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Excited-state methods based on state-averaged
long-range CASSCF short-range DFT†

Benjamin Helmich-Paris, *a Erik Rosendahl Kjellgrenb and
Hans Jørgen Aa. Jensen b

In the present work we propose two distinct state-averaging (SA)-based methodologies for the calculation

of excited states, in conjunction with the long-range complete active space self-consistent field (CASSCF)

short-range density functional theory (DFT) approach (CAS-srDFT). The state-specific density ansatz, termed

SA-CAS-srDFT, initially determines the variational parameters of an approximate srDFT functional that

operates with state-averaged densities. Subsequent to convergence, the CAS-srDFT energies of each state

are computed from the state-specific one- and two-body densities. The second approach is termed

configuration interaction (CI)-srDFT, for which a first-order correction is added to the approximate SA

density CAS-srDFT functionals. Unlike the state-specific density approach SA-CAS-srDFT, diagonalisation of

the first-order corrected effective Hamiltonian CI matrix yields orthonormal CI solutions for every state. In

both approaches, the total one-body and on-top pair density (OTPD) was employed for the final energy

evaluation. It was observed that the CI-srDFT approach gives physically correct potential curves for ethylene,

in contrast to SA-CAS-srDFT. Moreover, the CI-srDFT approach demonstrates a reduced dependence of

excitation energies on the number of states in the average when compared to the SA-CAS-srDFT method.

The accuracy of the various CAS-srDFT methods was investigated for 139 singlet excitation energies of 28

typical organic chromophores. The two excited-state approaches in conjunction with multiconfiguration

pair-density functional theory (MC-PDFT) were also employed in the benchmark study for comparing the

accuracy with CAS-srDFT. It was found that CI-srDFT methods are more accurate than their SA

counterparts, giving a mean absolute error of just 0.17 eV when using the sr-ctPBE functional. The accuracy

of the new SA-based CAS-srDFT methods was observed to be impressive for organic molecules; however,

this was not found to be transferable when investigating excited states of transition-metal complexes. In

fact, none of the CASSCF-DFT excited-state methods introduced in this study, and also MC-PDFT, were

found to provide a consistent improvement of CASSCF excitation energies.

1 Introduction

The calculation of ground- and excited-state energies at any
point on the potential energy surface (PES) remains an active
area of research in computational chemistry. In particular,
when dealing with points on the PES that are far away from
equilibrium, reasonable approximations of the molecular
Schrödinger equation must be based on wavefunctions that
are expanded in multiple determinants.1 Such so-called multi-

reference (MR) or multi-configurational (MC) methods are also
needed when dealing with open-shell low-spin systems that are
frequently found in transition metal and lanthanide-containing
complexes. In such complexes, low-lying excited states are often
reached by metal-centered electronic transitions that feature
multiplet structures due to their degeneracies. These degen-
eracies are, in most cases, not properly described by electronic
structure methods based on a single Hartree–Fock (HF) or
Kohn–Sham (KS) determinant.2

From a computational and conceptual standpoint, the most
elementary MC approach is multi-configurational self-
consistent field (MCSCF) theory. This theory expands the
wavefunction linearly in a multitude of spin-adapted Slater
determinants, designated as configuration state functions
(CSFs), also known as configuration interaction (CI) expansion.
MCSCF minimizes the energy with respect to variations in the
molecular orbital and CI expansion coefficients.3 Relevant CSFs
can be constructed with the help of an active space that is
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defined by a preset number of electrons and valence orbitals.
For the popular complete active space (CAS) approach, the
construction of CSFs is based on all possible occupations of
AS orbitals by AS electrons.4 However, the exponential growth
in the number of CSFs when employing the CAS expansion
necessitates the limitation of the number of active orbitals and
electrons to a relatively modest figure, such as 20, in compar-
ison to the total number of electrons and orbitals typically
encountered in molecular and even atomic systems. As a result,
the accuracy of energies and molecular properties obtained
from CASSCF calculations is inherently constrained.

One method by which the accuracy of CASSCF can be
enhanced is to incorporate a substantial number of orbitals
within the active space, in conjunction with the introduction of
approximations to the underlying full configuration interaction
(FCI) expansion. Over the past three decades, a multitude of
approximate FCI methods have been developed and successfully
utilized in larger systems, without substantial compromise to the
accuracy. The most popular approaches are based on density
matrix renormalization group,5–10 quantum Monte Carlo,11–13 or
selected CI algorithms.14–19 Some of these approaches have also
been combined with orbital optimization,20–24 a necessity of the
CASSCF wavefunction model. However, all of these approximate
FCI approaches still feature an exponential scaling with the
system size and are rather intended for calculations on strongly
correlated systems, in particular those with many spin-coupled
centers,25,26 than as a universally applicable, high-level correlation
method.

The electronic structure methods with highest accuracy for
so called multi-reference situations, we have just elaborated on,
are base on coupled cluster (CC) theory. The most general and
numerically most stable and affordable MRCC approaches
employ the internal contraction (ic) approximation27 for which
cluster amplitudes are determined for a CAS-CI state rather
than individual CSFs.28–30 Though the scaling of ic MRCC
methods with the system size N is still equivalent to their
single-reference analogues, e.g. O(N6) for the CC singles and
doubles model, the prefactor of state-of-the-art MRCC imple-
mentations is enormous due to the huge increase in the
number of CC equations to be solved for multi-reference rather
than the single-reference case. Even to date, MRCC calculations
are usually only performed by specialists using their own
implementations.

A much more practical alternative to these highly correlated
MRCC methods are the fifth-order scaling internally contracted
MR second-order perturbation theory (PT2) approaches
CASPT231,32 and n-electron valence (NEV) PT2.33–35 Due to their
comparatively small computational prefactor, CASPT2 and
NEVPT2 have become popular computational methods that,
nowadays, are applied by non-specialists for various types of
calculations, almost in a routine fashion. In particular, the non-
iterative NEVPT2 method can be efficiently implemented in an
integral-direct way without any need to store large multi-
dimensional tensors, which unfortunately cannot be avoided
for the iterative CASPT2 method unless the locality of electron
correlation is exploited.36

Despite their success, molecular property calculations with
MRPT2 methods are still to date restricted to nuclear first
energy derivatives37–40 for geometry optimization and molecu-
lar dynamics simulations.41 This limitation can be attributed,
in part, to the inherent complexity of ic MR wavefunction
methods. For first-order properties the coupled-perturbed
MCSCF equations42,43 must be solved to ensure that the under-
lying CASSCF solution is preserved in the property calculation
by means of Lagrangian multipliers.44,45

