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Steady nonequilibria dissipate energy and, when changing external parameters, an extra or excess heat
accompanies the relaxation to the new nonequilibrium condition. For nonequilibrium systems in contact
with a thermal bath, the heat capacity is defined as that excess heat per degree temperature for a
quasistatic change of the bath temperature. It is fairly common to find negative heat capacities for
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steady nonequilibrium systems, in contrast with the situation for systems in thermal equilibrium. We
discuss and illustrate the origin of that negative thermal response using Markov models. We find that the
negativity results from an anticorrelation between quasipotential and (a change in) pseudopotential, the
first measuring (excess) heat (and Clausius entropy), and the latter being related to the Boltzmann
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|. Introduction

There is only one entropy for macroscopic equilibrium systems.
The original understanding of the Clausius or thermodynamic
entropy S derives from the well-known formula §Q™/T = dS,
part of the famous heat theorem from which reversible heat
over temperature is an exact differential. While the kinetic
interpretation of temperature marked the beginning of statis-
tical mechanics, the notion of heat got its role and place in
bookkeeping changes in energy (first law of thermodynamics).
So many years later, the work of Boltzmann, Planck and
Einstein gave a totally new and statistical meaning to entropy,
where we now write S = kglog W for the Boltzmann entropy
counting the microscopic degeneracy W of a macroscopic
condition (at some fixed energy etc.). Miraculously, Boltzmann
and Clausius entropies (and others like the Gibbs ensemble
entropy) agree under thermodynamic equilibrium, at least for
quasilocal interactions. It implies that fluctuations, governed
by the Boltzmann entropy, and dissipation, represented by the
Clausius entropy, are closely linked as also made explicit in
response relations following from the fluctuation-dissipation
theorem. Yet, we cannot expect that to remain true and
unchanged when we move far away from equilibrium."” For
steady nonequilibrium conditions, it is, first of all, unclear how
to define the analogues of temperature or entropy, and, more
generally, the standard fluctuation-dissipation relations are
simply violated when well away from equilibrium.”* In other
words, Boltzmann and Clausius entropies are bound to sepa-
rate. The main point of the present paper is to make that
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entropy. It can be quantified via an appropriate choice of effective temperatures.

statement operational via the study of nonequilibrium heat
capacities. Their negativity is the sign of separation, as we will
see that the negativity of the heat capacity indicates an antic-
orrelation between the excess heat and the change in popula-
tion degeneracy.

The thermal response refers to the behavior of a physical
system under changes in temperature or when subjected to
heat pulses. For a macroscopic system in equilibrium, one can
measure the change in its temperature by heating it. That can
be done under various constraints Z such as, e.g. for a gas
keeping its volume or pressure constant, and gives rise to the
standard definitions of (equilibrium) heat capacities C,(T).
In short, 3Q%" = C,(T)dT where Q%" is the reversible heat given
to the system to increase its temperature by T — T + dT while
keeping the constraint Z. Interestingly, heat capacity may on
the one hand be used to measure energy, entropy, or enthalpy,
and on the other hand inform about the variance (fluctuations)
of those potentials in the corresponding equilibrium ensemble.
However, those relations are not given when the interaction
becomes long-ranged such as for Newtonian gravity or when
the system is nonthermodynamic such as in finite-size
clusters,®® where the equivalence of ensembles is violated;
negative heats become possible there.

The situation for nonequilibrium heat capacities is concep-
tually similar but results in other expressions. We refer to’°
for introductions and examples.

The interest in the notion of nonequilibrium heat capacity
derives from the wish to quantify thermal response, and to
understand what information is encoded in it concerning the
nonequilibrium condition and its dynamics. A variety of toy-
examples have been studied so far,”'%'*'®'® and sufficient
conditions have been formulated for a nonequilibrium

Phys. Chem. Chem. Phys., 2025, 27,15009-15023 | 15009


https://orcid.org/0009-0002-0383-1080
https://orcid.org/0000-0002-0188-697X
http://crossmark.crossref.org/dialog/?doi=10.1039/d5cp01269d&domain=pdf&date_stamp=2025-07-02
https://rsc.li/pccp
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cp01269d
https://pubs.rsc.org/en/journals/journal/CP
https://pubs.rsc.org/en/journals/journal/CP?issueid=CP027028

Open Access Article. Published on 23 June 2025. Downloaded on 10/31/2025 1:44:40 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

1113 1t has also

extension of the third law of thermodynamics.
been observed that this nonequilibrium heat capacity can
become negative, which makes the question of the present
paper: to understand the meaning and the origin of that
negativity. We focus on models with a discrete state space, that
show a typical Schottky anomaly already for zero driving.'®*°
Some driven examples of Section VI show an inverted Schottky
anomaly, visible already in the right plot of Fig. 3 for the next
example. For examples of Markov diffusions with negative
specific heats, we refer to;'*'”'®?! the understanding of nega-
tivity there is the same as for the jump processes that we
consider below.

After the Glossary (which is next), Section III reminds
the reader of the relevant setup. For nonequilibrium steady
conditions, we need an open system, and we identify a thermal
bath in its environment where the system dissipates heat.
Upon small and slow changes dT in the bath, an excess of
heat 3Q“° = C(T)dT is absorbed by the system that defines
the heat capacity C(T) at temperature T of the thermal bath.
We ignore from now on in the notation the possibility of
different constraints Z, which can act on the system itself
and on the bath. It is no longer true that C(7) needs to be
positive and indeed we know plenty of examples where C(T) <
0. It is an interesting feature which goes hand in hand with
the typical extra we get from nonequilibrium heat capacities:
C(T) is able to pick up dynamical or kinetic information about
the system which is not available when scanning it in
equilibrium.

