectively immobile maze of obstacles, akin to a static percola-
tion cluster, while on significantly longer time scales the tracers
and obstacles were equally mobile, hence yielding the limit of a
hard-sphere gas with normal diffusion.

Such a transient subdiffusion can also be obtained when
using FBM trajectories with H = 0.35 but intermittently reset-
ting or scrambling the memory kernel (¢f. Methods). An exam-
ple for the resulting transient subdiffusion, being highly
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Fig.1 MSD of tracers in a static maze (open black circles) shows the
anticipated sublinear scaling (r?()).¢ oc ™ with & = 0.7**3 (indicated by the
dash-dotted blue line). Small deviations from the power law are attributed
to finite-size effects. As expected, FBM trajectories with Hurst coefficient
H = 0.35 also follow this MSD scaling (data not shown for better visibility).
When allowing obstacles to move every Qth step (Q = 10% red squares;
Q = 10% 10%: dark-red and grey lines) a crossover to normal diffusion
(r’(1))¢£ oc 7 (dashed black line) is observed beyond a crossover time scale
t. o« Q. Simulating FBM trajectories with Hurst coefficient H = 0.35 and
scrambling the memory kernel every 50 time steps (see Methods) results in
a highly similar MSD as seen for OD of tracers in a mobile maze with
Q = 10 (cf light-blue line behind the red squares).

14352 | Phys. Chem. Chem. Phys., 2025, 27, 14350-14358

View Article Online

Paper

similar to OD with Q = 10%, is shown in Fig. 1. Therefore, OD
and FBM also show highly similar MSDs when being forced to
have only a transient subdiffusion characteristics. We note that
a similar crossover to normal diffusion can be observed for
“tempered FBM”, in which the power-law correlations of the
noise include exponential or steeper power-law cut-offs.'>

B. Autocovariance function

Given that FBM is a non-Markovian stochastic process by
definition, we next probed potential differences of FBM and
OD in the (normalized) autocovariance function (ACVF), also
known as velocity autocorrelation function,

e = (G W

Here, the instantaneous velocity is defined via the spatial
increment taken within a time interval 8¢, v(¢) = (x(¢ + 8¢) — 1(£))/5¢,
and the lag time 7 is rescaled as ¢ = 1/6¢. As a result, we observed
that the ACVF of OD in a static maze shows a pronounced anti-
persistent dip at £ = 1, irrespective of the choice of 5¢ (Fig. 2a). In
fact, this signature of an anti-persistent memory matches a
previous report.'® More surprising, however, is the fact that the
analytical FBM expression for the ACVF,

Cr(@ =3l + 1y +IE— 128, @)

with o = 2H = 0.7 fits these numerical data for OD so well that one
would confuse it with an ensemble of FBM trajectories at
H = 0.35 if oblivious to the different origin of the data. Experi-
mental trajectories therefore would not allow one to discriminate
OD in a static maze from FBM by means of the ACVF.

ACVFs for OD in a mobilized maze still agree mostly with the
analytical FBM expression, but significant deviations become
visible for ¢ > 1 (see Fig. 2a). The same holds true for FBM
trajectories with a scrambled memory kernel. Therefore, the
ACVF cannot be used to clearly discriminate OD and FBM,
albeit one may have expected this. In Fig. 2b, the correlation
decay from the pronounced minimum at £ = 1 towards zero is
highlighted by the double-logarithmic axes. For FBM, |C(&)| oc
&2 is expected. Again, OD in a static maze follows this power
law with a remarkable accuracy, whereas OD with mobile
obstacles yields deviations that increase with increasing obsta-
cle mobility. Similar deviations from the power-law are also
seen for FBM trajectories with a scrambled memory kernel, i.e.,
losses in the memory kernel for OD and FBM have similar
effects on the ACVF in both cases.