Recently, multi-reference density functional theory (DFT)
methods have emerged as a potentially viable alternative to
MRPT2 theories, particularly those variants that are based on
variational energy minimizations. A notable advantage of var-
iational MCSCF-DFT methods is that they do not necessitate
the solution of costly coupled-perturbed MCSCF linear
equations42,43 for first-order properties such as nuclear gradi-
ents. Examples of this category include the long-range (lr)
MCSCF short-range (sr) DFT method46 (MC-srDFT) and the
variational version47 of multiconfiguration pair-density func-
tional theory (MC-PDFT).48,49

In addition to nuclear gradients, a pivotal quantity that must
be calculated by quantum chemical methods is excitation
energies. In the context of non-variational MC-PDFT,48 it was
demonstrated early on that excitation energies can be readily
obtained. This is due to the fact that the MC-PDFT energy
functional can be evaluated from state-specific density matrices
derived from the state-averaged (SA) MCSCF solution. We
follow the notation of the original article48 and denote this
method SA-MC-PDFT. A similar approach could have been
adopted for MC-srDFT, although the primary focus has been
on preserving the variational nature of the method.50,51 MC-
srDFT excitation energies were obtained from the linear-
response eigenvalue equations52–54 which offer many benefits
for computing vertical excitation energies.55 As it is not clear yet
how to describe conical intersection with the electronic ground
when using linear-response or propagator methods,56 state-
averaged or multi-state multi-reference methods57–63 are pre-
dominantly used when studying excited-state potential energy
surfaces in photochemical investigations.

In this study, we examine a new methodology for computing
excitation energies for MC-srDFT when employing a state-
averaging formalism. Initially, an averaged MC-srDFT energy
functional with fixed, user-defined weights for each state is
variationally minimized using the same orbitals for each state.
This necessitates an approximate treatment of the srDFT
Hartree-exchange (HX) and exchange–correlation (XC) terms
since those terms feature a non-linear dependence on the
densities which would lead to non-orthogonal configuration
interaction solutions. We avoid this issue by computing the HX
and XC terms from state-averaged densities when minimizing
the state-averaged energy MC-srDFT functional. Following func-
tional minimization, excitation energies are either computed
from state-specific densities, as pursued for SA-MC-PDFT,48 or
obtained from diagonalizing a first-order corrected linearized
CI-srDFT matrix.64 The accuracy of both approaches when
computing potential energy surfaces, vertical singlet excitation
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energies in organic molecules, and also transition-metal com-
plexes is analyzed. Finally, we give a perspective on how to
obtain further improvements.

2 Theory
2.1 Long-range CASSCF short-range DFT

The multi-configurational (MC) short-range (sr) DFT method46

combines the long-range (lr) part of the MCSCF energy with the
short-range part of the DFT energy

E = Elr + Esr (1)

= h0|Ĥlr|0i + Esr-Hx + Esr-xc (2)

The MC-srDFT energy for a single state |0i is expanded in
spin-adapted Slater determinants also referred to as configu-
ration state functions (CSF) |FIi:

j0i ¼
X
I

CI FIj i (3)

In this work, we will only consider CAS wavefunctions
for MC-srDFT, that is, |0i is expanded in all possible CSF
that are generated by distributing a given number of electrons
among a given number of active valence orbitals. Other
MC models than CAS for MC-srDFT have been presented
previously though.65 For a given MC wavefunction |0i, the lr
MC energy Elr is computed as the expectation value of the lr
Hamiltonian

Ĥ lr ¼
X
pq

hpqÊpq þ
1

2

X
pqrs

glrpqrsêpqrs þ Vn (4)

for which we employed the usual spin-summed singlet excita-
tion operators

Êpq = â†
paâqa + â†

pbâqb (5)

êpqrs = ÊpqÊrs � dqrÊps (6)

The summation indices p, q, r, s label general molecular
orbitals (MO) fp(r) with r being the position of an electron. The
lr Hamiltonian in (4) contains the nuclear repulsion potential
Vn, the full part of the one-electron Born–Oppenheimer Hamil-
tonian but only the lr part of its two-electron Coulomb repul-
sion integrals

glrpqrs ¼
ðð

f�p r1ð Þfq r1ð Þ
erf mr12ð Þ

r12
f�r r2ð Þfs r2ð Þdr1dr2 (7)

carved out by means of the error function erf.66,67 The
expectation value

0 Ĥ lr
�� ��0� �

¼
X
pq

hpqDpq þ
1

2

X
pqrs

glrpqrsdpqrs þ Vn (8)

can be easily evaluated in terms of one- and two-body
densities

Dpq = h0|Êpq|0i (9)

dpqrs = h0|êpqrs|0i (10)

The srDFT energy contribution comprises two terms: (i) the
Hartree-exchange term

Esr-Hx ¼ 1

2

X
pqrs

Dpq gsrpqrs � a
1

2
gsrpsrq

� �
Drs (11)

gsrpqrs ¼
ðð

f�p r1ð Þfq r1ð Þ
erfc mr12ð Þ

r12
f�r r2ð Þfs r2ð Þdr1dr2 (12)

with Becke’s adiabatic connection model68 parameter a and the
short-range part of the two-electron integrals gsr

pqrs, that employs
the complementary error function erfc(x) = 1 � erf(x), and (ii) a
short-range exchange–correlation energy term Esr-xc that is
evaluated from the MC total one-electron density

rðrÞ ¼
X
pq

f�pðrÞDpqfqðrÞ (13)

and may also depend on the density gradient invariant,69 the
local kinetic energy density,70 or the on-top pair density48,71–74

(vide infra).
The range-separation parameter, or short-range damping factor,

m controls in which proportion the MC and the DFT energy are
added together. Small values of m favor the srDFT terms and
converge to the Kohn-Sham DFT energy as m approaches zero.
Conversely, the lr MCSCF energy becomes the dominating contribu-
tion for large m and the MCSCF energy is restored as m converges to
N. A smooth convergence towards the upper and lower boundaries
must be ensured when designing sr XC functionals.

