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Incoherent tunneling surface diffusion

E. E. Torres-Miyares *ab and S. Miret-Artés b

In this work, incoherent tunneling surface diffusion is analyzed by

means of the stochastic wave function (SWF) method within the

Lindblad formalism. Previous calculations based on the transition

state theory (TST) were unable to provide reasonable values of

friction coefficients for the diffusion motion of H and D adsorbates

on a Pt(111) surface. Thermal activation and tunneling regimes were

covered by varying the surface temperature, approaching the

so-called cross-over temperature. Numerical results for the total

hopping/tunneling rates are fairly good when compared to the

experimental values by assuming a simple cosine corrugation

function. No fitting has been carried out and estimated values of

the physical parameters (friction coefficients, well and barrier

frequencies and barrier height), extracted from the thermal activa-

tion regime, are used. Finally, survival probabilities on the different

wells are also reported.

Incoherent tunneling surface diffussion is a theoretical
challenge. In 2010, the Cambridge group analyzed the diffu-
sion motion of H and D adsorbates on a Pt(111) surface by
means of the spin-echo He (HeSE) scattering experimental
technique.1 In the so-called diffusive time regime (when time
is much greater than the inverse of the friction), it is
generally assumed that the so-called intermediate scattering
function (ISF) can be fitted by an exponential function of
time according to

I(K, t) = Be�a(K)t + C, (1)

where B and C are constants for a given K, which is the
momentum transfer between the probe particle and the adsor-
bate along the surface, and a(K) is the dephasing rate. A jump
diffusion model needs to be considered in order to extract
physical properties of the adsorbate-substrate interaction from

the experimental information; in particular, the dephasing rate.
One of them widely used in this context is due to Chudley–Elliott
(CE).2 In this open dynamics, the diffusion motion is governed
by several physical parameters such as surface temperature,
friction coefficient and surface corrugation function (which
controls barrier and well frequencies as well as the barrier
height). From this analysis, total hopping/tunneling rates versus
the inverse of the temperature (Arrhenius-like plots) are finally
obtained.

The corresponding measurements indicated that quantum
effects are significant at low temperatures. The range of tem-
peratures used went from 250 K up to 80 K, covering thermal
activation and tunneling regimes. The crossover temperature
was estimated to be 66 K for H and 63 K for D. Furthermore, the
diffusion motion seems to correspond to nearest neighbor
hopping for a coverage of 0.1 ML, along the [11%2] direction.
Following this CE model, deviations from nearest neighbor
random jumps for H and D between fcc hollow sites were
reported to be minimal. Diffusion dynamics was also claimed
to take place in the moderate-to-high friction regime. The
quantum TST of dissipative tunneling for temperatures above
the crossover covering tunneling and thermal activation should
be applied. From this theory and by assuming a parabolic
barrier, one should easily extract information on the corres-
ponding physical parameters. Finally, despite a very good
fitting to the experimental jumping/tunneling rates versus the
inverse of the surface temperature, the friction values reported
were unreasonable large (of the order of 1000 ps�1) and,
therefore, the energy barrier can not be the same to the one
we have used here. Another attempt to obtain friction values
was based on path integrals for a periodic potential.3 The
values reported were too small (of the order of a few ps�1)
but no information on barriers and frequencies was provided.4

In both cases, the authors obtained very good fittings but with
big numerical discrepancies, showing that good fittings are not
enough.

The tunneling rates were calculated from closed expressions
using Kramers’ theory.5 It is generally assumed that tunneling
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proceeds via a parabolic barrier.6 Within the extended TST, the
tunneling rate can be expressed as

G ¼ No0

2p
lz

oz
exp �bVz
� �

X; (2)

where o0 and o‡ are the well and barrier frequencies, respec-
tively; V‡, the barrier height; l‡, the associated normal mode
parabolic barrier frequency, known as the Kramers–Grote–Hynes
barrier frequency,7,8 which is given in terms of the friction
coefficient; and X the so-called Wolynes factor. The ratio

(l‡/o‡) is identical to xb ¼ �g=2ob þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ob

2 þ g2
p .