The remarkably good agreement of eqn (2) with data for OD
in a static maze suggests that the ACVF possesses generic
features that are the same for all random motions with sta-
tionary increment statistics. Indeed, it was already hypothe-
sized earlier'® that the ACVF decay |C(¢)| oc &2 for ¢ > 1 is
always observed for (anti-persistent) random motions that
feature an MSD scaling (r*(1));z oc t*. An heuristic support of
the hypothesis that the ACVF is just the second derivative of the
MSD is given in Appendix A for a one-dimensional unbiased
random walk process with stationary increments, such as OD or
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Fig. 2 (a) The ACVF for OD in a static maze, as a function of the rescaled

lag time ¢ = 7/3t, shows a pronounced anti-correlation (negative) dip and
follows the same master curve for 8t = 3, 5, 7At (open black squares,
diamonds, circles). The data is, somewhat surprisingly, in very close
agreement with the prediction egn (2) for FBM with H = «/2 = 0.35 (blue
dash-dotted line). This suggests that OD in a static maze features a very
similar scale-invariant anti-persistent memory as FBM. For OD in a mobile
maze (Q = 10° red symbols; shifted upward for better visibility) the FBM
prediction still yields a very good description albeit small deviations for
¢ > 1 become visible. FBM trajectories with Hurst coefficient H = 0.35 and
a scrambled memory kernel follow the OD data for Q = 10° (light-blue
triangles). Therefore, the ACVF cannot be used to properly discriminate
FBM and OD as both have highly similar properties. (b) For OD in a static
maze (open black circles, 8t = 7At) the asymptotic power-law decay of the
ACVF for ¢ > 1 also follows the FBM prediction |C(&)| oc &2 (blue dash-
dotted line). For OD in a mobile maze, successively larger deviations are
seen (Q = 10% red squares; Q = 10% 10° dark-red, grey lines). FBM
trajectories with a scrambled memory kernel show similarly strong devia-
tions (light-blue triangles) from the power law.

FBM, supplementing a previously discussed integral-based
argument."®

C. Power spectral density

Going beyond the time domain, one might wonder whether the
coefficient of variation for the trajectories’ power spectral
density (PSD) can be used to discriminate FBM from OD. The
time- and ensemble-averaged PSD is known to follow the
scaling S(f) ~ 1/f *** for subdiffusive processes with stationary
increment statistics.'” For FBM, the PSD of individual trajec-
tories also follows this scaling.'” Fluctuations of single-
trajectory PSDs around the ensemble-average are summarized
by the coefficient of variation y, the ratio of the standard
deviation and the mean (see also ref. 12). While subdiffusive
FBM has been shown to robustly yield y = 1 for virtually all
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Fig. 3 The PSD coefficient of variation y (shown as a function of the
number of time steps, fT) strongly deviates from unity for OD in a static
maze (black circles vs. blue dash-dotted line). In contrast, OD in a maze of
mobile obstacles (Q = 10 red squares) shows an agreement with normal
Brownian motion (y = \/5/2, black dashed line) for small frequencies (in
line with (r?(z)) oc 1 for long lag times). The same is observed for FBM with
a scrambled memory kernel (light-blue triangles), indicating that y cannot
reliably discriminate OD from FBM.

frequencies f, normal diffusion generically yields y = v/5/2."7"*
Using the coefficient of variation, OD in a static maze can
indeed be identified via its slow monotonic convergence to y = 1
for increasing frequencies (Fig. 3). However, OD in mobilized
mazes assumes a behavior that is basically indistinguishable
from FBM with a scrambled memory kernel: for large frequen-
cies (corresponding to short times), y — 1 is seen for OD in a
maze of mobile obstacles, whereas for small frequencies (long
times) a transient plateau with y — v/5/2 (the normal diffusion
case) is observed. This is analogous to the change of the MSD
scaling when translating the cross-over time to a frequency
fe = 1/t.. Thus, for experimental purposes, also the coefficient of
variation of the PSD is not suitable for a reliable discrimination
of OD and FBM.