In order to treat open-shell systems that have different
densities for the a and b electrons, the short-range exchange–
correlation energy can be formulated with the MC total density
r(r) and spin density m(r)75

mðrÞ ¼
X
pq

f�pðrÞDS
pqfqðrÞ: (14)

The latter is computed from the one-body spin density

DS
pq = h0|T̂pq|0i (15)

that involves the MS = 0 component of the triplet one-body
excitation operator

T̂pq = â†
paâqa � â†

pbâqb. (16)

Employing the total and spin density together for the XC energy
gives rise to energy terms originating from different spin multipli-
cities. This results inevitably in so-called spin contamination, an unplea-
sant artifact known from spin-unrestricted single-reference theories.

To avoid problems caused by such a spin-density approach,
spin polarization can also be described by means of the on-top
pair density48,71–73 (OTPD) that reads

PðrÞ ¼
X
pqrs

f�pðrÞfqðrÞdpqrsf�r ðrÞfsðrÞ: (17)

The OTPD contains a product separable and a non-
separable part

PðrÞ ¼ 1

2
r2ðrÞ þ lðrÞ: (18)
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The latter is known as the two-body density cumulant76,77 of
the on-top pair density l(r). The two-body density cumulant for
MCSCF wavefunctions

lðrÞ ¼
X
tuvw

f�t ðrÞfuðrÞltuvwf�vðrÞfwðrÞ (19)

ltuvw ¼ dtuvw �DtuDvw þ
1

2
DtwDvu (20)

is only non-zero for active orbitals, denoted by the indices t, u,
v, w, which makes an MO-based evaluation still efficient despite
the four active indices.

2.2 On-top pair density functionals

To establish a dependence of existing XC functionals on the
OTPD, it is insightful to investigate the relation between the
one-body densities for a and b electrons ra and rb, respectively
and the total one-body density r and on-top pair density P(r).
The following relations hold

r(r) = ra(r) + rb(r) (21)

P(r) = 2ra(r)rb(r) (22)

for a single-determinant wavefunction but are approximations
for MC wavefunctions. When employing eqn (21) and (22), the
densities ra and rb can be expressed in terms of r(r) and P(r):

ra=b ¼
1

2
r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 P� 1

2
r2

� �s !
(23)

¼ 1

2
r�

ffiffiffiffiffiffiffiffiffi
�2l
p� 	

(24)

Note that we omitted the position vector dependence for the
densities in the equations above and will continue to do so for
better readability.

For a single determinant, the radicand of eqn (23) turns into
the squared spin density

�2l = (ra � rb)2 = m2. (25)

Note that from eqn (25) the spin density

m ¼
ffiffiffiffiffiffiffiffiffi
�2l
p

(26)

and spin polarization z = m/r are readily accessible. The ra and
rb first derivatives, needed for generalized gradient approxi-
mation (GGA) functionals, can also be formulated in terms of
the total density and OTPD, though it is customary to drop the
dependence on the OTPD first derivatives:48

rra ¼
1

2
rrð1þ zÞ (27)

rrb ¼
1

2
rrð1� zÞ (28)

A consequence of eqn (25) is that the densities ra and rb can
never be complex for a single-determinant wavefunction. How-
ever, this does not hold anymore when using MC one- and two-
body densities for computing ra and rb in eqn (23). For some

positions r, ra and rb become complex because the two-body
density cumulant matrix (20) is indefinite. For that reason,
several authors developed different strategies to handle points
with complex densities.48,49,72,78–80

In this work, we adhere to established XC functionals that
were developed primarily for being used with single-reference
Kohn–Sham determinant methods. Those functionals can still
be employed in a MC calculation by using the MC one-body (9)
and two-body density (10). For points with a negative OTPD
cumulant (19), a and b densities are computed from eqn (23)
and the XC energy is readily available when using existing
single-reference XC functional implementations. This proce-
dure is often referred to as functional translation in MC pair-
density functional theory (MC-PDFT).48 In MC-PDFT the Kohn–
Sham DFT energy is evaluated using the one-body density
matrix for the one-electron and Hartree term and the one-
body density and OTPD for the exchange–correlation energy:

EMC-PDFT ¼ Vn þ
X
pq

Dpq þ
1

2

X
pqrs

DpqgpqrsDrs

þ Exc½r;P;rr�

(29)

Note that functional derivatives of Exc with respect to r and
P are also easily accessible by applying the chain rules.

For points with a positive OTPD cumulant (19), the spin
density m and spin polarization

z ¼ i

ffiffiffiffiffiffiffiffiffi
�2l
p

r
¼ iZ (30)

are purely imaginary and the a and b densities

ra ¼
1

2
rð1þ iZÞ (31)

rb ¼
1

2
rð1� iZÞ ¼ r�a (32)

are pairs of complex conjugates. The gradients of the complex a
and b densities are given in full analogy to eqn (27) and (28)
through

rra ¼
1

2
rrð1þ iZÞ (33)

rrb ¼
1

2
rrð1� iZÞ ¼ rr�a (34)

for which the gradient of the OTPD is also neglected in this
work.48,80 In case of complex densities and density derivatives,
those complex quantities are substituted into the existing
single-reference XC functionals. Then, the energies are refor-
mulated in terms of r and P.

Though the densities and their derivatives might be
complex, the final X and C energies must be real as already
mentioned by Becke et al.72 and also recently Rodrigues et al.80

The exchange energy computed from a complex pair of densi-
ties and density derivatives is real, indeed, due to the spin
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scaling relationship.81

Ex ¼ 1

2
Ex 2ra; 2rra½ � þ Ex 2rb; 2rrb

h i� 	
(35)

¼ 1

2
Ex 2ra; 2rra½ � þ Ex 2ra; 2rra½ �ð Þ�ð Þ (36)

= Re(Ex[2ra,2rra]) (37)

Though, it must be assumed here that X functionals are
constructed exclusively from entire functions which is usually
the case for established functionals. It is less obvious that the
correlation energy computed from a complex pair of densities
and density derivatives is real because, to our best knowledge,
we assume that there is not such a universal scaling relation for
the correlation term. Yet, ra and the complex partner r�a, as well
as their corresponding density derivatives, enter Ec in the same
manner. Thus, the final correlation energy must be real assum-
ing that Ec is composed of entire functions.

In this work, we have formulated the short-range local
density approximation (LDA) and GGA functionals for both
the real and the imaginary spin density cases. For srLDA
exchange82 and correlation83 and the srGGA correlation
functionals,69,84 we tried to minimize the number of operations
with complex numbers as much as possible trying reduce to
real intermediates as early as possible. We followed the strate-
gies of Rodrigues et al. presented in the ESI† of ref. 80. Only for
srGGA exchange,69,84 the number of terms became too invol-
ving so that we employed complex alpha density (31) and
gradient (33) and used the real component of the final
exchange energy intermediate as given in eqn (37).