Section IV gives the theoretical framework for understand-
ing the occurrence and the implication of negative specific
heats for nonequilibrium systems. The heat capacity gets
written as a covariance in the stationary distribution. The two
involved random variables are anticorrelated when the heat
capacity is negative. They are related on the one hand to the
quasipotential, which gives the expected excess heat,'* and to
the pseudopotential, which governs the population statistics in
the form —1/f1log p(x).>* It is there that we see how Clausius
and Boltzmann entropies separate.

Section V defines the relevant effective temperatures and we
use it to quantify the negativity of the heat capacity. In
particular, a sufficient relation follows for that negativity.

Finally, in Section VI we present a number of discrete
models with agitated and double-channel transitions to illus-
trate the theory and the specific origin of negativity at very low
and at intermediate temperatures. Each time, we see that the
probability of the quasi-ground state (minimizing the quasipo-
tential or expected excess heat) is increasing with temperature
(quite unlike the situation for systems in thermal equilibrium)
and the effective temperatures (defined with respect to that
quasi-ground state) are decreasing with temperature. It
indicates a population anomaly (even leading to an inversion):
as the temperature of the bath increases, low-lying quasi-
energies get more populated. It can also happen without
population anomaly when the effective temperatures become
almost constant as function of the bath temperature (again,
unlike in equilibrium).

15010 | Phys. Chem. Chem. Phys., 2025, 27, 15009-15023
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Il. Glossary

For reference, we start with a short list of words related to
nonequilibrium statistical mechanics, introducing concepts
that play a role in what follows. Of course, explanations and
references do continue, as the various notions appear in their
specific roles for the main messages of the paper. This section
can be skipped at first reading, to take back when needed.

(1) Steady nonequilibrium condition: if we consider an open
system, it matters a great deal what boundary conditions and
what external forces are applied. A standard setup is that of the so-
called canonical ensemble where the system is in weak contact
with a thermal bath, and thermal equilibrium is obtained for
the system. However, if additionally, rotational forces act on the
system, or time-dependent fields, or gradients in chemical
potential or pressure are maintained etc. the system may be kept
in a steady nonequilibrium condition. An example would be a
chemical reactor with sources and sinks, in which the concentra-
tions of the various species are kept stationary while chemical
currents are maintained.

(2) Stationary density at temperature T: the open system
(as above) is subject to a dynamics, here modeled as a Markov
process. It makes sense to define a Master equation giving the
updating of probabilities p(x,t) of a state x at time ¢. We can
think of p(x,t) as the occupation fraction of the state x for many
independent identical copies of the system. The Master equa-
tion depends on transition rates k(x,y) which indicate the
probability per unit time for having a transition x — y when
the system is in state x. We assume that k(x,y) is nonzero if and
only if k(y,x) is nonzero. The (time-dependent) Master equation
for the (time-dependent) probabilities is

%ﬂ(?ﬁ 0= [k, )p(y, 1) = k(y, x)p(y, 1)] (1)

»

where the right-hand side contains, respectively, a source and a
sink term.

The eqn (1I.1) gives the time-dependent probability, analo-
gous to the time-dependent solution of Fokker-Planck or
Smoluchowski equations. The stationary Master equation puts
the left-hand in (IL.1) equal to zero. For a finite number of
states, all of which can be reached starting from an arbitrary
state, it can be shown (Perron-Frobenius theorem) that there is
a unique stationary (time-independent) probability p:

0= Z k(y,x)p(y) — k(y,x)p(»)]

v

(1L.2)

We call the stationary process an equilibrium process when
there is detailed balance: there exists an energy function E(x) so
that for all pairs of states x, y,

k(x,y)e P = k(y,x)e FEO) (11.3)

for some inverse temperature f§ = (kz7) . Then, each term in
the right-hand side of (II.2) vanishes, emphasizing that detailed
balance (or, equilibrium) is much stronger than stationarity.
We are mostly interested in nonequilibrium processes where
(I1.3) is violated for some pair x, y of system states. On the other
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Fig. 1 Cartoon of setup. Left: Irreversible work is done on a dissipative sample, bringing it in a stationary nonequilibrium condition. It dissipates into a
thermal bath at temperature T. Right: Before time zero the dissipated power is variable and fluctuates around its steady value Pr. At time zero, the
nonequilibrium system is at state x and after slowly perturbing the temperature of the bath, the system relaxes to a new steady state where the dissipated
power fluctuates around its new steady value Pr.47. The shaded area gives the excess heat which is a fluctuating quantity (with x) and the average per dT

is the heat capacity C(T).

hand, we do attach a physical meaning to the ratio

k(x,y)
k(y,x)

where ¢g(x,y) is the heat dissipated in the thermal bath at inverse
temperature f. That physical assumption (I1.4), motivated in
ref. 23 and 24, is called local detailed balance.

(3) Generators: the backward generator L for a Markov
process with transition rate k(x,y) is defined as

Lf(x) = Zk(x,y)[f(y) — /()]

= Pa(x,y) (IL.4)

for functions f on the state space. Its adjoint L', defined via

> eWLf(x) =) Ligf(x)

is the forward generator, and it appears in the Master eqn (IL.1),
since
Liv(x) =Y [k(y, )v(y) = k(x, y)r(x)]
¥
for a probability v.

(4) Excess heat: the notion of excess heat is explained in
Section III and in Fig. 1 in particular. One basically considers
the Joule heat flux which is constantly dissipated in a thermal
bath for a steady nonequilibrium systems. That heat flux
(dissipated power) depends on the temperature of the thermal
bath. By changing that temperature, an extra heat flux appears,
called excess heat.

(5) Thermal response: for a system that can exchange energy
with a (thermal) heat bath at temperature T, we speak about the
thermal response when probing system properties as T is
varied.

Quasistatic response corresponds to very slow changes in
that temperature, with respect to system relaxation times.

Heat capacity measures a thermal response in terms of the
excess heat (see above) absorbed by the system.