D. Gaussianity and asphericity

Given that MSDs, ACVFs, and PSDs turn out to be inadequate
quantities to discriminate subdiffusion in a viscoelastic med-
ium (FBM) from subdiffusion in a fractal percolation maze
(OD), one might wonder if there is any better quantity that is
able to distinguish the two random motions. In the following,
we will highlight deviations between the two processes in two
observables, that are readily accessible in single-particle track-
ing experiments.

By construction, FBM is a Gaussian process whereas OD can
be expected to show deviations from a Gaussian increment
statistics.’®!* A versatile tool to quantify this aspect is the non-
Gaussianity parameter (NGP) of the trajectories,

b= (4 F0), _1> ;
0 <3 (e /e Y

which tests whether the fourth and second moments of the
increment statistic are independent of the time scale 7. In
eqn (3), d refers to the spatial dimension (d = 2 in our case)
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Fig. 4 (a) The non-Gaussianity parameter (NGP) for OD in a static maze

(black circles) strongly deviates from zero, highlighting that the random
walk is not Gaussian on these time scales. For OD with mobile obstacles
(Q = 10%: red squares, Q = 10% 10° dark-red and grey lines) a successive
convergence to g(t) = 0 is observed for t > t. «c Q, as expected already
from the MSD scaling. FBM with a scrambled memory kernel shows a
vanishing NGP throughout (light-blue triangles). (b) The asphericity of
trajectory segments within a period 7 follows the expected Aggm =~ 0.4
for a pure FBM with Hurst coefficient H = 0.35 (blue dash-dotted line and
asterisks) whereas normal Brownian motion features Ag = 4/7*° (indicated
by black dash-dotted line). For OD (static: open black circles; mobile,
Q = 10%: red squares) the asphericity remains close to Ag, allowing one to
discriminate OD from FBM. For FBM with a scrambled memory kernel
(light-blue triangles) an interpolation from Aggm to Ag for increasing
trajectory length is observed, reflecting the crossover to a Markovian
random walk for t » t.. Concluding, OD and FBM can be discriminated
by the values of A.

and (-); denotes an average over the ensemble of trajectories.
By definition, g(r) = 0 for a Gaussian process. As expected, the
NGP for OD in a static maze shows strong deviations from zero,
highlighting the clear non-Gaussian character of the random
motion (Fig. 4a). Upon mobilizing the obstacles, g(t) ~ 0 is
regaind beyond the cross-over time ¢. oc Q, in line with the
change observed in the MSD (cf Fig. 1). Still, a clear non-zero
NGP is seen below t. for OD whereas FBM has a vanishing NGP
on all times scales, even with a scrambled memory kernel
(Fig. 4a). Thus, the Gaussianity of trajectories, which is easily
available in single-particle tracking experiments, can indeed
discriminate between FBM and OD.

We finally wondered whether the geometric shape of the
acquired trajectories also can provide a robust means to
distinguish FBM and OD, hence allowing for a meaningful
interpretation of the apparent materials properties of the
medium. For two-dimensional trajectories, the trajectory
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asphericity reads"

(R~ R2)")
A=F—E (4)
<(R12 + R22)2>

E
where R, and R, denote the gyration radii of individual trajec-
tories that can be obtained from the eigenvalues of the gyration
tensor for each trajectory.'” Straight rods and circle shapes yield
A=1and A =0, respectively, while trajectories of normal Brownian
motion can be shown with mathematical rigor to feature A, = 4/7
in two dimensions.'® Subdiffusive FBM trajectories were shown to
yield decreasing values of A for decreasing Hurst coefficients,
whereas OD in a static maze remains close to A,.%° It is therefore
likely that the asphericity is another experimentally accessible
observable that can discriminate OD and FBM.

