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Machine learning of the architecture–property
relationship in graft polymers†
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Graft polymers are promising in energy and biomedical applica-

tions. However, the diverse architectures make it challenging to

establish their structure–property relationships. We systematically

investigate how backbone and side-chain architectures influence

four key properties: glass transition temperature (Tg), self-diffusion

coefficient (D), radius of gyration (Rg), and packing density (q). Using

molecular dynamics simulations, we analyze a dataset of 500 graft

polymers with randomly positioned side chains. Tg and D exhibit

decoupled relationships due to the distinct topological effects.

Furthermore, we develop dense neural networks (DNNs) and con-

volutional neural networks (CNNs) to pave the way to polymer

design with desired properties.

Graft polymers consist of a main backbone with one or more
side chains, giving them combined or novel properties not found
in linear or block copolymers.1–3 Their architecture enables
enhanced or unique material functionalities. Bottlebrush archi-
tectures, a special class of graft polymers, feature highly grafted
side chains that suppress molecular entanglements, yielding
materials softer than conventional elastomers. These polymers
have emerged as pivotal materials in advanced 3D printing,
enabling solvent-free fabrication of ultra-soft elastomers with
biomimetic mechanical properties that mimic biological
tissues.4 To optimize printability, shape retention, and post-
print functionality, precise engineering of their thermal proper-
ties and dynamics is essential.

The glass transition temperature (Tg) is a fundamental ther-
mal property of graft polymers that governs their printability.5 It
defines the temperature at which a polymer transitions from a
rigid to a rubbery state, influencing the flow behavior, shape

retention, and post-print structural integrity in 3D printing.6

Previous experimental studies have shown that Tg depends on
both the chemical composition and the architectural arrange-
ment of the backbone (Nbb) and side chain (Nsc) lengths.7,8

Additionally, recent advances based on the generalized entropy
theory (GET)9 have demonstrated that the relative rigidities of the
backbone and side chains critically influence the glass formation
behavior in graft polymers.10 These theoretical predictions, sup-
ported by molecular dynamics (MD) simulations11 and experi-
mental studies,12 reveal the nontrivial trends in Tg.

Besides the thermodynamic property Tg, the dynamical prop-
erty, such as polymer diffusion in the melt state, is crucial to their
processing, e.g. governing interlayer bonding in 3D printing,
material homogeneity, and mechanical performance.13,14 During
extrusion-based 3D printing, molten polymer layers must inter-
diffuse to form entangled molecular networks and strong inter-
layer bonds.5 The self-diffusion coefficient (D) of a polymer is
influenced by molecular weight, backbone rigidity, and side-
chain length.15,16 Shorter, flexible side chains generally promote
faster diffusion by reducing entanglements, while longer, rigid
side chains hinder diffusivity, increasing viscosity and reducing
chain relaxation dynamics.15

However, a comprehensive understanding of Tg and the
diffusion of graft polymers is still lacking due to their diverse
structures.7,17 In this study, we address the long-standing
challenge of predicting polymer thermal and dynamical proper-
ties based on their molecular architectures, driven by the highly
nonlinear and complex structure–property relationships in
polymers.18 Despite extensive experimental and computational
efforts,19–21 the vast combinatorial space of backbone and side-
chain configurations makes it difficult to establish general-
izable design principles. The design parameters such as Nbb,
Nsc, grafting density ( f ), and spatial positioning of side chains
play a crucial role in shaping polymer behavior. A thorough
investigation is carried out here by investigating 500 graft
polymers with randomly placed side chains to understand
how graft polymer architectures impact thermal and dynamic
properties. By identifying key trends, we aim to establish a
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framework for designing graft polymers with optimal thermal
and dynamic performance.