ð2obÞ
defined in ref. 1. The factor N is an integer describing the
number of equal directions for escape from a given well and is
determined by the direction of observation and the geometry of
the surface. For a triangular surface structure as the Pt(111),
there are three equal directions for escape. However, for the [11%2]
direction, N = 2 and not N = 3 as used in ref. 1 since one surface
site is dark along that direction.9 The Wolynes factor X is the
parabolic barrier based ratio of the quantum partition function
at the barrier to that of the well6

X ¼
Y1
n¼1

o0
2 þ ~on

2 þ ~onĝ ~onð Þ
�oz2 þ ~on

2 þ ~onĝ ~onð Þ; (3)

expressed in terms of the so-called Matsubara frequencies,
~on = 2pn/h�b, and ĝ(s), the Laplace transform of the time
dependent friction. In the classical limit, all the Matsubara
frequencies go to infinity and X - 1 and one recovers the
classical Kramers’ limit for the rate. This fact could be used to
extract, in this case, some good estimates of the physical para-
meters mentioned above. In the classical limit, the Wolynes
factor plays a minor role and therefore one could extract an
estimated value for the barrier height from two surface tempera-
tures in the linear region of the experimental Arrhenius plot
according to eqn (2). Thus, this value is V‡ = 72 meV for H and D
versus to 83 meV.1 By assuming a parabolic barrier, we have
chosen h�o0 = h�o‡ = 30 meV, where this value is issued from
HREELS measurements10 for H (the corresponding frequency for

D is given by �ho0=
ffiffiffi
2
p

due to the relation between masses). Thus,
only the friction coefficient is left (if Ohmic friction is also
assumed). From the same equation, estimated values for friction
are 140 ps�1 and 70 ps�1 for H and D, respectively; values which
seem to be much more reasonable than those previously
published1,4 and could explain, in a certain sense, why first
neighbor sites are prominent in this diffusion.

Very often, parabolic barriers are not good enough and
anharmonic effects are needed in order to extract reliable
fitting physical parameters. Moreover, in the vicinity of the
crossover temperature, some divergences are found in the
theory; the Wolynes factor diverges at the crossover tempera-
ture defined as h�bcl

‡ = 2p, where bc = 1/kTc, k and Tc being the
Boltzmann constant and the crossover temperature, respec-
tively. This divergence has been recently removed using the
uniform semiclassical energy-dependent transmission coeffi-
cient. The resulting one-dimensional theory11 has been general-
ized to dissipative systems12 and may be used to analyze the

experimental data. The uniform Wolynes factor is clearly
responsible for the change of slope around the crossover sur-
face temperature. However, the bending of the straight line
experienced by the tunneling rates around Tc is a real open
problem. One of the critical problems in the standard and
extended theory used comes from a fundamental assumption.
In order to provide closed formulas, and considering Ohmic
friction, one has to assume the separable motion between the
so-called unstable normal mode and the stable modes along
the reaction or symmetry coordinate; in other words, their
coupling should be very weak. This assumption could not take
place or be in the limit of applicability of the theory in ref. 1.
This makes far from trivial the theoretical treatment in order to
reach workable expressions for carrying out a fitting procedure.
Therefore, in general, several problems should be stressed for
this purpose. First, one is faced to fit at the same time at least 4
parameters (friction coefficient, barrier height, well and barrier
frequencies and, sometimes, anharmonic corrections to a
parabolic barrier). The dimensionality of the space of para-
meters is thus too high; the fitting procedure is carried out in a
global way, not sequential. Second, the different conditions
that the theory demands in order to be applicable to reach
closed expressions have to be added as constraints; in particu-
lar, as mentioned before, if the motion between the stable and
unstable modes can be assumed separable. And, third, even if
the divergence of the Wolynes factor has been recently
removed, it is not clear that a better theory is coming soon;
several conditions and/or constraints have also to be fulfilled in
the fitting process. In the meantime, one way to skip such
difficulties is, in our opinion, the procedure we use in this
work. Our starting point is thus different and based on the so-
called SWF method.13–15