In line with this reasoning, we observed that OD in a static
maze but also in the case of mobile obstacles, yielded trajectory
asphericities that remained close to A, = 4/7 (Fig. 3c). In
contrast, a pure FBM with Hurst coefficient H = 0.35 yielded
A =~ 0.4. For FBM with a scrambled memory kernel, an
interpolation between this value and 4, is observed for increas-
ing length of the trajectory segments (Fig. 4b), reflecting the
crossover to a normal, Markovian random motion for t > t.. In
any case, OD and FBM can be discriminated via the asphericity
of trajectories in a similarly robust fashion as seen for the NGP
(¢f Fig. 4a). Both quantities are readily accessible with single-
particle tracking methods. As will be shown in the next para-
graph, ensemble-based techniques, that rely on monitoring the
fluctuating number of particles in an observation volume, are
not suited for revealing these subtle differences.

E. Ensemble-based experimental approaches

There exist several ensemble-based techniques to assess the
diffusive motion of tracers in a yet to be characterized medium.
Techniques such as fluorescence recovery after photobleaching
(FRAP)*! only record the mean number of observable particles
in a specified observation volume (region of interest, ROI), i.e.,
they monitor the relaxation of an observable back to its steady
state after a perturbation. In FRAP experiments, this is done by
quantifying the recovery of the mean fluorescence in a ROI after
having bleached tracer particles in this region. More refined
techniques do not require this invasive interaction with the
sample but rely on monitoring fluctuating particle numbers in
a ROI, an approach that was already utilized by Smoluchowski
in his seminal work on diffusing colloids.*> Monitoring particle
number fluctuations instead of recording individual trajec-
tories is, for example, a versatile approach when particles are
too dense to be tracked properly or trajectories are too short to
allow for a meaningful analysis along the lines described above.

Supposedly the most prominent and widespread technical
implementation to exploit particle number fluctuations
in a ROI is fluorescence correlation spectroscopy (FCS).”?
Here, stationary fluctuations about a constant fluorescence,
F(¢) = (F) + f(t), are monitored with high temporal resolution,
allowing to extract the typical residence time tp in the focus
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(i.e., in the ROI). The fluorescence autocorrelation function is
then obtained via spatial averaging and reads (without normal-
ization to the mean fluorescence)

Ce) = (F(t+OF(0),
= <Jl(r)1(r’)p(r, t+1)p(,0)d(V, V’)> 5)
= J[(r)](r')G(nr’J)d(V, V',

where ¢(r,t) denotes the particle density at position r at time ¢
and G(r,r',7) = {(o(r,t + 1)o(r',t)), is the (diffusive) propagator of
the particle density. For normal Brownian motion in one
G(x,x',t) = exp(—[x — ¥]*/(4D7)) /V4nDt. In
modern FCS approaches, particle counting is typically per-
formed via the fluorescence signal from a confocal volume,
approximating the relevant ROI I(r) as a Gaussian point-spread
function. As a result, the fluorescence autocorrelation then
decays algebraically with a typical time scale tp, given by the
effective area of the ROI divided by the diffusion constant.>®
Subdiffusion updates the exponent of the algebraic decay.>*°

In the case that particles can be simply counted without the
need to rely on their fluorescence signature, one can replace the
ROI I(r) by a step function in every dimension, yielding

dimension,

C(x) = (N(t + IN(®))- (6)

Since this is the only relevant autocorrelation function of the
system, also the temporal variation of fluctuations of the
squared particle number change is determined by this
expression,

(AN(z)?)e = (IN() = NOF). = 2(N*), — 2C(2).  (7)

The latter quantity has recently been re-invented as “coun-
toscope” and was used for the analysis of diffusive processes in
dense colloidal systems.>” For normal Brownian diffusion with

4 -
(AN(7)?)

r 1l 1

O L L lllllll L L lllllll L L L
10™ 10° 10" 102 7s]

