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Zinc-ion batteries (ZIBs) are considered as a cheaper, non-toxic and safer alternative to lithium-ion batteries
(LIBs). Manganese dioxide (MnQO5) is one of the most viable cathode materials for aqueous electrolyte based
ZIBs. The addition of different dopants in the MnO, cathode material can significantly change its physical
properties and electrochemical performance in ZIBs. In this study, we collected about 603 papers from
which we selected 57 ZIB published papers related to doped MnO, as a cathode material. The dataset
consists of a total of eleven features (ten input features and one target) in which six features are related to
battery properties and five features are related to the elemental properties of the dopants. The Pearson
correlation plot is considered to investigate the correlation between different features, and it is observed
that the electronegativity and first-ionization energy of the dopant have a positive relation with discharge
capacity (DC).
machine learning models such as XGBoost, random forest (RF), and K-nearest Neighbors. The RF model can
classify DC with an accuracy of 0.72 into three predefined grades. In the regression analysis, the XGBoost
model can predict DC with an R? value of 0.92. Finally, the findings of this study can be utilized to predict
the performance of doped MnO, before synthesizing it in the laboratory.
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Both classification and regression treatment are applied to our dataset using different
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1. Introduction

The development of technology has rigorously changed the
dynamics of our life. There are two ways by which one can
categorize modern technology: one is the system, and the other
is energy which is required to run the system. For example, the
mobile phone is a system, and to run the mobile phone, we do
need energy. Even though exponential progress has been made
in the development of the system, a similar momentum cannot
be found in the field of energy storage. Lithium-ion batteries
(LIBs) have been considered as the appropriate source of energy
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for small-scale applications."™ But due to the limited resources
of lithium, it is time to think about a potential alternative to
LIBs. Zinc-ion batteries (ZIBs) can be considered as a potential
alternative to LIBs due to their availability,"® high theoretical
specific capacity (i.e., 820 mAh g~"),”° non-flammability,'*">
non-toxicity,"* easy processability, and long shelf-life.**

ZIBs encounter several problems associated with cathode
materials. The most promising candidates for cathode materials for
ZIBs are manganese-based oxides,">"” vanadium-based oxides,"®>°
Prussian blue analogues,” ™ etc. One of the leading candidates
among these is manganese dioxide (MnO,) due to its good voltage,
high discharge capacity, and ease of synthesis with different crystal
structures, viz.,, o-MnO,,** B-MnO,,> y-MnO,,*® &MnO,,> )\
MnO,,”® and layered structures.”*' Different crystal structures
exhibit different tunnel or layer spacings that can modify the ionic
intercalation/de-intercalation behavior of the material and poten-
tially lead to different specific capacities. However, the major
problems associated with the MnO, cathode include low electronic
conductivity (107> S em™* to 10 ° S em™'),** and the other is the
Jahn-Teller effect.** The structure of MnO, experiences a phase
transition during successive charging/discharging cycles, and with
time, this structural change can degrade the MnO, cathode
material.®*® Dopants can assist MnO, in stabilizing its crystal
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structure for a long time and can improve the performance profile
of MnO,. The presence of Mo in y-MnO, shows superior rate
capabilities and cycling stability, and enhances the diffusion
kinetics of ions and electrons.*®* When aluminum (Al) is doped
into birnessite-type 3-MnO,, it can be seen that Al can prevent a
structural collapse by minimizing the growth of microcracks during
charging and discharging.’” Experimental observation has con-
firmed that the doping of magnesium (Mg) in tunnel-type o-
MnO, can minimize the reaction resistance and diffusion, and
can improve the ion diffusion coefficient and also boost the
stability of the crystal structure.*®