The ISF, I(K, t), is related to the probability density r(R, t)
through a space Fourier transforms as follows13–15

IðK; tÞ ¼
ð
dReiK�RrðR; tÞ; (4)

where R gives the position of the adsorbates on the surface. As
previously carried out in this context,14,15 the SWF method is
used to solve the Lindblad equation along one of the symmetry
directions of the surface for a given K value

drðtÞ
dt
þ i

�h
Ĥ; rðtÞ
� �

¼
X
k

Âk; rÂ
þ
k

h i
þ Âkr; Â

þ
k

h in o
: (5)

A single Lindblad operator Âk is used, given by a linear
combination of the position operator x̂ and the momentum
operator p̂. In the coordinate representation, this equation
leads to an Î to stochastic differential equation which is solved
for a high number of stochastic wave functions or realizations.
The ISF can then be obtained through an average over stochas-
tic realizations

I(K, t) = he�iK�x̂(0)eiK�x̂(t)i. (6)

A potential with a single Fourier component is assumed:
V(x) = V0 cos(2px/a), with an energy barrier V‡ = 2V0 and a lattice
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length of a = 2.77 Å for the Pt(111) surface. The numerical code is
parallelized and the number of realizations Nr = 100 000 is
chosen to reach the numerical stability for the mean value
expressed in eqn (6). The numerical simulations are run up to
40 ps with a time step of 0.05 ps, by starting with an initial
Gaussian wave packet centered at x = 0, with a width of 0.79 Å
and momentum distributed according to the Maxwell–Boltz-

mann distribution
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT
p� �

. A one-dimensional space within
the interval [�4.2, 4.2] Å is used with Ns = 4096 points, resulting
in a space step of Dx = 0.002 Å. At long times, t c g�1, the ISF is
expected to decay as eqn (1) and this allows us to extract the
dephasing rate for each value of K. The cut-off time for fitting the
tail of the ISF to an exponential function of time is chosen to be
8.2 ps, following the same procedure as in the experimental case;
that is, when a certain region of stability of the dephasing rate is
observed, which has also to be of the order of the experimental
rate value.

Within the CE jump model, if a simple Bravais lattice is
assumed as well as instantaneous jumps between different sites,
and only transitions between first neighbors are going to be
allowed (the diffusion dynamics is assumed to be one-dimensi-
onal on a periodic substrate), a Pauli master equation can be
written in terms of probabilities as4

:
Pn(t) = G+

n�1P(t)
n�1 + G�n+1P(t)

n+1 � (G+
n + G�n )Pn(t), (7)

with G�n�1 being the tunneling/hopping transition rates from
the (n 8 1)-th well to the n-th well and � denotes if diffusion
goes to the right or to the left, respectively. If the initial
condition is such that Pn(0) = dn0 and G = G+ + G� describes
the total rate (with G+

n = G�n , G+
n = G+, and G�n = G�), then the

solution is given by

Pn(t) = In(Gt)e�Gt, (8)

where In(x) is the modified Bessel function of integer order n.
Thus, Pn(t) gives us then the probability to stay in the nth-well of
the binding site at time t. The ISF can then be obtained from

IðK ; tÞ ¼
X
n

PnðtÞeiKjjn; (9)

where K|| = Ka cos(b), b being the angle formed by the direction of
observation and diffusion symmetry direction (in our case, b = p/6
for the two symmetry directions allowed by K). The ISF can also
be recast as

IðK; tÞ ¼ e�Gð1�cosKjjÞt ¼ e�Gt
Xþ1
n¼�1

InðGtÞe
inKjj ; (10)

and

G ¼ aðKÞ
1� cosðKa cosðp=6ÞÞ: (11)

This analytical expression is quite different from the one
used in ref. 4, as they arise from different theoretical
frameworks.