(6) Quasipotential: the quasipotential V is a certain function
of the system state x, taking real values V(x). Sometimes we add
a subscript of temperature 7, making V/{x), to emphasize its

This journal is © the Owner Societies 2025

temperature-dependence. In the present paper, the quasipo-
tential is a measure of expected excess heat, when the system is
in state x. It is mathematically defined in (IIL.3).

We take the quasipotential always to be centered, meaning
that the expected average (V) = 0 vanishes for the corresponding
stationary probability.

For an equilibrium process, with (IL.3), the quasipotential
V(x) = E(x) — (E), reduces to the (centred) energy function.

(7) Pseudopotential: in the case of nonequilibrium pro-
cesses, we most of the time have no idea or explicit construc-
tion of the stationary probability p. We call pseudopotential @
its logarithm

#(x) = —log ()

modulo the inverse temperature f. In other words, ® governs
the occupation statistics of the system states. In the case of an
equilibrium process, we get ®(x) = E(x) + kgTlogZ, and its
equilibrium expectation (®)., would be a measure of heat.
Hence, under detailed balance (equilibrium), the quasipoten-
tial and the pseudopotential become directly connected. That is
a reflection of the identity under equilibrium between Clausius
entropy and Boltzmann entropy.

(8) Expected power versus stationary power: given the heat
g(x,y) in the transition x — y we define the expected power
(heat flux)

P(x) = Z k(x7y)‘I(x7y)
I

It is a fluctuating quantity when x moves randomly in the state
space. Its stationary average P = (P). We can prove that P > 0
with equality if and only if there is detailed balance; see e.g. ref. 25.

(9) Covariance: given a probability p on the system states, we
define the covariance (f;g) = (fz) — (f) (g) (connected two-point
function) between any two functions f and g. It measures the
correlation, positive or negative, as is important for the under-
standing of negative specific heat in (IV.3).

(10) Kinetic aspects: to study nonequilibrium regimes, either
transient (toward relaxation to equilibrium) or steady (as in the

Phys. Chem. Chem. Phys., 2025, 27, 15009-15023 | 15011
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present paper), we need more than the usual thermodynamic
functions and principles. Kinetics matters, which is not so
surprising from the dynamical perspective. One of the interesting
aspects of nonequilibrium calorimetry, is that it can detect some
of those kinetic aspects. More specifically, dynamical activities
(like in switches and their switching rate) and energy barriers
(in transition rates) will be detected and characterized via heat
capacities for the nonequilibrium system.

(11) Effective temperature there have appeared various
effective temperatures in transient and steady nonequilibrium
processes, for example, to restore the (equilibrium) fluctuation-
dissipation relation. In the present paper, in (V.2), we use a
state-dependent effective temperature 7(x). It depends on the
state x and also on some reference state x* (not indicated). We
will take x* to be a state with minimal quasipotential, and
define T(x) starting from the pseudopotential as defined above
(and in (Vv.2)). It gives a measure of population-change or
population inversion. Under detailed balance (in equilibrium),
T(x) = T is the temperature of the heat bath.

[ll. Nonequilibrium heat capacity

Consider a stationary nonequilibrium system exchanging
energy with a heat bath at temperature T; see Fig. 1. The
nonequilibrium is maintained via nonconservative forces, via
boundary driving, or via internal fueling as in living matter.
Whatever the case, there will be a steady dissipated power of
(Joule) heat flowing into the bath, as suggested in the left
cartoon of Fig. 1. That heat flow may fluctuate in time, while,
on average, it is positive. In general, it depends on various
parameters such as the (fixed) temperature T of the bath. For
defining the (nonequilibrium) heat capacity, we need the excess
heat in a quasistatic temperature variation.>® The shaded area
in the right of Fig. 1 is a measure of that heat capacity.

For more precision and mathematical details, we refer to the
original papers'*'” and to more recent publications,'®**>16
Experiments are in progress, with®>’*® as early measurements.

The theoretical modeling so far is restricted to Markov
processes. We have here time-homogeneous processes X, that
converge exponentially fast to a unique stationary distribution
p(x), x € K over state space K, satisfying the stationary Master
equation of the form L'p = 0, where L' is the forward generator.

o=- g=+
n=3 2e @ ‘{ - 0
|

‘ |

n=2 € & i,»,,f‘ €
| 3
1

n=1 Y ;_T‘f,; 2¢€
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More specifically, let k(x,y) be the transition rate to jump from
state x to state y, then the stationary Master equation is

Zp(x)k(x,y) —pk(y,x)=0, forallxe K. (IIL1)

The solution p is the stationary distribution. To emphasize
its temperature dependence, we sometimes denote it by pr.
The subscript T is also used for other quantities.

The backward generator L generates the time evolution in
the sense that

eg(x) = (g(X)|Xo = x) (111.2)

for state functions g. The average (-) is a process expectation.
That abstract setting gets meaning within thermal physics from
the moment when the notion of “expected dissipated heat in a
given state” makes physical sense. That is connected with the
notion of local detailed balance.”>*° It includes the identifi-
cation of a heat bath at temperature T; the whole process is now
parametrized by T. Let us denote the expected heat by Pr(x) =
P(x) for state x, and write Py = P = (P(x)), for its stationary
value (with stationary distribution p; and stationary expecta-
tions denoted by (-)7). The calculation of that expected heat
essentially requires a careful understanding of the first law, but
can often be shortened by assuming local detailed as will be
made explicit in Example III.1 below.