Machine learning (ML), which is a modern mathematical
framework, can be used to read, understand, and predict the
complex internal connection of different data points.>*™*! With
the development of advanced algorithms, ML models (MLMs)
can be used to explore the cryptic relationships of colossal data
within a short period of time; however, the exact relationships
cannot be discovered using traditional trial-error methods.**™**
MLMs have been considered in designing battery materials,
analyzing the chemical compositions of the anode, cathode,
and separator, optimizing the battery performance, and pre-
dicting the health of the battery before fabrication and
testing.*>*> MLMs can suggest new super-ion conductors and
can predict the performance of solid electrolytes 10° times
faster compared to density functional theory calculations with
a mean absolute error of 0.25 eV.*® A manually curated dataset
has been considered for applying MLMs to predict the initial
discharge capacity (DC) and that at end of the 20th cycle.*” In
that case, MLMs can predict the initial DC with a value of R* =
0.53 and that at the end of 20th cycle with R* = 0.54.*” The
existence of different dopants can change the electrochemical
properties of the lithium, nickel, cobalt, and manganese in
various cathode materials for LIBs.*®* MLMs have been applied
to study the relation between the DC and the structural
and elemental features of different dopants. The gradient
boost model can predict the initial (50th cycle) DC with R* =
0.76 (R*> = 0.64)."® The ML approach can differentiate the impact
of different physical properties associated with dopants on
metal-oxide based photoelectric materials.*® ML is also used
in the field of supercapacitors.”® The multilayered perception
and random forest (RF) models have been used to classify the
specific capacitance of four pre-defined grades. Recently, four
ML classifier models were considered to classify the DC of TiO,
anode materials in the presence of fourteen dopants for LIBs.>"
For this purpose, 316 samples and eleven features associated
with different published papers were considered. The gradient
boosting model achieved an accuracy of 0.79 and a specificity of
0.90 for classification.”

Even though considerable effort has been invested in pre-
dicting the effect of dopants in many important LIB cathodes,
no attempt has been made to predict the DC of the MnO,
cathode material for ZIBs with different dopants by applying
the MLMs. The aim of the present work is to collect data
associated with dopants which can improve the performance
of the MnO, cathode material for ZIBs from 57 published
papers. We will apply both classification and regression
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treatment to our dataset by considering different MLMs, viz.,
RF,”" K-nearest neighbors (KNN),>> and XGBoost>® to classify
and predict the DC of doped MnO,.

2. Methods

2.1. Data collection and feature analysis

The blueprint of our work is shown in Fig. 1. Initially, we fix our
goal to classify and predict the DC of MnO, by using different
MLMs. For this purpose, we collect the data, and then observe
correlations between different features, extract the features,
train and test different MLMs, and classify and predict the
DC of MnO,. In the ML approach, data collection and prepro-
cessing are the most important steps. In our case, we have
carefully followed the following protocols for collecting our
datasets: (i) first, the publications related to ZIBs were searched
and around 603 papers were collected; (ii) the publications
which used MnO, as the cathode material were considered in
the next step; and (iii) the articles which used only one dopant
were selected. After following these steps, we were able to
manage to select 57 articles, which were related to the single-
dopant MnO, cathode material for ZIBs. The dataset contains a
total of 25 different dopants (see Fig. S1, ESIt). We considered a
total of 11 features, which include 6 publication results and 5
elemental properties (see Table 1).

We employed the Pearson correlation matrix (PCM) to
examine relevant associations among features. The PCM quan-
tifies pairwise linear relationships between variables and
enables visual interpretation through a heatmap (see Fig. 2).
Among the features, there is a moderate relationship that can
be observed between the current and DC (ie., r = —0.5),
reporting that the DC decreases with the value of current. This
negative correlation observed between DC and current likely

Goal
Predicting the electrochemical performance of the MnO,
cathode for zinc-ion battery

Data Collection
Web search for zinc-ion battery
Collect the publications related with doped MnO, cathode

Only single metal doped structure is considered

Feature Extraction
Elemental features: EN, IR, State, NED, FIE
Experimental results: Ratio, MMM, LV, HV, Current, DC

Model Training
K-Nearest Neighbors, Random Forest, XGBoost

Observation

v

Fig. 1 The workflow of the current work. Initially, the goal of our article is
presented, and then data collection, feature extraction, model training and
finally feature importance are discussed.