We began by examining polymers with different grafting
densities, including fully grafted bottlebrush polymers ( f = 1.0),
partially grafted polymers ( f = 0.5), and classical linear poly-
mers ( f = 0), as illustrated in Fig. 1(a). To investigate the
influence of Nbb and Nsc on Tg, we simulated a total of 500
graft polymers, with 10 polymers at each value of f from 0.1 to
1.0 across five backbone-length blocks (10–20, 21–30, 31–40,
41–50, 51–60). The side-chain length is randomly generated.
The value of Tg is obtained from density analysis as a function
of temperature. More computational details are provided in
Section S1 of the ESI.†

As shown in Fig. 1(b), left panel, the variation of Tg with
backbone length is minimal for bottlebrush polymers with
Nsc = 4, increasing only slightly from 0.87 to 0.9 e/kB as Nbb

increases from 10 to 20. The slight impact of Nbb on Tg may be
attributed to the narrow range of Nbb from 10 to 20. Besides, Nsc

has a pronounced effect, as seen in Fig. 1(b), middle panel,
where Tg increases from 0.73 to 1.07 e/kB as Nsc increases from 1
to 11 for a bottlebrush polymer with Nbb = 20. To establish a
baseline comparison, we also computed Tg for a linear polymer,
which is significantly higher (Tg = 1.3 e/kB) than that of

bottlebrush ones. This is consistent with the trend observed
in experimentally synthesized bottlebrush polystyrene,7 where,
the Tg of bottlebrush polystyrene increases from 37 1C to 87 1C
as Nsc increases from 2 to 8. The Tg values are found to be much
smaller than those of linear polystyrene (90–110 1C).22

Beyond Nbb and Nsc, we analyzed the effects of another key
design parameter, the side-chain positioning, as illustrated in
Fig. 1(b), right panel. The side chains are positioned at one end
(i.), the center (ii.), and both ends (iii.), while keeping Nbb = 20
and Nsc = 5 constant. Differences in Tg among these architec-
tures are minimal, consistent with experimental findings by
Dearman et al.7 Their synthesized bottlebrush polystyrene
analogs, including types (i.), (ii.), and (iii.), showed a Tg varia-
tion of r 5 K, supporting our results.

To examine the global trend in Tg, we plotted the variation of
the average Tg as a function of Nbb in Fig. 1(c). The results show
that Tg increases progressively as Nbb increases from 10 to 40,
beyond which it reaches a plateau (from 41 to 60), indicating that
further backbone elongation has little impact on Tg. These results
demonstrate that the glass transition temperature of graft poly-
mers is strongly influenced by both Nsc and Nbb, with Nsc playing
a more dominant role at low Nbb. While increasing Nbb leads to a
moderate rise in Tg, this effect saturates beyond Nbb = 40. In
contrast, longer side chains significantly enhance Tg, suggesting
that side-chain flexibility and steric effects play a crucial role in
determining the thermal behavior of these polymers, as evident
from literature based on the GET framework.10,11 The influence of
chain rigidity on Tg was further investigated by varying the angular
force constant ky, as detailed in Section S2 of the ESI.† Next, we
examine the diffusivity of graft polymers in the melt state.

In classical polymer physics, D is inversely related to the
hydrodynamic radius (Rh) through the Stokes–Einstein
relation.15 Since Rh is proportional to the radius of gyration
(Rg) in polymeric systems (Rh/Rg E 0.9–1.0),16 we focus on the
relationship between D and Rg here. These values are obtained
from simulations run at T = 2.0 e/kB specifically at the melt state
of polymers.

Fig. 2(a) presents the variation of Rg for graft polymers
compared to linear ones, where the backbone length of linear
polymers varies from 10 to 90. By plotting the x- and y-axes of
Fig. 2(a) in logarithmic scale, we computed the slope of the
variation of Rg of linear polymers with changes in Nbb, resulting
in a value of 0.66. This observed exponent is larger than that of
an ideal random-walk polymer (Rg p Nbb

0.5),15 which can be
attributed to the increased rigidity of the bead-spring model
used in this work.