After identifying the heat flux P(x), we define the quasipo-
tential V= V as the centered function, (V)= 0, that solves the
Poisson equation,*

LV(x)+P(x)—P=0, V(x)= J dee’t(P(x) — P) (IIL.3)
0
The Poisson equation LV = fhas a unique centred solution V for
any centred f; here f = P — P(x) is indeed centred. The heat
capacity C(T) is then obtained as

C(T):—<8%VT>T, or Zp(x)a%V(x)

xek
where the last formula holds for a finite state space K. By
inserting (IIL.3) into (II1.4), we see (again) that the heat capacity
arises from the accumulated change in excess dissipated power
with bath temperature. Note that the stationary distribution p
is by and large not explicitly known. However, under global
detailed balance (equilibrium dynamics), say at a fixed volume,

(111.4)

Fig. 2 Left: Three-level ladder. Right: The energy landscape, where 4 denotes the height of the barrier. A molecular switch can indeed also be
reproduced experimentally with a colloid moving in an optically simulated and flashing landscape.
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T e[0.01,2]

Fig. 3 Heat capacity of a 3-level ladder as a function of temperature T for different values of o, 4 and ¢ as defined in the transition rates (l11.5). We observe

an inverted Schottky anomaly for large enough 4 when ¢ = 1.

there is an energy state function E for which P(x) = LE(x),
and thence, V(x) = E(x) — (E)r, which reduces (I1.4) to the well-
known equilibrium formula for the heat capacity at fixed volume.

Example III.1 (agitated three-level system) consider an agi-
tated molecular system, where the hierarchy of energy levels
randomly switches. Such a molecular switch can be modelled
as a Markov jump process on a ladder with (to be specific) three
levels; see Fig. 2. Each leg o = £ has three states n = 1, 2, 3, so
that the states are of the form x = (,0). Each state located in
o = — has an energy E(n, —) = (7 — 1)¢ and the states on ¢ = + has
an energy E(n, +) = (3 — )¢, and the process is switching legs at
rate o. The transition rates are chosen as

k((1,-),(2,-)) =k((2,-),(3,-)) =k((3,4),(2,+))
= k((2,4), (1,4)) = e P+

k(1 4),(2,4) = k((2,+),(3,4)) = k((3,-),(2,—)) (IIL5)
= k((2,-),(1,—)) = e Bla=¢/2)

k((nv _)7 (7]7 +)) = k((”l’ +)7 (177 _)) =

where 4 > 0 is an energy barrier, (1,06) denotes a state on the leg
o and level n and k((n,0),(n’,0)) denotes the transition rate from

-0.25

-0.50

-0.75

0.0 L L 1 Il |

02 04 06 08 1.0
T

state (1,0) to state (iy',0). This model has appeared in ref. 31, but
the heat capacity was not discussed there. Such switches are
molecular versions of small active systems.**

The heat flowing to the bath at inverse temperature f equals
¢ at each transition n — n’ where the level is changing. The
changing of legs is work done by external sources.

For completeness, the stationary distribution, the quasipo-
tential and the heat capacity of this three-ladder are calculated
in Appendix A. Stationary distributions are obtained by solving
the steady master equations. By solving the Poisson equation in
(I11.3), the quasipotentials of each state are determined, where

P(x) = Y k(xy)a(x,») and q(x,y) = ~logF¥:)

Bk, x)
detailed balanced condition.”?

The plots of the heat capacity for varying o, 4 and tempera-
ture T are shown in the Fig. 3. Taking o = 0 corresponds to the
equilibrium case. For o > 0, the nonequilibrium heat capacity
depends kinetically on the barrier 4 and may become negative
(here, at low temperatures for large enough 4).

For some regimes of the values, the heat capacity becomes
negative and the inverted Schottky anomaly is observed. The
dependence of heat capacity on o and 4 is summarized in
Fig. 4, where the colors shows different values of the heat capacity.

log

flowing local

0.0 1 L 1 L |

02 04 06 0.8 10
T

Fig. 4 The heat capacity of a 3-level ladder as a function of 4, « and T for fixed ¢ = 1, the transition rates are given in (lll.5). The color bar represents the

values of the heat capacity.
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Fig. 5 Heat conducting three-level system of Example Il1.2, after.>

This example is continued in Section VI.1.

Example III.2 (heat conducting system, ref. 33). A pleasant
and interesting discussion of negative response is contained in
the paper by Zia et al.>* We disagree with their identification of
the specific heat with the temperature-derivative of the
expected energy — that is a procedure that works in equilibrium
at constant volume, but is not correct for steady nonequilibria.
Yet, their example is very instructive. We repeat it here in the
corrected version, using the quasipotential (IIL.3).

Consider a three-level system (states are a, b, ¢) in contact
with two baths. See Fig. 5, where the two thermal baths are
suggested at inverse temperatures f;, ff, and the two energy
gaps ¢, 6 > 0 are shown.

36,
The stationary distribution is given by p(a) = %, p(b) =

&fy 1

¢ Z and p(c) =2 where Z is the normalization. In equili-

brium, where f; = 8, = 5, the heat capacity is

B2 (8%eP + (8 — &)2ePOT) 4 g2ef)

Ceq(ﬂ) = (eﬁ5 +eﬂ3 + 1)2

We look at the nonequilibrium situation where 8, # f;. The
system plays the role of a (molecular) conductor between two
thermal baths. The heat capacity is now a matrix Cy, i, j = 1, 2
for quantifying the excess heat absorbed by the system from the

— Cn1 Ceq Cri+Cy Cy1

Heat capacity

0.0 02 0.4 0.6 0.8
T1 €[0.01, 0.8]
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ke, b) = kle,a) =1,
k(a,c) = e P29,

k(b,c) = e P15,

i-th bath when changing the temperature in bath j. The sum
Cr2+ Cyq + Cyq + Cyp = Ceq when By = 8.