Internal Correlation, Prediction
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Table 1 Covariate and response variables and their related abbreviations

Covariates

Elemental features Publication results

Name Abbreviation Name Abbreviation
Electronegativity of doped elements EN Atom ratio of dopant and Mn Ratio

Ionic radius (in pm) of the dopant IR Molar mass of the molecule MMM

State of the dopant State Lowest voltage during charging and discharging (V) LV

Number of electrons of the dopant NED Highest voltage during charging and discharging (V) HV

First ionization energy (in k] mol ) FIE Current density (A g™ ") Current
Response variable

Name Abbreviation

Discharge capacity (mAh g™ ")

E

1.0
o -0.032 [} I

(9]

ERVEN 05 | 1 08
I}

2- 0.4 -0.066 -0.6
2

w ] -0.025 0.28 0.1 0.4
2 BPE 0.28 1

& ' -0.2
Z.0.046 022 0.17 0.34 -0.027

= -0.0
> --0.05 0.0019 -0.072 0.005 0.06 0.015

0.2
;-M 0.15 0.04 0.028 -0.077 0.25

2

€ .0.091 0.074 -0.092 -0.1 -0.081 0.033 -0.017-0.062 0.15 I‘O'4
3

Q- 0.17 -0.035-0.048-0.045 0.17 -0.084-0.023-0.022 0.5

EIN I;:{ Stéte NIIED FiE Raltio MI\I/IM LV HIV Cur;'ent IjC

Fig. 2 Pearson coefficient correlation for different elemental and experi-
mental features.

reflects the effect of polarization within the battery, a well-
known phenomenon noticed predominantly at high charging/
discharging rates.>® On the other hand, a weak positive correla-
tion (i.e., r = 0.17) can be observed between EN and DC,
manifesting that higher EN is weakly associated with increased
DC for ZIBs. Similarly, the weak positive correlation (i.e., r =
0.17) between FIE and DC suggests that higher FIE values may
be modestly increasing the DC of the ZIBs. This could be
explained via the mechanism of dopant stabilization of the
crystal structure of MnO, described earlier. Due to the
increased local charge in the vicinity of the dopant ions, which
is strongly correlated with the actual electronegativity of the ion
itself, the electrical conductivity of the bulk material is
increased, which would be expected to also improve DC.” This
effect is also expected to improve the stability of the crystal
structure due to the suppressed Jahn-Teller distortion; so,
although battery cycle life was not a feature captured in this
study, it may be worth including in a future investigation. Of
note, DC is expected to show a similar trend to both EN and
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DC

FIE, since both are correlated with the attraction exerted on the
outer electrons of the dopant ions by the nucleus; hence,
dopants with higher electronegativities are harder to ionize
and have larger associated FIE.

Strong inter-feature correlation can be observed for different
variables, for example, FIE and the EN (i.e., 7 = 0.74). The ratio
of dopant to Mn and MMM has a high positive correlation (i.e.,
r = 0.72), indicating that the existence of different ratios can
determine the MMM. The presence of highly correlated vari-
ables in the dataset can provide us with a detailed picture of the
interaction of the data points and can guide us to determine
which variables are important to change the physical properties
of the system. Features with low correlations may not provide
essential information for the linear treatment of the dataset but
could be important for the nonlinear predictive MLMs. Overall,
the correlation matrix can provide a primary valuable insight
regarding the feature interdependence and can guide us in
incorporating different MLMs. The histogram for different
features can be seen in Fig. S2-S4 (ESIT).

2.2. Model training

The MLMs were trained by using Python and its supporting
libraries (viz., pandas, matplotlib, Optuna, scikit-learn,
XGBoost, etc.). We have considered both classification and
regression approaches for our dataset. For classification, we
split the DC values at the 33.33rd and 66.67th percentiles to
create three equally sized grades: (a) grade 0: DC values <
166.65 mAh g '; (b) grade 1: 166.65 mAh g~ < DC values <
248 mAh g% and (c) grade 2: DC values > 248 mAh g~ (see
Fig. 3).

We have tested three different models, viz., KNN, XGBoost,
and RF on the dataset. Furthermore, we have built regression
models to predict the DC values from given features. For
regression purposes, we have utilized KNN, RF, and XGBoost.
The dataset was randomly shuffled and split: 15% for the
holdout test (i.e., 90 samples) and 85% for training (i.e., 510
samples). The training was done following stratified 10-fold
cross-validation, while Bayesian optimization®® was used for
hyper-parameter tuning for individual models. The dataset and
code for this article can be found at the following GitHub link:
https://tinyurl.com/396jsa4t.
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Fig. 3 The bar chart illustrates the distribution of samples across three
predefined grades based on DC values. This classification was used to
evaluate the performance of different MLMs applied to the dataset.