Fig. 5 The squared particle number fluctuations (AN(z)?), for an OD in a
static maze (black circles) and for a pure FBM with H = 0.35 (blue asterisks)
fully overlap. The same is seen for OD in a maze of mobile obstacles
(@ = 10% red squares) and FBM with a scrambled memory kernel (light-
blue triangles). In both cases, the MSD-derived theoretical curve [egn (8)]
fits the data (black line). Hence, FBM and OD cannot be discriminated.
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diffusion constant D in d dimensions and a cubic box of edge
length L, the analytical prediction is

(AN*(1)) = 2(N)(1 = f(=)") (8

f(r)= \/%({Lz/(m’) - 1) +erf (\/Lz/("-D‘L')), (9)

where erf denotes the error function.

Given the structure of the formula and bearing in mind
Smoluchowski’s comments that the temporal evolution of
(AN(7)?) is linked to the MSD, one may replace 4Dt by 2(r*(t))/d
in d dimensions, ie., counting particles and inspecting the auto-
correlator of the fluctuations is completely determined by the MSD.
This is confirmed in Fig. 5, where FBM and OD data together with
the MSD-determined theoretical curve is shown. Due to their very
high similarity in their MSDs, FBM and OD cannot be discrimina-
ted—hence a proper assessment whether the medium has indeed a
viscoelastic property remains obscure in such setups.

IV. Conclusions

In summary, we conclude that monitoring fluctuations of
particle numbers will only report on the MSD and hence will
not allow one to retrieve the underlying stochastic process, even
when dealing with spatiotemporally homogenous systems.
Without this knowledge, however, the transfer from MSD to
the complex shear modulus is prone to misinterpretations as,
for example, OD is not associated with a viscoelastic medium
(unlike FBM). In fact, the situation can become even more
complicated: when the medium that is explored by the tracer
cannot be approximated any more as a homogenous fluid (at
thermal equilibrium) no meaningful shear modulus can be
defined and extracted from the tracer motion. This is the case,
for example, when (intermittent) interactions with filamentous
or membraneous structures, non-equilibrium events, and/or
spatio-temporal inhomogeneities determine a tracer’s trajec-
tory (see ref. 28-35 for a non-exhaustive list of examples and
modeling approaches for such cases). Even identifying that the
tracer diffusion reports on such a complex scenario is not
possible via MSD-based techniques but rather will require the
analysis of several observables that are based on trajectory data
(see ref. 12 for a short hands-on compendium). We therefore
recommend the use of single-particle tracking to allow for a
detailed analysis of the tracer motion to eventually arrive at a
meaningful interpretation of the materials properties of the
medium under investigation. In particular, we have demon-
strated here that the Gaussianity and the asphericity of trajec-
tories are promising candidates to properly distinguish
viscoelastic from disordered, static environments.

Another central result in our study is the remarkable simi-
larity between the ACVF of subdiffusive FBM and that of OD, in
particular, the dip to negative (anti-persistent) values. If highly
resolved data are available, there is the possibility to evaluate
the area under the ACVF. For subdiffusive FBM, this should

Phys. Chem. Chem. Phys., 2025, 27,14350-14358 | 14355


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cp01378j

Open Access Article. Published on 17 June 2025. Downloaded on 1/23/2026 7:26:33 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

PCCP

vanish identically to zero.'> We also note that the ACVF shape,
observed here for OD and subdiffusive FBM, also strongly
resembles the ACVF of confined subdiffusive continuous time
random walks,*® in which subdiffusion is effected by a scale-
free probability density function (PDF) of immobilization times
with an asymptotic power-law form y(7) ~ " *with 0 < o < 1.7
Future studies may also benefit greatly from the statistics of
mean-squared increments.*’

Our work was aimed at the evaluation of easily accessible
observables. This may be complemented by other, more sophis-
ticated data analysis, such as Bayesian methods®*®?*° or also
deep learning-based approaches.’®™** However, these are often
not off-the-shelf solutions but rather require detailed knowledge
on issues such as data pre-processing. Moreover, many of the
available software suites do not contain all relevant stochastic
processes, ie. detailed tests like the one executed here on OD and
FBM may require the implementation of such processes.