The expected heat fluxes to bath 2 are: P(a) =
—6e7 %22 Py(h) =0 and Py(c) = and to bath 1 are: Pi(a) =
0, P;(b) = —ee™#1¢ and P;(c) = e. Therefore, solving the Pois-
son eqn (II1.3) gives the quasipotential for bath 1,

e(ef? +1)
T ebd +ehe 41

eebre

Vl(a) = Vl(c) = N +eﬁlg T r

Vi(b)

and for bath 2,

S(ehe+1)
T ebd 4 ebie +1

deh2d

V2(b) = V2(C) = ob20 4 ebie 1 |

Vz (a) =

and the heat capacity for changing the first temperature is
dV1> B2 (P 4 1)ehre

dg, (eP2d + ebre + 1)2

which is always positive. However, if we look at the heat

capacity with respect to the second bath but for changing the
temperature of the first bath, we get

Cl‘l(ﬁ|7ﬁ2) = ﬁ|2<

dr, dcf e P
c By) = B =<
21(B1:B2) = By <dﬁ1 > (b1 + eoh2 + 1)2 B

which is always negative and means that increasing the first
temperature causes extra heat to flow from the system to the
second bath; see Fig. 6.

— Cu Ceq Cra+ Cay Ca1
061 .
04
z 1
§ 02- .
S ]
= 00 .
[ 2|
i
~02
~04
~0.6E1 \ ;
0 1 2 3 4 5

T2 €[0.01, 5]

Fig. 6 Heat capacities for Example 111.2 quantifying the excess heat absorbed by the system. Parameter values are 6 = 3, ¢ = 1, > = 1 in the left plot and

f1 = 1in the right plot.
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More relevant is the sum C, ; + C, ;, which is the total extra
heat absorbed by the system when slightly increasing the
temperature of the first thermal bath. We have

Bi2eche(eP22 (e — 0) +¢)
(e525 + ehie 1)2

Cii+Co =

which may be negative for 2¢ < § when f,0 is sufficiently small.
At the same time, then,

Boef? (ehe(s — &) + 0)

Cop+Cip =
22 12 (P20 + b 4 1)

is positive.

IV. Heat capacity as covariance

For Markov jump processes with a finite state space K, we can
rewrite the heat capacity (IIL.4) as

C(T)dT = de<(%VT>T: > Vr(®)priar(x)

xeK
= 22<VT(X1)>T+dT (1v.1)

where we have used that the quasipotential Vi is centered,
> Vr(x)pr(x) =0, and where the last expectation () .4y is for
X

the dynamics at temperature T + d7. Under detailed balance,
the Kubo formula leads from (IV.1) to the variance of the energy
since then and there, V; = E — (E); Nonequilibrium response
theory is more complicated as it does not only involve a
correlation with the heat but also with the frenesy. The result-
ing expression is formally complicated and does not reveal
much specific detail about the negativity of the heat capacity,
except that it is clearly the frenetic contribution in general that
must be responsible for the negativity; see also ref. 34.

Another way to express heat capacity as a correlation func-
tion is less explicit but conceptually more attractive. In fact, the
heat capacity (II1.4) or (IV.1) can be written as

d1
C(T):< ZngTVT>
T

That is a stationary correlation function between, on the one
hand, V{x) = 8Q‘(x) which is directly related to an expected

(1v.2)

. d
excess heat when in state x, and on the other hand ar log p7(x)

which is the change in state probability with temperature. We
can even make it a covariance between a heat capacity Cg(x)
derived from the Boltzmann entropy, and a Clausius entropy
Sc(x) = 3QT()/T,

dlog py(x)

C(T) = (Cg; Sc) 7, T

for Cg(x) =T (Iv.3)

where we write the covariance as (X;Y) = (XY) — (X)(Y). We
therefore introduce the pseudopotential @(x) = logp(x),

This journal is © the Owner Societies 2025
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mimicking the Boltzmann entropy, and the heat capacity
(Iv.2) gets rewritten as

We know that, for equilibrium systems, increasing the bath
temperature will increase the absorbed heat of the system and
will thereby cause an increased equidistribution of the finite
number of energy levels. In particular, we expect the lowest
energy state to lose occupation. That connects heat with the
density of states, and enables, always around thermal equili-
brium, to measure entropy via montoring the exchanged heat.
Heat is leaving the system if higher energy states become less
occupied and vice versa. This is what makes the equilibrium
heat capacity positive: mathematically and corresponding to
(Iv.4), in equilibrium (and in fact also close to equilibrium, ref.
12), we have d®/dT = Vy/(kgT).

Inspecting (IV.4), the negativity of the nonequilibrium heat
capacity signifies at least an anticorrelation between the heat
absorbed and the change in occupation with increasing bath
temperature. One possibility is that increasing the temperature
may, at least in certain regimes, lead to higher occupation of
low-energy states. That is not unrelated to the idea of negative
temperatures for gravitating or for very inhomogeneous and
smaller systems for which the potential energy is anticorrelated
with the kinetic energy and/or that fail to satisfy equivalence of
ensembles.®”® What happens is that increasing the temperature
may, at least in certain regimes, lead to higher occupation of
low-energy states.

(Iv.4)

V. Negative heat capacity via effective
temperatures

Although the covariance identity (IV.2) (or (IV.4)) helps to
conceptualize the negativity of the heat capacity, here we look
for a sufficient and quantitative condition in terms of effective
temperatures. We consider the case where there is a well-
defined energy E(x) associated to each state, so that in equili-
brium the occupation

pea2) ~ & 7 \Z)

follows the Boltzmann-Gibbs statistics.
Fixing the bath temperature T, we denote by x* any specific
state that has the smallest quasipotential: for all x,

AV(x) = V(x) — V(x*) > 0
We define the inverse effective temperature as

p(x")

, X#X"
p(x)

1
x)=——1 V.2
ﬁeff(\) g(x) og ( )
where £(x) = E(x) — E(x*). It may be that there are multiple
minima of V and they may give rise to different effective
temperatures; we just fix one choice. In equilibrium, with

(V.1), Pese(x) = B.
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Fig. 7 Left: Heat capacity of Example Ill.1 as a function of temperature at « = 0.1, e = 1, 4 =

quasipotential V{1, —) = x* is lowest at all temperatures.