The srLDA exchange82 and correlation energies83 for a con-
stant density r = 1 and sr damping factor m = 0.4 but varying
spin polarization z are shown in Fig. 1a and b, respectively. As
can be clearly seen, the magnitude of XC energies with complex
densities is in the same ballpark as the ones with real densities.
We conclude that omitting those complex-density contribu-
tions would be a harsh approximation whenever the number
of points with a positive OTPD cumulant (negative radicand in
rhs of eqn (26)) becomes significant. This will be discussed later
in the context of excited-state CASSCF methods.

For the XC energies and their functional derivatives, we
needed to generate computer code for which we used Python’s
SymPy module85 for the following functionals with72,80 and
without48,71 (complex) functional translation: LDA: Slater
exchange,86 VWN correlation;87 PBE: PBE exchange and corre-
lation;88 srLDA: ITYH exchange82 and PMGB correlation;83

srPBE: GWS exchange and correlation.69,84 Note that we follow
the convention that acronyms of translated functionals48 are
preceded by the letter t, e.g. tPBE, while for complex translated
functionals80 ct is used for that purpose, e.g. ctPBE.

As for the original hybrid PBE0 functional,89 the (c)tPBE0,
srPBE0, and sr-(c)tPBE0 functionals are trivially obtained by
scaling the PBE exchange energy by the factor 3/4 and, as given

in eqn (11), by adding the exchange energy scaled by the factor
a = 1/4.

The evaluation of those functionals and their derivatives is
usually numerically robust if the evaluation is omitted for r with
tiny densities r(r) and/or density derivatives. The only exception
is the ITYH short-range exchange functional82

Ex;ITYH ¼ �3
4

3

p

� �1=3ð
rðrÞ4=3K srdr (38)

Ksr ¼ 1� 8

3
a

ffiffiffi
p
p

erf
1

2a

� ��

þ 2a� 4a3

 �

exp � 1

4a2

� �
� 3aþ 4a3

� (39)

that is part of the srLDA and srPBE functionals. To obtain a
numerically stable computer implementation of Ksr, we had to
distinguish between three cases when evaluating the short-
range damping factor in eqn (38) depending on the magnitude
of a = m/(2kF) with kF = (3p2r)1/3:

Fig. 1 The srLDA exchange82 (a) and correlation energies83 (b) for a
constant density r = 1 and short-range damping factor m = 0.4 but varying
spin polarization z.
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� Low density r and/or high sr damping m: after inserting the
series expansions of the erf and exp functions in eqn (39) and
simplifying the terms, we arrive at

K sr ¼ �2
X1
k¼1

ð�1Þk
k!

1

ð2kþ 1Þðkþ 2Þðkþ 1Þ
1

2a

� �2k

: (40)

In our implementation, we use eqn (40) whenever 1/(2a) o
tlower and truncate the series at k = 5.
� High density r and/or low sr damping m: if 1/(2a) 4 tupper,

the sr damping factor reduces to

K sr � 1� 8

3
a

ffiffiffi
p
p
� 3aþ 4a3


 �
(41)

� Moderate density r and sr damping m: the original func-
tional using eqn (39) is employed for all other values of a.

Using eqn (39)–(41) for different regimes of 1/(2a) defined by
tlower and tupper avoids the combined evaluation of the erf and
exp function for cases they become numerically unstable. We
have chosen tlower = 0.1 and tupper = 7.0 which lead to negligible
errors in the exchange energy and a seamless transition
between the three regions.

2.3 Long-range CASSCF short-range DFT energy first and
second derivatives

In this work, the CAS-srDFT energy is minimized with respect to
variations in the orbital and CI coefficients using the trust-
radius augmented Hessian (TRAH) method – a restricted-step
second-order optimization that was recently developed for SCF
and CASSCF.90,91 Variations in the orbital space are expressed
in terms of orbital rotation operators

k̂ ¼
X
p4 q

kpqÊ
�
pq (42)

Ê�pq = Êpq � Êqp (43)

while variations in the configuration space are expressed
through state-transfer operators

Ŝ ¼
X
i4 0

Si jiih0j � j0ihijð Þ (44)

that perform rotations between the current solution |0i and
‘‘states’’ of an orthonormal complement space {|ii} that
includes all CSF of the CAS-CI wavefunction expansion but
projects out |0i.52 For second-order methods as TRAH, the
final, minimum energy E is approximated by a truncated Taylor
expansion starting from the current solution |0i

E � E0 þ xTgþ 1

2
xTHx (45)

and includes also first g and second energy derivatives H while
x = {k,S} being a composite vector containing variational
parameters for the orbital (k) and configurational space (S).
More details on how to minimize either the ground-state or the
state-average CASSCF energy with TRAH can be found in ref. 91.

At the moment, the variational energy minimization is
limited to the spin-density approach.75 Partial energy deriva-
tives with respect to the OTPD are still under development and
will be reported elsewhere.

The second-order energy minimization algorithm TRAH and
others92–94 require energy first derivatives as well as second
derivatives that are transformed by trial vectors also known as
sigma vectors. The lrCASSCF energy first derivatives (gradient
elements) and sigma vectors are computed in the same way as
for CASSCF except for the fact that the lr Coulomb integrals (7) are
employed. Those range-separated integrals are generated by the
same recursive scheme95 as the regular Coulomb integrals, though
use a m-dependent linear combination of Boys functions.96

The srDFT terms contribute to the orbital and configuration
energy gradient with the following terms,

@Esr

@kpq

� �����
�
¼ 2 0 Êpq; V̂

sr
� 
�� ��0� �

(46)

@Esr

@Si

� �����
�
¼ �2 i V̂ sr

�� ��0� �
; (47)

by means of an effective one-electron potential

V̂ sr ¼
X
pq

V sr
pqÊpq (48)

Vsr
pq = Vsr-H

pq + Vsr-xc,r
pq (49)

with a short-range Hartree-exchange and short-range XC term

V sr-Hx
pq ¼

X
rs

gsrpqrs �
a

2
gsrpsrq

� 	
Drs (50)

V sr-xc;r
pq ¼

ð
@Esr-xc½r�

@r

� �����
�
f�pðrÞfqðrÞdr: (51)

The sr XC potential matrix is only given here and in the
following for LDA functionals due to notational convenience.
Additional spin-density contributions are given in the Appendix.