For polymers with f values of 0.5 and 1.0, the relationship
between Rg and Nbb deviates significantly from the power-law
trend observed for linear polymers. The dependence of Rg on
polymer side-chain architecture is found to be scattered with no
definite trend, particularly with respect to Nsc and its spatial
distribution along the backbone. When Nsc is short (1 and 4),
the Rg of bottlebrush polymers is smaller than that of a linear
polymer with Nbb = 20, indicating a more collapsed polymer
conformation due to attractive interactions between short side
chains. As Nsc increases to 6, Rg becomes comparable to that of

Fig. 1 (a) Schematic representation of graft polymers is shown here for
fully grafted (f = 1.0) and partially grafted polymers (f = 0.5) along with a
linear polymer (f = 0). For f = 0.5, three distinct side-chain architectures (i.,
ii., and iii.) are illustrated. (b) The variation of Tg is shown for f = 1.0 and 0.5
with respect to backbone length (Nbb), side-chain length (Nsc), and side-
chain architecture. The Tg of a classical linear polymer (f = 0) is included as
a reference (orange star). (c) The glass transition temperatures of 500
randomly generated graft polymers are plotted as a function of Nbb,
capturing the broader distribution of Tg values across various molecular
architectures.
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a linear polymer, suggesting a transition from a collapsed to an
expanded state. When Nsc further increases to 11, steric hin-
drance between the long side chains leads to an expanded
conformation, where Rg exceeds that of a linear polymer. Apart
from Nsc, the spatial placement of side chains also affects Rg.
Among the three configurations analyzed in Fig. 1(a), graft
polymers with configuration (ii.) exhibit the most collapsed
structure, followed by configuration (i.), while configuration
(iii.), where side chains are positioned at both ends, resulting in
the most extended backbone conformation.

Next, we examine the relationship between Rg and D for
linear and graft polymers. Note that the diffusion coefficient is
computed from the mean-squared displacement of the polymer
chain’s center of mass, indicating that the diffusion discussed
here refers to chain-level motion. We assume the behaviors of
polymers in this study are in the unentangled regime because
the maximum backbone length (Nbb = 60) is less than the
reported entanglement length Ne of 86.16,23 As shown in
Fig. 2(b), for linear polymers, D follows a power-law scaling as
D p Rg

�2.9, which is comparable to D p Rh
�2.7 reported in

ref. 16. For graft polymers, D is significantly lower than that of
linear polymers at the same Rg. While D decreases with increas-
ing Rg, similar to linear polymers, the data points for graft
polymers do not collapse onto a single power-law trend, indi-
cating that a simple scaling relationship does not adequately
describe their diffusivity. Fig. 2(c) and (d) reveal key deviations
from classical scaling and transport theories in graft polymers.
In Fig. 2(c), although an overall trend of D p Rg

�4.47 is

observed, the significant spread in D at fixed Rg demonstrates
a breakdown of universal diffusion-size relationships due to
topological factors. Fig. 2(d) shows that D does not follow the
expected behavior from the Williams–Landel–Ferry (WLF)
equation, log D = �C1 log D(T1)/(C2/(T � Tg + T1) + 1) where C1

and C2 are constants,24 as polymers with similar Tg exhibit
diffusion rates differing by orders of magnitude, highlighting a
decoupling between dynamic and thermodynamic properties
enabled by architectural control.

The structural diversity introduced by side chains in our MD
simulations leads to substantial variations in chain mobility,
highlighting the need for a more comprehensive model to describe
the diffusion behavior of graft polymers in the melt state.

Accurately predicting the Tg and D is therefore challenging
due to their nonlinear structure–property relationships. To
overcome this, we developed machine learning (ML) models
trained on simulated polymer datasets. A key aspect here is the
featurization strategy, which plays a critical role in model
performance. We tested three types of polymer representations:
(1) six physical descriptors, (2) eleven graphical descriptors,25

and (3) two-dimensional grayscale images. Dense neural net-
work (DNN) models were implemented for the first two feature
sets, while convolutional neural networks (CNN) were devel-
oped for image-based representations (see Section S3 of ESI†
for model descriptions).

Before training the ML models, we examined the correlation
between physical and graphical descriptors to assess feature
relevance. Fig. S3 (ESI†) presents the Spearman’s rank correla-
tion coefficients, where most of the physical and graphical
descriptors are highly correlated with the four properties.