Writing in terms of the inverse bath temperature f, we have

cp) = B | V(v LY v } v.3)
XF#X*
=B AV(x)5p(x) (V.4)
X#X*
=3 AV(x [ )e—‘s(vv)/feff(x)]
x#X*
01 0P,
:_ﬂz ;*AV (%) Begr (x |: Oga;( ) 5( ﬂé"’fg( ):|
(v.5)
err (. ap( ), E(X)p(x*) OTesr(x)

= ;*AV )P { o7+ Tl T } (V.6)

where we have used the normalization of p in the second
equality and definition (V.2) in the third equality. The last
two lines are just rewritings.

The situation is then as follows:

0.50 -
r — peq(1,-), A=1,e=1,0=0
— p(1,-), A=1,e=1,2=0.1

045

035 -
030 -

0.25 -

Stationary distribution

0.20 - 7

0.15 = PR S— T — T— 1 F— J
0.0 0.5 1.0 15 2.0

Te [0, 2]

Fig. 8 Left: Stationary occupation of (1, —) in Example IIl.1, for varying temperatures. The top curve shows the equilibrium case (« =

curve is for « = 0.1. In nonequilibrium there exists a range of temperatures where for 4 =1, 2 = 0.1 and ¢ = 1 in Example IIl.1,

temperatures Teg(2, —) and Teg(3,
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— V(1,-)
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<
-0.5
0.0 0.5 1.0 1.5 2.0 25 3.0
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1. Right: V#(x) for the states x of Example Ill.1. The

. Ip(x*) .
When there exists a temperature range where is
positive (unlike equilibrium), then a negative heat capacity will
arise (and can only arise) from a sufficiently decreasing effective
temperature Teg(x) in temperature T (for some state x). We
illustrate that in the next section. Indeed, in nonequilibrium,

Ip(x)

oT

is easily made positive for some temperature range. Ip(x)
We can also get a negative heat capacity when is
negative (like in equilibrium), as long as the slope of T

due to the driving, population inversion can occur, and

oT.
against T is sufficiently small: we need that 75?()() <
Te 2 ; * .
e _8p(x ) (for some state x). We will encounter that
p(x*)E(x)| OT

for instance in Fig. 7 and 8 around 7T = 0.5. It is the situation
when the effective temperature (almost) stops to depend on the
environment temperature.

As a sufficient condition for negative heat capacity, we
then have

if Vs x* 5(x)8ﬁg‘;; )_;mgp( = C(p) <0 (V.7)
30 \

25

20

15 - i
10} — Teff(2,-)

— Teff(3,—-)

5

0 L

0.10 0.15 0.20 0.25 0.30 0.35 0.40

T €[0.1,0.4]

0), and the lower

Ip(x) . :
aT > 0. Right: Effective

—) (defined from (V.2)) are decreasing in the temperature range where the heat capacity is negative.
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Fig. 9 Uneven 3-level ladder of Example VI.2. To be compared to the
3-level ladder in Fig. 2; now the energy gaps are unbalanced.

It is easy to verify that this never holds in equilibrium (using
(v.1)), but it is perfectly possible in a driven system.

We can rewrite (V.7) using the heat bath temperature
directly, for easier intuition,

if Vx#x*
ap(x*) W E(x) OT i (x) (v.8)
) ——F< <
3T (x )Teffz a7 < 0=C(T)<0

We repeat that the effective temperature (V.2) is defined with
respect to some minimizer x* of the quasipotential, and we
note that x* = x7 can also change with temperature 7. In many
cases at low temperatures x* = g where g denotes the state that
maximizes the pseudopotential @ of (IV.4) and hence the
stationary probability, p-(g) > p-{(x): the dominant state g can
then be identified with the state x*, that minimizes the quasi-
potential. That is certainly the case close-to-equilibrium,"*>*
but is not always true in nonequilibrium.

VI. Illustrations

We collect a number of discrete examples to clearly illustrate
the origin of negative heat capacity as discussed above. We
consider basically two regimes for the negativity, at very low,
and at intermediate temperatures. The models are not suitable
to study high-temperature physics, where we would need to

05"

0.0
£
5 [
. -0.5 [
5]
5] [
§ -10f A=1
T — A=15
ey A=3 1

-20F bl

0.5 1.0 1.5 2.0 25 3.0

Te 0.1, 3], @=0.1, =2
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turn to underdamped Langevin processes, possibly for an ideal
gas with driven internal degrees of freedom.

Example VI.1 (Example III.1 continued: negative heat capa-
city around zero temperature). The low-temperature behavior of
the heat capacity is

cad~§ﬁw@424k*8 T,0
~3 ,
which is negative for 4 > ¢/2 (and « > 0, which is the
nonequilibrium case). We see from Fig. 7 that C(T) < 0 for
T < 0.5when o = 0.1, ¢ = 1, 4 = 1. The analytic expressions are
collected in Appendix A.

Observe that the quasipotential V,{(1, —) = x*) is minimal at
all temperatures T; see Fig. 7. That minimizer for the quasi-
potential maximizes the pseudopotential, in the sense that
p(1, =)= p(3, %) = p(2, =) = p(2, ¥) = p(3, —) = p(1, ) for all
temperatures as well.

Next, we see from Fig. 8, that the stationary occupation of
x* = (1, —) is increasing with temperature over T < 0.5,

1.—
% > 0, which is different from the equilibrium situation

where the ‘ground state’ loses occupation at higher tempera-
ture. At the same time, as shown in the right figure, for the
0T (2, —) 0T (3, )

oT oT
That produces the negative heat capacity according to (V.8).

Example VL2 (uneven ladder: negative heat capacity at
intermediate temperatures). Consider the uneven 3-level lad-
der, with an unbalanced energy gap, in Fig. 9. The energies
E(n,0) are

same temperature range, <0 and < 0.