Concerning the gradient calculation, the effective one-
electron singlet potential matrix Vsr

pq of srDFT is processed
exactly as the inactive Fock matrix of lrCASSCF

f I;lrpq ¼ hpq þ
X
i

2glrpqii � glrpiiq

� 	
(52)

while i runs over all doubly occupied inactive MO. Thus, in our
implementation we simply add Vsr

mn to the inactive Fock matrix
giving rise to

fmn = fI,lr
mn + Vsr

mn (53)

when building those two intermediates in the atomic orbital
(AO) basis denoted by m and n. Once such a modified inactive
Fock matrix is available in the MO basis, the evaluation of the
electronic gradient terms is pursued exactly as for CASSCF.91

When adding the Vsr matrix to the lr inactive Fock matrix
(52), both the Hartree-exchange and the XC potential matrices
must be preserved for the energy evaluation as shown in the

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/2
8/

20
26

 1
1:

59
:2

4 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cp00881f


This journal is © the Owner Societies 2025 Phys. Chem. Chem. Phys., 2025, 27, 15331–15349 |  15337

following. Without the lr/sr joint inactive Fock matrix fpq, the
energy reads

E ¼ Vn þ
X
i

hii þ f I;lrii þ Vsr-Hx
ii

� 	

þ
X
tu

f I;lrtu þ
1

2
V sr-Hx

tu

� �
Dtu

þ 1

2

X
tuvw

glrtuvwdtuvw þ Esr-xc

(54)

while employing the joint intermediate we get

E ¼ Ecor þ
X
tu

ftuDtu þ
1

2

X
tuvw

glrtuvwdtuvw (55)

Ecor ¼ Vn þ
X
i

hii þ fii � V
sr-xc;r
iið Þ

�
X
tu

1

2
V sr-Hx

tu þ V
sr-xc;r
tu

� �
Dtu:

(56)

The latter formulation of the lrCASSCF srDFT energy in
eqn (55) has been chosen deliberately and will also be relevant
for the excited-state CI-srDFT approach discussed in
Section 2.4.

The srDFT contributions to the sigma vectors are
given below:

spqðk0Þ ¼
X
rs

@2E

@kpq@krs

� �����
�
k0rs

¼ 0 Ê
�
pq;
b~Vsr

h i��� ���0D E
� 1

2
0 Ê

�
pq; k

h i
; V̂ sr

h i��� ���0D E (57)

spqðS0Þ ¼
X
i

@2E

@kpq@Si

� �����
�
S0i

¼ � 0 Ê
�
pq; V̂

sr
h i��� ���SD E

� S Ê
�
pq; V̂

sr
h i��� ���0D E

þ 0 Ê
�
pq;
b�V sr

h i��� ���0D E
(58)

siðk0Þ ¼
X
rs

@2E

@krs@Si

� �����
�
k0rs

¼ � 2 i b~Vsr
��� ���0D E (59)

siðS0Þ ¼
X
j

@2E

@Si@Sj

� �����
�
S0j

¼ 2 i V̂sr
�� ��j� �

� dij 0 V̂sr
�� ��0� �
 �

� 2 i �̂V sr
��� ���0D E (60)

In eqn (57)–(60) the following intermediates were used:b~V sr ¼
X
pq

~V sr
pqÊpq (61)

b�V sr ¼
X
pq

V sr
pq½ �D�Êpq (62)

~V sr
pq ¼

X
r

kprV sr
rq½D� � V sr

pr½D�krq
� 	

þ V sr
pq½ ~D� (63)

~Dpq ¼
X
r

kprDrq �Dprkrq

 �

(64)

%Dpq = �h0|Êpq|Si � hS|Êpq|0i (65)

The last term of eqn (58) can be computed together with the
first term of eqn (57) and, likewise, last term of eqn (60) can be
computed together with the first term of eqn (59) if a total
derivative potential operator is composed

V̂
0sr ¼ b~V sr þ b�V sr ¼

X
pq

V
0sr
pq Êpq (66)

V
0sr
pq ¼

X
r

kprV sr
rq½D� � V sr

pr½D�krq
� 	

þ V sr
pq½D0� (67)

that includes the total derivative density matrix.

D0pq ¼ ~Dpq þ �Dpq: (68)

With that formulation, the implementation of srDFT sigma
vector becomes straightforward since Vpq

0sr is processes exactly
as the orbital-derivative inactive MO Fock matrix used for (lr)
CASSCF.91,93,97 Hence, for the implementation of the srDFT
sigma vector we just need to add the sr potential matrix to the
lrCASSCF inactive Fock matrix eqn (53), as discussed already
earlier for the srDFT gradient part, and the sr total derivative
potential matrix to the lrCASSCF orbital-derivative inactive MO
Fock matrix is given by

fmn[D0] = fI,lr
mn [D0] + Vsr

mn[D0] (69)

in the AO basis. The Hartree-exchange (HX) and (LDA) XC
contribution to the total derivative srDFT potential matrices
are given by

V
0sr-Hx
pq ¼

X
rs

gsrpqrs �
a

2
gsrpsrq

� 	
D0rs (70)

V
0sr-xc;rr
pq ¼

ð
@2Exc½r�
@r2

� �����
�
r0ðrÞf�pðrÞfqðrÞdr (71)

For the XC contribution (71) the total derivative one-electron
density

r0 ¼
X
pq

X
r

kprf
�
rfq � f�pfrkrq

� 	
Dpq þ

X
pq

f�p �Dpqfq (72)

is used.
The sr XC sigma vector terms originating from using the

spin-density formalism can be found in the Appendix.

2.4 CASSCF-DFT for excited states

The most popular and most straightforward approach to access
CASSCF excitation energies is the so-called state averaging (SA)
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approximation. The SA-CASSCF energy

ESA ¼
X
G

wGE
G (73)

uses predetermined, user-given state weights wG and deter-
mines orbital and CI coefficients by minimizing ESA with
respect to variations of those wavefunction coefficients. An
important feature of the SA approximation is that wavefunc-
tions of multiple states share the same ‘‘averaged’’ orbitals but
maintain individual, state-specific CI coefficients. As those CI
coefficients are the eigenvectors of the CAS-CI matrix when
using SA, they are easily obtained from a full or iterative
diagonalization.

In the original, non-variational MC-PDFT ansatz, excited-
stated energies are also easily accessible. The SA-CASSCF is
obtained first, and then MC-PDFT energies are evaluated with
the one- and two-body densities computed from CI solutions of
every state. We refer to this state-specific density approaches as
SA-MC-PDFT and SA-srDFT. Note that for MC-PDFT also so-
called multi-state theories were developed62,63 that are not
further discussed here in the present article.