By utilizing the physical descriptors or the graphical descrip-
tors, we trained DNN models for each of these properties. The
hyperparameters of DNN models are optimized, i.e. the number
of hidden layers, the number of hidden nodes, and the learning
rate to improve the accuracy (see Section S3.2 of ESI†). The DNN
model consisted of 4 hidden layers and each hidden layer
contained 512, 1024, 512, and 32 hidden nodes. The learning
rate is 0.001 and the activation function is rectified linear unit.
The 10-fold cross-validation is used to get the average values of
the R2 scores on testing datasets. The R2 scores of the DNN
models by using the physical descriptors for predicting Tg, Rg,
D, and r are shown in Fig. 3. All the R2 scores are more than 0.9,
except for Tg. However, it is noted that though the R2 score for
predicting Tg is 0.85, the root mean square error is found to be
0.025 as obtained from MD simulations. Overall, the DNN
models trained on graphical descriptors perform slightly better
than those trained on physical descriptors. This is because
physical descriptors are limited in differentiating the config-
urations of graft polymers. For example, the configurations of
(i.) (ii.) and (iii.) in Fig. 1(a) are represented by the same six
physical descriptors.

Besides the physical and graphical descriptors, we used
26 � 60 pixels (corresponding to maximum Nsc and Nbb in
the dataset) grayscale images to represent graft polymers. Pixels
in the matrix indicated different types of beads: black pixels
(grayscale value = 0) denoted backbone beads, gray pixels

Fig. 2 (a) Radius of gyration (Rg) of linear polymers (f = 0) and graft
polymers (f = 0.5, 1.0). The dashed line represents a power law scaling as
Nbb

0.66. (b) Self-diffusion coefficient (D) of linear and graft polymers. The
dashed line represents a power law scaling as Rg

�2.9. (c) The relationship
between D and Rg of all the 500 graft polymers. The white dashed line
represents the power scaling, Rg

�4.47. The red and yellow dashed lines are
the lower and upper boundaries of the 500 data points. (d) The D vs.
1/(T � Tg) relationship deviates far from the WLF equation with T1 = 0 (the
blue dashed line).
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(grayscale value = 127) represented side-chain beads, and white
pixels (grayscale value = 255) indicated the absence of beads. A
representative example of the image for a bottlebrush polymer
( f = 1.0) with a backbone length of 58 is shown in Fig. S4 of
ESI.† The CNN models are trained on these images as the input.
The convolutional and pooling layers are optimized (see Section S3.3
of ESI†). The R2 scores for D, Rg, and Tg are comparable to that of
DNN models (Fig. 3). The R2 score of the CNN model for predicting r
is 0.94, much higher than that of the DNN model. The R2 score of
our CNN model for predicting Rg is shown comparable to that of
GNN models, employed in Jiang et al.25

To gain new insights and improve the interpretability of the
CNN model, we plotted the saliency map (Fig. 4) highlighting
the spatial regions most influential to the CNN model predic-
tions. For Tg, contributions are concentrated at the backbone
and nearby side chains, while Rg is driven by both backbone
and terminal regions of long side chains. In contrast, D and r
are primarily influenced by the backbone, reflecting its role in
governing steric effects and free volume. A detailed description
of the map is given in Section S4 of the ESI.† Further discussion
of the general design rules is provided in Section S5 of the ESI.†

In conclusion, our systematic investigation of 500 graft poly-
mers demonstrates that Tg, D, Rg, and r are strongly influenced
by the nonlinear interplay between backbone and side-chain
architectures. These dependencies extend beyond the predictive
capabilities of traditional polymer physics models, such as power

scaling laws and WLF functions. Notably, Tg and D respond
differently to topological variations: D is highly sensitive to the
positioning of side chains, whereas Tg is only marginally affected.
This differential sensitivity results in a decoupling of Tg and D,
thereby overcoming the intrinsic coupling observed in linear
polymers that typically constrains the processing of materials with
high Tg and low D. The ability to decouple Tg and D enables the
rational design of polymers with reduced Tg yet maintained low
diffusivity (high viscosity), or vice versa. Additionally, the machine
learning models developed in this study accurately and efficiently
predict Tg and D, facilitating the topological design of graft
polymers to achieve targeted thermodynamic and dynamic proper-
ties. In the future, chemically specific models will be developed to
guide experimental efforts in validating the ML predictions and
synthesizing new graft polymers.
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