E(1,-)=0, E(@2,-)=2¢ E@B,—)=3e (VL1)

and the transition rates are modified with an energy barrier
4 >0,

ko(1,2) = ki(3,2) = e Pk (2,3) = ki(2,1) = e P

ki(1,2) = k_(3,2) = e "), g, (2,3) = k_(2,1) = e )

k(= 4) = ky(+, =) =a >0, Vn=1,2,3.
JF -
3
IR
g 20 E
[}
*g — V(1,-)
— 1 R — N
z V(2,-)
3 V(3,-)

Tel0.1, 3], @=0.1, e=2, A=3

Fig. 10 Left: Heat capacity of Example V1.3 for varying temperature, different values of 4 and fixed values of « = 0.1, ¢ = 2. Right: Quasipotentials at 4 = 3,

a=0.1ande¢ =2, where x* = (1, —).
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Fig. 11 Left: Stationary distribution of state (1, —) for different values of 4 for the Example VI.2 with o = 0.1, ¢ = 2, p(x*) can be increasing with temperature
for higher values of 4. Right: The effective temperatures with Te«(3, —) strongly decreasing in the intermediate range of temperatures where the heat

capacity is negative.

o )

N’

Fig. 12 Double-channel 2level-model of Example VI.3. The plus-channel
is more reactive than the minus-channel for ¢ > 0 in (VI.2).

The heat capacity of this system can become negative over
intermediate values of temperature for certain values of «, ¢ and
4; see Fig. 10, where the heat capacity is plotted for fixed o = 0.1,
¢ = 2 and different 4.

In Fig. 10, the heat capacity remains positive for 4 = 1. For
higher values of 4, it becomes negative at low temperatures and
for even higher values of 4, it becomes negative at higher
(intermediate) temperatures.

For an understanding in terms of (V.8), we observe from
Fig. 11 that the stationary occupation of (1, —) can be increasing
with temperature for high enough 4. On the other hand, the

Heat capacity

P E P
0.2 0.4 0.6 0.8 1.0 12 14

Te[0.1,15],e=1, ¢=1

effective temperature of the other states located on the leg - are
seen for 4 = 3 in the right plot. For the intermediate range of
temperatures where the heat capacity is negative, Teg(3, —) is
strongly decreasing in temperature.

Example V1.3 (double-channel two-level model with negative
heat capacity at intermediate temperatures). Consider the two-
level system with states 1 and 2, with possible transitions over
two channels, + and —. See Fig. 12, and ref. 17.

The transition rates are

k_(1,2) = e P02 (21) = flvte)/2
(VL.2)
ky(1,2) = 0972 f (2,1) = e? P22
where for instance k.(1,2) denotes the transition rate from state
1 to state 2 through the channel +. The nonequilibrium driving
is w, and the energy difference is given by £(2) = ¢. In equili-

. ehe 1
brium (w = 0), p(1) = 1 and p(2) = T
expressions for the nonequilibrium stationary distribution,
quasipotential and dissipated heat are provided in Appendix B.

In Fig. 13 and 14, the heat capacity is plotted for different
values of ¢ and w in varying temperatures. As it is shown in

The analytic

0.015 [~ b

0.010

0.005

Heat capacity

0.000

16 18 2.0 22 2.4 26 2.8 30
Te[l.5,3], =1, ¢=1

Fig. 13 The heat capacity of Example VI.3 for ¢ = ¢ = 1 at different values of w. Left: The heat capacity at low temperature remains positive for both w = 2
and w = 4. Right: The heat capacity at a higher temperature is positive for w = 2 and is negative for w = 4.
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Fig. 14 The heat capacity of Example V1.3 for ¢ = 1, w = 4 at different values of ¢. Left: The heat capacity at low temperature remains positive for both ¢ =
0.5 and ¢ = 1. Right: The heat capacity at a higher temperature is positive for ¢ = 0.5 and is negative for ¢ = 1.
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Fig. 15 Quasipotential for Example VI3 atw =4 and ¢ = ¢ = 1.

higher values of driving w the heat capacity can be negative at
intermediate temperatures; see Fig. 13. The mechanism is
different from the previous example (where the barrier was
the relevant variable for the nonequilibrium regime); here it is

2 3 4 5

T e[1.1,5], e=1, w=4, ¢=1

Fig. 16 The effective temperature of state 1 with respect to temperature
for Example VI.3. The right plot is the zoom in the range of temperatures
where the heat capacity is negative.

This journal is © the Owner Societies 2025

the asymmetry between the two channels that does the job (of
negative heat capacity).

The analytical expression of the heat capacity is given in
Appendix B, and there is a transition in ¢, depending on the
driving W, between completely positive and partially negative
temperature-regimes of the heat capacity.

The quasipotential is plotted in Fig. 15 as a function of
temperature.

V(2) < V(1) forw=4,¢p=¢=1and T € [1.7,2.2], and x* = 2.
For the negativity of the heat capacity we see from Fig. 17 that

2
ag(T) > 0 is positive for T € [1.7,2.2]. We have plotted the

effective temperature of state 2 in Fig. 16.
Again, where the effective temperature is decreasing with
temperature we get a negative heat capacity; see Fig. 13.
Observe from Fig. 15 that although x* = 1, the stationary
probability p(1) is not the highest at all temperatures.

VII. Conclusion

For steady nonequilibrium systems, the specific heat at fixed
volume is not immediately related to the change of the total
average energy with respect to changes in kinetic energy. The
latter can be negative for certain equilibrium systems. Instead,
the negativity of the specific heat for driven or active systems
arises from an anticorrelation between the expected absorbed
heat for a given system condition and the change in its
population level for increased bath temperature. The former
relates to the Clausius entropy, and the latter connects to the
Boltzmann entropy. Those entropies do not march together
when out of equilibrium, and that is the ultimate reason for the
negativity of nonequilibrium heat capacities. The present paper
substantiates that claim in quantitative ways and various
examples have been used to illustrate the possible scenarios.
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Fig. 17 Stationary distribution for Example V1.3, with T € [2,10] at w = 4 and ¢ = ¢ = 1. It is important that

Data availability

The figures represent the result of computer-assisted calcula-
tions for the theoretical models, and using publicly available
methods described in detail in the main text. No other data nor
primary software or code have been used.