Such an SA ansatz is not compatible with CAS-srDFT with
that method because the ground-state functional (2) is varia-
tionally minimized.46 It remains to be clarified how the (short-
range) DFT functionals Esr-Hx,SA and Esr-xc,SA in

ESA = Elr + Esr-Hx,SA + Esr-xc,SA (74)

Elr ¼
X
G

wG 0G Ĥ lr
�� ��0G� �

(75)

are determined for an average of states G. Without the loss of
generality, we limit the following discussion on the Hartree
term which corresponds to a SA CAS-srDFT calculation without
XC functionals. The conclusions drawn in the following are
equally applicable to both terms because, in contrast to SA-
CASSCF, both the Hartree-exchange and XC energy terms are
nonlinear in the density.

The most natural way for the Hartree term to enter ESA

would be a weighted sum over Hartree energies of every state

Esr-Hx;SA ¼
X
G

wGE
sr-Hx;G (76)

Esr-Hx;G ¼ 1

2

X
pqrs

DG
pqg

sr
pqrsD

G
rs (77)

For a variational optimization, derivatives of Esr-H,SA with
respect to the variational parameters for the orbital kpq and
configuration part SGi are needed.91 When inspecting the
electronic gradients, we observe that the state-specific densities
DG

pq remain to be apart of the equations

@Esr-H;SA

@kpq

� �����
�
¼ 2wG 0G Êpq; V̂

sr-H DG� 
� 
�� ��0G� �
(78)

@Esr-H;SA

@SGi

� �����
�
¼ �2wG i V̂ sr-H½DG�

�� ��0G� �
(79)

due to the quadratic density dependence of Esr-H in eqn (77).

Similar observations can be made for the energy second deri-
vatives. For the configuration sigma vectors we getX

jG0

@2Esr-H;SA

@SiG@SjG0

� �����
�
S0jG0 ¼ 2

X
G

wG i V̂ sr-H DG� 
�� ��S0� �

�
X
G0

S0iG0 G
0 V̂sr-H DG� 
�� ��G� �

� 2 i b�V sr-H DG� 
��� ���0D E	
(80)

The dependence on state-specific densities DG
pq is not pro-

blematic for a single-state calculation but leads inevitable to
non-orthogonal CI solutions for SA calculations, as can seen
from eqn (80).

Instead of averaging over the state-specific Hartree energies
(76), we evaluate the srDFT functionals from state-averaged
densities rSA and PSA, and their derivatives,

Esr-H,SA E Esr-H[rSA] (81)

Esr-xc,SA E Esr-xc[rSA,rrSA,PSA], (82)

with density matrices computed from

DSA
pq ¼

X
G

wG 0G Êpq

�� ��0G� �
(83)

dSA
pqrs ¼

X
G

wG 0G êpqrs
�� ��0G� �

: (84)

Nevertheless, using averaged densities is obviously a sub-
stantial approximation to eqn (76) and the effects on the
accuracy need to be carefully investigated. After converging
the approximate SA CAS-srDFT energy, the state-specific
ground- and excited-state CAS-srDFT energies can be easily
evaluated from the state-specific density matrices, in full ana-
logy to the SA-MC-PDFT approach.

An alternative to the SA CAS-srDFT ansatz for excited-state
energies is to find a correction to the approximated SA srDFT
energy in eqn (81) and (82). For this purpose we introduce
difference densities

Dr = r � rSA (85)

DP = P � PSA (86)

between the exact r and P and the averaged densities rSA and
PSA. We assume here that the magnitude of the difference
densities is comparatively small because the core part of the
densities

rc ¼ 2
X
i

f�i fi (87)

Pc ¼ 1

2
rcð Þ2 (88)

has usually the largest contribution and, at least, is shared by
all exact, state-specific densities.

In order to find a linearized approximation to the DFT terms
in eqn (74), Pedersen64 and also Hedegård et al.,65 suggested to
expand the srDFT energy in orders of the difference density,
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around the SA densities:

Esr-Hxc rSA þ Dr;PSA þ DP
� 


� Esr-Hx rSA
� 


þ Esr-xc rSA;PSA
� 


þ
ð
@Esr-Hxc½r;P�

@r

� �����
�
Drdrþ

ð
@Esr-xc½r;P�

@P

� �����
�
DPdr

(89)

Note that we limit the discussion here to LDA functionals, in
order to avoid an unnecessary elaborate presentation of the
concepts and equations. In addition to linearized energy equa-
tions in ref. 64 and 65, we also add a first energy derivative with
respect to the OTPD as (complex) translated functionals are
employed for the final energy evaluation of each state in the
average. The linearized CI-srDFT energy for any selected state in
the average then reads

ECI-srDFT E Elr + E[rSA + Dr, PSA + DP] (90)

¼ Ecor þ
X
tu

ftuDtu þ
1

2

X
tuvw

gtuvwdtuvw (91)

In analogy to the CAS-srDFT energy in eqn (55), the srDFT
one-electron potential matrices are added to the lr CASSCF
inactive Fock matrix

ftu = fI,lr
tu + Vsr-Hx[DSA]tu + Vsr-xc,rP[DSA]tu (92)

V sr-xc;rP DSA
� 


tu
¼ V sr-xc;r DSA

� 

tu

þ
ð
@Esr-xc½r;P�

@P

� �����
�
rcf�t ðrÞfuðrÞdr;

(93)

though, an effective one-electron potential from the OTPD first
energy derivatives arises in eqn (93). Due to the presence of
OTPD first energy derivatives also a sr two-body potential47,98 is
added to the lr two-electron integrals in the CI-srDFT energy in
eqn (91):

gtuvw = glr
tuvw + Wsr-xc

tuvw (94)

W sr-xc
tuvw ¼ 2

ð
@Esr-xc

@P

� �����
�
f�t ðrÞfuðrÞf�vðrÞfwðrÞdr (95)

Interestingly, also the CI-srDFT core energy is closely related
to the core energy or the single-state CAS-srDFT in eqn (56):

Ecor ¼ Vn þ
X
i

hii þ fii � V sr-xc;rP DSA
� 


ii


 �
�
X
tu

1

2
V sr-H DSA

� 

tu
þV sr-xc;rP DSA

� 

tu

� �
DSA

tu

(96)

� 1

2

X
tuvw

W sr-xc
tuvw dSA

tuvw (97)

The only differences are the additional OTPD-related terms
and that all active density matrices are replaced by their state-
averaged analogues.