In Fig. 1, Arrhenius-like plots of the temperature depen-
dence of the tunneling/hopping rates issued from the

experimental results1 for H (red circles) and D (red triangles)
diffusion and momentum transfer of K = 0.86 Å�1 are plotted.
Numerical simulations are also included coming from the SWF
method (NS blue points). The experimental total hopping rates
have been supposed to have three directions of diffusion but,
according to the direction of observation chosen, only two are
possible.9 Thus, these ones have been multiplied by a factor 2/3
in order to take into account that in this case N = 2. As can be
seen, the agreement is fairly good for all surface temperatures;
in particular, at low temperatures close to the cross-over one.
The hopping rates for D are consistently smaller than those for
H across the entire temperature range, indicating a clear mass
effect. For H diffusion, if one assumes that the Arrhenius
classical law is due to thermal activation only, one then could
compare the corresponding hopping rate to the experimental/
numerical one at different surface temperatures. Thus, for
214 K, hops by thermal activation dominate 100–90%; for 80 K,
only hops by tunneling predominates, around 90%; and for
121 K, hops for thermal activation and tunneling are around
30% and 70%, respectively.

Finally, another useful information which can be extracted
from the experimental results for the total hopping/tunneling
rates is the probability to stay in a given surface site (survival
probability). This information has not been given so far in this
context. From eqn (8), this probability as a function of time is
easily calculated once the tunneling/hopping rates are known.
In Fig. 2, the time dependence of the probability of staying at
the zero, P0(t) (blue curve), first, P1(t) (black curve), and second,
P2(t) (red curve), well are plotted for H adsorbates on a Pt(111)
surface at three different temperatures, covering the classical
and quantum regimes: 214 K, 121 K and 80 K. These calcula-
tions are carried out using the experimental tunneling rates

Fig. 1 Arrhenius-like plots of the temperature dependence of the tunnel-
ing rate issued from the experimental results shown in ref. 1 for H diffusion
(red circles) and D (red triangles) diffusion at a momentum transfer of
K= 0.86 Å�1. Numerical simulations (NS blue points) using a energy barrier
of V = 72 meV and a friction coefficient of 140 ps�1 for H (blue square) and
70 ps�1 for D (blue star) are also plotted and issued from the SWF method
(assuming the same friction, barrier height, and vibrational frequencies
across all temperatures).
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shown in Fig. 1. As clearly seen in this figure, at 214 K and
121 K, P0(t) and P1(t) suddenly start with a maximum probability
and decreasing with time very rapidly due to the thermal activa-
tion (classical regime). Pn(t) functions could also be seen as
survival probabilities to remain in a given well. Obviously, P2(t)
displays the same pattern but with a smaller maximum value.
The third temperature displays a different time behavior since
we are in the quantum regime. Here it is supposed that tunnel-
ing plays a major role and the sudden increase at very short
times is not longer observed. Furthermore, the decreasing of
P1(t) and P2(t) with time is not so rapid because the tunneling
diffusion takes time since G is small. The asymptotic values
observed for the survival probabilities indicate us that at a
sufficiently long time these probabilities are nearly constant
where thermal equilibrium is already reached. At these long
times hopping/transition dynamics could repopulate surface
sites such as 0, 1, 2, etc.

Along this work, we have focused on a theoretical challenge,
the incoherent tunneling diffusion. The choice of H and D
diffusion by a Pt(111) surface in order to illustrate this transi-
tion is by no means arbitrary. Unreasonable friction values were
reported as well as the standard and extended TST for this case
is now questionable. The SWF method within the Lindblad
formalism is able to provide reasonable results for the tunnel-
ing/hopping rates as a function of the inverse of surface
temperature by assuming a simple cosine corrugation function.
Physical parameters for friction, well and barrier frequencies as
well as barrier height are estimated from the diffusion

dynamics at high surface temperatures. Clearly, this numerical
method is not convenient at all for a fitting procedure but,
waiting for a better analytical theory within the TST formal-
ism, it has shown to be a very good alternative, apart from
being an exact theory within the Markovian approach.
Obviously, ab initio calculations need to be done for a better
description of this tunneling diffusion. ref. 16 should be a
good starting point. For other systems, with a different adsor-
bate or surface symmetry, may require going beyond a 1D
model, and the hopping rates cannot be captured by a simple
scaling factor. Furthermore, it is also very illustrative to show
survival probabilities for different wells which decay exponen-
tially with time, exp(�Gt).
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