Appendices
A: Three-level ladder

We include the explicit formulae for Example III.1.

Stationary distribution

2.5

3.0

9p(1)

oT > 0.

Solving the stationary Master equation for the rates given in
(I11.5), the stationary distribution is

3pe

1 g 3pe
p(1-) = p(3.4) = 52 <aeﬁ<ﬂ+s> oeM e z) > p(2,-)

wh

Stationary distribution

ere

1 3 Be
=p(2,+) = E(fxeﬁ(“Z) + oeft2 +eﬁ”') >p(3,-)

1 :
=p(l,+) = E<2oceﬁ(“”) cosh(%) + 1),

Be Pe
Z=2e2(ef +1) (30(6‘” + e7) +2.

0.30 [

0.25 -

0.10

— p(1,-)
— p(2,-)
— pB3,-)

2 4 6 8
A €[0.01,8], T=1,e=1,0=0.1
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Fig. 18 Stationary distributions of the three-level ladder given in Example Ill.1 for different values of o, 4 and temperature T.
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We plot the stationary distribution of the states on the leg ¢ = —
for different values of o, 4 and temperature; see Fig. 18. The
ground states (1, —) and (3, +) are the most dominant states.
Toward zero temperature for values of 4 > ¢/2 all the transition
rates become equal (approaching zero); consequently, all states
become equivalent.

The quasipotential equals

1
V(l,—) = V(3,4) = _Ns[az <_eﬁ(2A+a)) 1 oRe2bAt3pe

+ sueh (4+3) + 7o (4+%) + 30 (15) + 3ae’”+%

+ 3Pt 4 3% 1 &3 4 2],
V(2,-) =V(2,+) = %s(eﬂs -1 [2a2e2ﬁ<ﬂ+ﬁ>
4 252ePCA+0) | b (4+%)

Pe
+ 0ef7 4 2Pt 4 2670 4 &3 4 1] ,

1 B 244 S
pe T
V3,-) =V(l,+) =3’ o | —e 2

+ ocze%/“““) + ToePl4+e) + 5oeh(4+2¢)
+ 30eP(4439) 4 34ef1 467 +3¢2 +3¢2 +2¢2 }

where

Be, B 2
vl (s ) o]

Since the steady average of the quasipotentials is zero,
there must be at least one state with a negative quasipotential.
In this example, the states with the highest stationary occupa-
tion correspond to those negative quasipotentials.

The heat capacity is computed from (IIL4) to be

, b
pree?

pe pe 3
2(e2 (eﬁ8+l)(3aeﬁ4‘ +e2) —H)

x {74512(41 —£)eP T o2 (24 —¢)e?P 2

Cp) =

5pe 7Be 1 .
— 1027672 4402 (A 46)e™ 7Y 407 (24 46) 2T
+30(e—24)e" ) 130624 +¢)
+20(64 +7¢)e" 149 4 54(196 — 6.4) el 4+3)

+ (644 198)eP 142 _20(64 — 7¢)eP1+4)

Be 3pe 5pe e 9pe
+2ee2 +10ee 2 +12ee 2 +10ee 2 +2¢e 2
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At very low temperatures with 4 > 0,

) b
b
lim C(f) Pee .
p—oo 3Be 4pe
2 (367”“ + eT>
9fe
X (—oc2(2A —&)e? T 4 3a(e — 2A)eﬁ("+5£))
3feu(e — 24)

2ebe ’

With «¢ > 0, at low temperatures, the heat capacity is
negative for 4 > ¢/2.

B: Two-channel model

We collect the formulae for Example VI.3; see also ref. 17.
The stationary distribution is

el 4 e?
P() = 976 1 9§ oF
eBer(b +1
'D(z) = ebwt+é + eBlw+e) + efetd 41

(B.1)

The quasipotential is obtained from solving the Poisson
eqn (IIL.3),
(P79 4 1) (e (e — w) (e + &) + (w+£) (59 1 1))

V( 1 ) = B
(erd 4 elnes) 1 orrd 1 1)

V(z) _ e/fr, (e/fw +e(/>) (e(/) (b _ W) (eﬁw + e[ﬂa) + (W + {;) (e/f(w+n) + 1))
- (ePrd +eBlvte) 4 efetd 4 1) ’

where the expected dissipated heat fluxes equal

PU) = 0= )exp |30 =5) 6| + (-w—)exp | 3h(-w—0)

P2) = - (w—o)exp 9~ 3500 o)

~(-w=ojexp 3(-A)(-w—0)|

Hence, the heat capacity is
C(p) = 12[32eﬁ(”’+5>+¢ (e"’(e —w) (eﬁ"" + e/”)
a
+ (w+e) (eﬂ(”’“) + 1))

x (&(cosh(pw) + cosh(¢)) — wsinh(¢))

a= [eﬁw+d) + e[j(wﬂ:) + eﬁsﬂb + 1)3

Forw > ¢ > 0 and all values of ¢ and f, if e?(w — &)(e™ + ¢/*) >
(w + )™ + 1) and ¢(cosh(fw) + cosh(¢)) > wsinh(¢), then the
heat capacity is negative. Another condition that leads to negative
heat capacity is e’(w — &)™ + ¢*) < w + @™ + 1) and
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&(cosh(pw) + cosh(¢)) < wsinh(¢). For ¢ = 0; the heat capacity is
always positive for w > ¢ > 0.

At very low temperatures,

2[32(w + s)ezﬂ(1¢'+x)+¢€eﬁw

3B0vte) ~ 26 (w + g)e e

C(p)
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