With the linearized CI-srDFT energy in (91), the corres-
ponding CI matrix expressed in the basis of CSF is readily

available and reads

HIJ ¼ EcordIJ þ
X
tu

ftu I Êtu

�� ��J� �
þ 1

2

X
tuvw

gtuvw I êtuvwj jJh i: (98)

Diagonalizing H in (98) gives the CI-srDFT energies for every
state in the averaged energy functional and the corresponding
orthogonal CI wavefunction coefficients which concludes the
second excited-state approach that we pursue in this work. It is
evident that the same procedure can also be used for MC-PDFT
when omitting the two-electron part of the (lr) CASSCF energy
terms in (98). Such a linearized CI approach applied to MC-
PDFT seems to be closely related to the recently proposed
linearized PDFT method.99

Finally, we note the similarity between CI-srDFT and the
srDFT linear response method.50,51 If variations in the orbital
space are neglected, the only difference between eqn (98) and
the electronic configuration–configuration Hessian lies in the
choice of CI states used to construct the one- and two-electron
RDMs. In srDFT linear-response theory, the RDMs of the
electronic ground state are employed, whereas in CI-srDFT,
state-averaged RDMs are used in the construction of the
effective CI Hamiltonian (98).

3 Computational details

The CASSCF-DFT methods for excited states were implemented
in a development version of ORCA100,101 and will be part of the
next release version ORCA 6.1. So far, those CASSCF-DFT
methods are integrated into the TRAH optimizer for
CASSCF91 but are not available for other CASSCF optimizers
in ORCA, such as the perturbative super-CI implementation.102

The correctness of the ground-state srDFT implementation
without functional translation was confirmed by comparing
energies with the implementation in the DALTON program
package.46,75,103 The MC-PDFT ground- and excited-state ener-
gies of our ORCA implementation agree with the one from
OpenMOLCAS104 for the tPBE functional, but differ slightly for
tLDA because different sets of VWN parameters87 were used.
For ground-state energies, our implementation reproduces the
closed-shell KS-DFT LDA in ORCA100,101 and agrees with srLDA
in DALTON46,75,103 when setting m to zero.

The internally contracted (ic) MRCI singles and doubles27

calculations were performed with ORCA’s automatically gener-
ated code implementation (AutoCI) of correlated wavefunction
models.105–107 Also the internally contracted DDCI3+Q imple-
mentation in ORCA’s AutoCI was employed, though this feature
is not released yet. The Davidson correction (Q) was always
employed for both ic MRCI-type methods.

Point-group symmetry was never exploited for any calcula-
tion. To assign the correct term symbol to each state and make
a proper assignment, we visualized active orbitals and natural
transition orbitals (NTO).108,109

All CASSCF-DFT calculations used ORCA’s tight default
grid110 (DefGrid3) for numerical integration of the XC
functionals.
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For the potential curves of ethylene, we took the planar
structure from ref. 111 and left all bond distances and angles
fixed while varying only the dihedral angle +(H–C–C–H). The
structures of the benchmark set of Schreiber et al. were taken
from the ESI† of ref. 111. The TZVP orbital basis set112 was
employed for those calculations.

The geometries of the three divalent transition-metal hex-
aquo complexes were taken from ref. 2. For those complexes,
the following orbital basis sets were employed in accordance
with the calculations in ref. 2: oxygen: TZVPP,112 hydrogen:
TZVP,112 transition metal: Wachters+f.113

The choices of active spaces for each MR calculation are
explained in Section 4.

4 Results and discussion
4.1 Ethylene twist

We investigate the accuracy of the various CASSCF-DFT meth-
ods for the ground state and two lowest excited states in state-
averaged calculations of ethylene in its planar (+(H–C–C–H) =
01) and twisted conformations. Since ethylene changes its
symmetry from D2h to D2 when being twisted, we follow the
notation of Merer and Mulliken for the three lowest-lying
states,114 i.e., N state: 1 1Ag or 1 1A, V state: 1 1B1u or 1 1B1,
and Z state: 2 1Ag or 2 1A. At any twisted conformation (01 o
+(H–C–C–H) o 1801), the three singlet CSF constructed from
the p and p* orbital mix strongly up to equal contributions of
the |p2(p*)0i and |p0(p*)2i configurations for the totally sym-
metric states (N and Z) at 901. Therefore, we have included the
valence p and p* orbitals and their electrons in the active space,
i.e. CAS(2,2), and averaged over three singlet roots.

As seen from the srDFT potential curves in Fig. 2, srLDA
shows the largest deviation from internally contracted MRCI +
Q, which we assume to be a highly accurate reference. The
srLDA model just uses the one-electron density for the XC
energy and misses for that term any explicit two-electron
correlation effects. As a results, we observe a too high rotational
barrier around 901 (+(H–C–C–H)) for the ground state. This is a

reminiscence of the well-known cusp of the ground-state energy
curve when using restricted single-determinant methods.115

The translated XC functional sr-tLDA does include local spin
polarization by means of the two-particle density in the XC
functional, but only for points r that have a negative on-top two-
body density cumulant l(r). For the three ethylene twist curves,
srLDA only changes the energy of the ground (N) state in the
vicinity of 901 significantly. This is because the percentage of r
for which l(r) o 0 is more than 70% for the N state but less
than 36% for V, and even 0% for the Z state. Thus, complex
translation is important, in particular, for the two excited states
and the sr-ctLDA curves are in much better agreement with
MRCI+Q than the ones of sr-tLDA.