3. Results and discussion

3.1. Performance evaluation of the MLMs on the
classification task

The performance associated with different MLMs is evaluated
using four key classification metrics: accuracy, precision, recall,
and specificity. The comparison of performance can be seen in
Table 2. KNN correctly predicts 69% of the total cases, reflecting
a moderate level of predictive capability. Its precision of 0.68
indicates that 68% of the instances labeled as positive are correct,
showing a reasonable, though not strong, ability to minimize false
positives. The recall, also at 0.68, reveals that the model correctly
identifies 68% of all true positive cases, meaning that it misses
nearly a third of them. Specificity stands at 0.68, suggesting that
the model performs somewhat better at correctly identifying
negative cases. This indicates that KNN struggles more than the
other models in accurately identifying positive instances.
XGBoost demonstrates consistent and balanced perfor-
mance across all metrics, achieving a score of 0.70 for accuracy,
precision, recall, and specificity. This uniformity suggests that
XGBoost performs equally well in identifying both positive and
negative cases, while maintaining a good balance between
correctly predicting true positives and avoiding false positives.
On the other hand, RF outperforms XGBoost across all metrics,
with an accuracy of 0.72, a precision of 0.74, a recall of 0.72, and
a specificity of 0.72. These higher scores indicate that RF is
more effective overall, correctly predicting a larger proportion
of both positive and negative cases. Its slightly higher recall and
specificity also suggest better reliability in handling grades.
While both models are consistent and reliable, RF offers super-
ior predictive performance, making it the more robust option in
this comparison. It may be noted that the confusion matrix and

Table 2 Comparison of accuracy, precision, recall, and specificity of
different MLMs
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the ROC curve for different MLMs can be seen in Fig. S5 and S6
(ESIY).

3.2. Performance evaluation of the MLMs on the regression task

A comparison of performance associated with three different
MLMs, viz., KNN, RF, and XGBoost, can be observed in Table 3.
The MLM performance can be evaluated via four key para-
meters: R*, adjusted R*, root mean square error (RMSE), and
mean absolute error (MAE) which can determine the capabil-
ities for generalized implication and robustness to prediction
errors.

The KNN model shows strong performance of the training
data, with an R* of 0.97 and very low error values (a RMSE of
12.99 mAh g ' and a MAE of 4.27 mAh g "), indicating an
excellent fit. However, its performance drops noticeably on the
test set, where R® decreases to 0.84, and the error values
increase significantly (a RMSE of 33.70 mAh g~ and a MAE
of 23.91 mAh g~ '). This gap between training and testing
results suggests that the KNN model captures noise in the
training data and fails to generalize well to unseen data.

When comparing RF and XGBoost, both models show good
generalization, but XGBoost clearly performs better overall.
While RF achieves an R* of 0.91 on the training set and 0.86
on the test set, XGBoost posts higher values with an R* of 0.97
during training and 0.92 in testing. XGBoost also records lower
error metrics across the board, especially on the test set, where
its RMSE (24.39 mAh g™ ') and MAE (16.23 mAh g~ ') outper-
form RF’s RMSE (31.64 mAh g~') and MAE (23.81 mAh g™ ).
These results indicate that XGBoost not only fits the training
data well but also generalizes more effectively, making it the
more accurate and reliable model in comparison. From the
perspective of ZIB research, these findings associated with
different MLMs can be applied to determine the DC of the
doped MnO, according to the different related experimental
and elemental features before synthesizing the materials in the
laboratory. In this context, XGBoost would be the optimal
choice for designing the doped MnO,. The comparison of
actual vs. predicted DC (mAh g~ ') using three different regres-
sion models can be seen in Fig. S7 (ESIY).