We finally note that the development of FBM-type processes
is still ongoing, even though FBM is by now more than 50 years
old. First, there exist different definitions, including Mandel-
brot’s version in terms of a Weyl fractional integral,” Lévy’s
definition via a Riemann-Liouville integral with initial non-
stationarity,”*> and the Langevin equation formulation with
fractional Gaussian noise.”'> While all three lead to the same
behavior at longer times, these different definitions give rise to
distinct behavior when the parameters are chosen to vary, e.g.,
for a diffusing diffusivity.*® In that case it can be shown that the
associated PDF is also non-Gaussian for times below a typical
correlation time. These phenomena will be analyzed in detail in
the context of the present work in near future.
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were used to obtain data for obstructed diffusion are also
included and available in this GitHub repository as of April
10, 2025.

Appendix A

To obtain a heuristic argument, why an MSD scaling (r’(t)), z oc ©*
may generically yield a ACVF decay |C(¢)| oc &> for & > 1, let us
consider a one-dimensional unbiased random walk process with
stationary increments and a time-averaged MSD with a power-law
scaling

(@@)e = ([x(t + 7) — x(OF)t = 2([x(OF)c — 2(x(t + () o< *

Mathematical random walk processes like the Wiener
process are non-differentiable at every point, yet physical
trajectories are continuous on (very) small time scales
on which inertial effects and the impact of surrounding
particles need to be treated with Newtonian mechanics. Only
for sufficiently large time scales a simplified approximate
description via an overdamped Langevin equation with
uncorrelated noise becomes meaningful, yielding a non-
differentiable random walk trajectory. We will therefore
assume in the following that there is a small time interval
At for which the continuous Newtonian motion of the
particle is still differentiable, so that derivatives can be
approximated in a meaningful way by difference quotients.
The second order derivative of the MSD hence reads

dz 2 T 2 2/, T
T - 28 o o, = (00

[x(t+ 1+ A1) + x(t + 7 — A1) — 2x(¢ + 7)]x(¢)
st o)

x %72

(A1)

Using the definition of the ACVF [eqn (1)] and abbreviating
its (constant) normalization factor as v,°, one can relate C() to

(Pt

([x(t + T + 81) — x(t + 1)) [x(r + 81) — x(1)]),

C(T) - V025t2

(x(t 41+ 01)x(t 4 81)), + (x(t + 1)x(2)), — (x(r + 7)x(¢ + 87)), — (x(¢ + 7 + 81)x(2)),

V02612

2(x(t+1)x(1)), — (x(t + v — 81)x(1)), — (x(t + T+ 81)x(1)),

V02612

(2x(t +7) — x(1 + 17— 88) — x(1 + 7 + 80)]x(1)),

V026[2

motion were done with a previously published toolbox of
Matlab codes, see Rehfeldt & Weiss, Soft Matter 19,
5206 (2023) and the associated GitHub repository https://
github.com/mweisslab/sptanalysis. Fortran90 codes that

14356 | Phys. Chem. Chem. Phys., 2025, 27, 14350-14358

where we have used again stationarity, i.e. invariance of
averages with respect to shifts. Now assuming that 8¢ « t
(corresponding to ¢ >» 1) the last line can be identified
with eqn (A1), ie with the second derivative of the
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time-averaged MSD. Hence

d*(r’ (1)),

o—2
dz?

C(1) x x T

Despite the lack of full mathematical rigor, this heuristic
argument suggests a general validity of the power-law decay
observed in the ACVF, irrespective of being a FBM. However, it
does not provide any hint on the range £ < 1 and hence also
cannot claim anything on the integral area below the ACVF
curve, ie. these might depend considerably on the random
walk process. But at least for the static percolation problem, all
FBM features of the ACVF appear to be met.
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