3.3. Feature importance analysis

The analysis of feature importance serves as a fundamental
aspect of applying MLMs to complex systems, offering a clear
understanding of the model’s decision-making process and
providing a valuable direction for future development. Fig. 4
represents the SHAP summary by illustrating the impact of
different elemental features and publication results on the

Table 3 Comparisons of R?, RMSE and MAE values for different MLMs

Train Test
MLMs Accuracy Precision Recall Specificity MLMs R®> Adjusted R*> RMSE MAE R*> Adjusted R*> RMSE MAE
KNN 0.69 0.68 0.68 0.68 KNN  0.97 0.97 12.99  4.27 0.84 0.82 33.70 23.91
XGBoost 0.70 0.70 0.70 0.70 RF 0.91 0.91 25.56 17.35 0.86 0.84 31.64 23.81
RF 0.72 0.74 0.72 0.72 XGBoost 0.97 0.96 15.47  9.38 0.92 0.91 24.39 16.23
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Fig. 4 SHAP summary plot illustrating the importance of different
features and the associated direction of influence in predicting DC. The
rank of the features has been addressed according to their contribution to
the XGBoost regression model.

XGBoost regression model while predicting the DC of MnO, in
the presence of different dopants. The vertical axis lists the
features in descending order of importance, while the horizontal
axis shows the SHAP value (impact on the model output), and
each point represents a data sample. The color of the points
represents the feature value: red (blue) indicates high (low)
feature values. Features at the top, such as “Current”, have the
maximum influence on predictions, while features lower down,
like HV and “State”, have a lower impact. For instance, for
“Current”, high values (red points) are associated with negative
SHAP values, indicating that higher current decreases DC; con-
versely, low current (blue points) tends to increase DC. Features
like FIE show a substantial influence, with a broader range of
SHAP values, indicating their contribution to both increasing
and decreasing discharge capacity predictions, even though a
cluster can be seen in the negative SHAP values. The ratio and
MMM demonstrate a similar trend, where the impact varies
depending on the feature value.

EN exhibits a bifurcated effect, where both high and low
values influence DC in varying directions, indicating complex
interactions. IR shows an intermediate contribution to the
decision making of the DC of Zn-ion batteries. In contrast,
features like “‘State” exhibit more clustered SHAP values close
to zero, signifying a minimal effect on the output. From a
practical standpoint, the XGBoost model effectively learns from
the data, handles non-linear effects, and captures meaningful
relationships among features, while mitigating over-fitting of
the data. The partial-dependence plots in Fig. S8 (ESIf) illus-
trate its ability to model the non-linear patterns. We calculated
the SHAP values using TreeSHAP,>’*® which inherently
accounts for feature dependencies as captured by the model’s
structure and can be interpreted as interventional Shapley
values.>® However, it is important to note that TreeSHAP
primarily addresses dependencies learned by the model and
may still misestimate contributions if strong correlations are
not explicitly reflected in the tree splits.®® Overall, this SHAP

16640 | Phys. Chem. Chem. Phys., 2025, 27, 16636-16643
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analysis confirms that the XGBoost model’s predictions are
driven by features with clear physical and electrochemical
significance, enhancing both the model’s reliability and inter-
pretability. The outcomes of Fig. 4 are essential to understand-
ing the underlying factors to determine DC and can guide the
selection of the features for designing new doped MnO,.

3.4. Cohort analysis: alkali versus transition metals

In Fig. 5, we compared the SHAP-value summaries for two
distinct cohorts: (a) alkali metals (Ca, Na, K, Li, and Mg) and (b)
transition metals (Mo, Cr, V, Ti, Zn, Cu, Fe, Co, Ag, and Ni).
The mean SHAP values for each feature in our XGBoost model
on the test set highlight their mostly inverse contributions
to distinguishing these two groups. The bar chart presents
the average impact of each feature on model’s prediction. Bars
extending to the left (negative values) indicate features that
contribute to lowering the predicted output, whereas bars to
the right (positive values) increase it. Each bar is divided into
two patterns representing different element types: alkali metals
(solid fill) and transition metals (diagonal stripes), with the
number of instances for each group shown in brackets in
the legend. According to the SHAP analysis, “‘Current” exhibits
the strongest and most contrasting effect on model output
among all features. In the alkali group, “Current” has a
strongly negative mean SHAP value (—26.33), indicating that
higher current levels are responsible for the decrease in pre-
dicted DC. In contrast, in the transition group, ‘“Current”
shows a positive mean SHAP value (+16.32), implying that
higher current contributes to an increase in the predicted DC.
FIE shows a similar polarity reversal. For the alkali group, FIE
has a mean SHAP value of around —15.89. So, FIE tends to
reduce the predicted DC. On the other hand, for the transition
group, FIE has a mean SHAP value of around +21.47. So, in

-15.89 I
FIE )
lm\“m +21.47
—26.33 e
Current ANNNNNNNNNN 1632
‘ - 529
Ratio —4.93 ml
-8.88 I
EN -2.72 \N
[
+6.2
NED -2.95 W
[
M 253
MMM 422 ml
417
IR -3.16 NN
[
H+14
v -36 ml
B +211
HV -1.75 N
[
B +2.04
State -0.61) m alkali [30]
B transition [34]
-30 -20 -10 0 10 20

mean(SHAP value)

Fig. 5 Summary plot of mean SHAP values by feature and element type.
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transition samples, FIE tends to increase the predicted DC.
Other features like ratio, NED, MMM, IR, LV, HV, and state also
contribute notably, though their direction and magnitude vary
between element types. This cohort analysis helps in under-
standing both the magnitude and direction of each feature’s
contribution, as well as how these effects differ across chemical
categories.

4. Challenges and future directions

The performance of MLMs is directly related to the structure of
datasets to accurately predict the DC. The size and distribution
of the data can help to determine the most suitable MLMs for
training and testing, and the results will vary based on the
dataset. To achieve optimal ML performance, it is important to
maintain consistent conditions during data collection. In our
present study, we have experienced the following difficulties in
acquiring our dataset:

e The electrolyte is to be considered as the bridge between
the anode and the cathode. So, in our data collection, we did not
consider any information related to the electrolytes. Different
electrolytes can make a significant change in the battery
performance.

e Some anode materials were not similar. The performance
of the anode material can also change the DC.

e The ratio of the conductive additive and binder in the
preparation of the electrode can cause a significant change
in the battery performance. Therefore, in our current study,
accurately reporting these issues remains a challenge.

e We have also not categorized data relative to the phase of
MnO,, and even though the cathode material is fixed, it is still
challenging to fully report the particle size associated with the
cathode material.

e The current collector or substrate is not similar for all
the cells.

e At present, no external datasets match our specific feature
definitions and experimental protocols. Although our internal
validation approach is rigorous and supports confidence in the
results, validation using independent datasets in future studies
will be essential to confirm and further strengthen the general-
izability of our method.

In the implications of MLMs to datasets, it is essential to
consider the same environment to collect data. Most of the
time, it is very difficult to find common features from different
papers. So, to resolve this problem in collecting the data,
multiple experiments can be conducted in the same environ-
ment and under the same conditions.

5. Conclusions

In this study, we have considered the results of 57 published
papers and have applied different filtering conditions to collect
a dataset which contains 25 dopants. For each dopant, we have
collected 11 different features in which six features are related
to publication results and five features are related to the

This journal is © the Owner Societies 2025
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elemental properties of dopants. From the PCM, we have
observed that the electronegativity of the dopant can increase
the DC of MnO,. So, the dopant which has a higher electro-
negativity can be considered to improve the performance of the
MnO, cathode for ZIBs. Similarly, the DC of the MnO, cathode
enhances with FIE of the dopant. We have also applied both
classification and regression treatment to our dataset by con-
sidering different MLMs. It is observed that the RF model can
classify DC with an accuracy of 0.72 within three predefined
grades. From our regression treatment, it is found that the
XGBoost model predicts DC with an R value of 0.92, indicating
that this model effectively captures the underlying variance in
the data and yields a strong agreement between the predicted
and actual DC values. So, this MLM can be considered to
predict the performance of MnO, in ZIBs. The SHAP summary
indicates that current, FIE, ratio, and MMM are the most
influential features in optimizing the performance of the
MnO, cathode. We also conducted a cohort analysis based on
alkali and transition metal groups to examine feature impor-
tance and observed that these two groups generally exhibit
inverse effects on the model’s predictions. Therefore, the findings
of this study can assist researchers in predicting MnO, perfor-
mance based on various dopant characteristics before proceeding
with laboratory synthesis.
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