Though improving upon the srLDA curves, the SA approach
for the translated XC functionals sr-tLDA and sr-ctLDA have a
minimum of ground state curve at 901 when they should have a
maximum, as shown in Fig. 2c. This is related to the substantial
energy changes in that region when computing state-specific
energies with translated functional methods sr-tLDA and sr-
ctLDA using state-averaged srLDA solutions. The CI-srDFT
approach that accounts for state-specific XC potentials in a
linearized fashion remedies this false-minimum artifact in the
same way as multi-state theories give improved results close to
avoided crossings.57–63

In Tables 1 and 2, all CASSCF-DFT excitation energies of the
planar and twisted (+(H–C–C–H) = 901) conformer are shown.
Those numbers are relative to the ground state of the planar
conformer for each of the methods. In the comparison of
CASSCF-DFT with MRCI+Q energies, the srDFT methods out-
perform their corresponding MC-PDFT variants clearly. When
looking at the most accurate MC-PDFT variant (CI-ctPBE), the
Z-state excitation energy in the planar conformer is still 1.78 eV
lower than with MRCI+Q. In contrast to this, the most accurate
srDFT variant (CI-sr-ctPBE) is only 0.48 eV below the reference.
We attribute the higher accuracy of the srDFT variants mainly
to the presence of an exchange-like term in the lr CASSCF part.
This argument is supported by the fact that the complex-
translated hybrid functional PBE0 with a 25% exchange-like
contribution gives a substantial improvement of the ctPBE

Fig. 2 Potential energies for the N, V, and Z states114 while twisting ethylene (a) with various srLDA methods (b) and MRCI+Q. The ground (N)-state
curves around 901 are shown in (c).
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excitation energies (see Table 1). Furthermore, it is known that
Hartree–Fock exchange is an essential ingredient for single-
reference XC functionals to perform well for time-dependent
(TD) DFT excitation energies.116

For almost all states, the GGA excitation energies are more
accurate than the ones computed with the respective LDA
functional, though the improvement is rather moderate and
ranges from less than 0.01 eV for the V state with srPBE for the
planar conformer up to 0.21 eV for the Z state with CI-ctPBE for
the twisted conformer.

Finally, we note that our CI-DFT approach leads for both
MC-PDFT and srDFT to a better agreement with MRCI+Q than
the SA approach. Additionally, as shown for the sr-ctLDA
curves, the CI-DFT approach fixes the false-minimum artifact.

4.2 Thiel’s benchmark set

To gain more clarity on the accuracy that one can expect from
our CASSCF-DFT methods, we computed 139 singlet excitation
energies from Thiel’s benchmark set using the TZVP basis.111

As in a previous study,55 we have included all valence p/p* and
spectroscopically relevant non-bonding and sigma orbitals and
electrons in the active space. The active space and number of
roots for each molecule are provided in the ESI.† We have
compared our CASSCF-DFT excitation energies to the
ones111,117,118 obtained primarily from the linear-response,
iterative CC with singles, doubles, and perturbative triples119

(CC3) which provides highly accurate results for electronic

transitions that are dominated by effective single-electron
excitations.119,120 For transitions with a large double-
excitation contribution, we chose ic MR second-order coupled
cluster linear response121 (icMRCC2) results of ref. 122 as a
reference. We had to exclude three high-lying states from the
analysis (pyrazine: 1 1B3g, s-tetrazine: 2 1B3g, and p-
benzoquinone: 2 1B1u) because for the SA-MC-PDFT methods
the underlying SA-CASSCF states could not been found without
increasing the number of roots to an undue high value. All
other states have been assigned by comparing the natural
transition orbitals108,109 (NTO) of CASSCF-DFT with the ones
of CC2 states.123,124

The 139 singlet excitation energies for each of the 12
CASSCF-DFT variants, ctLDA, ctPBE, ctPBE0, sr-ctLDA, sr-
ctPBE, and sr-ctPBE0 either as SA or CI calculation, are tabu-
lated in the ESI† along with their reference values. According to
the histograms of the CASSCF-DFT deviations from Fig. 3 (PBE
functionals), and the ESI† (LDA and PBE0 functionals), as well
as the error statistics from Table 3, on average, sr-ctDFT is
much more accurate (MAE CI-sr-ctPBE: 0.17 eV) than the
corresponding ctDFT methods (MAE ctPBE: 0.67 eV).

When considering statistical averages, we also note that
GGAs perform, if at all, marginally better than the corres-
ponding LDA functionals (e.g. MAE of CI-sr-ctLDA and CI-sr-
ctPBE 0.17 eV). Those trends agree also with our results of the
ethylene twist potential curves, except for the fact that the CI-
ctDFT excitation energies of are worse than the SA-MC-PDFT
results with ct functionals. For the sr functionals, however, the
CI-srDFT approach (MAE sr-ctPBE: 0.17 eV) improves the accu-
racy notably in comparison to SA (MAE sr-ctPBE: 0.25 eV).

Again, we assume that the Hartree–Fock exchange, which is
present in lr-CASSCF but not in ctDFT, is a necessary ingredient
for obtaining accurate excitation energies. However, we observe
that for MC-PDFT the hybrid ctPBE0 functional does not
improve upon the ctPBE results. While ctPBE excitation ener-
gies are on average red-shifted, excitation energies with ctPBE0
are significantly blue-shifted (ME SA ctPBE0 1.20 eV, CI
ctPBE0 0.56 eV) with respect to the accurate CC3 and icMRCC2
reference. This is in contrast to the ethylene curves for which, at
least, the ctPBE0 gave significantly more accurate excitation
energies than ctPBE. Furthermore, for CAS-srDFT the hybrid sr-
ctPBE0 functional feature blue-shifted excitation energies, as

Table 1 Relative energies in eV with various MC-PDFT methods and
MRCI+Q for planar and twisted ethylene, all based on state-averaged
orbital optimizations

State

MRCI ctLDA ctPBE ctPBE0

SA SA CI SA CI SA CI

Planar
1 1Ag 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 1B1u 8.47 6.26 6.58 6.29 6.69 7.08 6.75
2 1Ag 13.29 11.84 12.21 11.81 12.20 12.09 12.61

Twisted
1 1A 3.17 3.28 3.61 3.33 3.49 4.48 3.91
1 1B1 5.88 4.27 4.59 4.36 4.74 5.20 4.85
2 1A 5.76 4.42 4.74 4.53 4.95 5.31 5.01

Table 2 Relative energies in eV with various srDFT methods and MRCI+Q for planar and twisted ethylene, all based on state-averaged orbital
optimizations

State MRCI+Q

srLDA srPBE srPBE0 sr-ctLDA sr-ctPBE sr-ctPBE0

SA SA SA SA CI SA CI SA CI

Planar
1 1Ag 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 1B1u 8.47 7.03 7.03 7.28 7.82 7.95 7.86 7.99 7.83 7.85
2 1Ag 13.29 12.70 12.72 13.03 12.92 13.01 12.95 13.06 13.18 13.23

Twisted
1 1A 3.17 3.82 3.84 4.08 3.41 3.55 3.40 3.54 3.78 3.80
1 1B1 5.88 4.56 4.59 4.84 5.17 5.31 5.24 5.37 5.30 5.31
2 1A 5.76 4.56 4.59 4.85 5.31 5.45 5.39 5.52 5.41 5.41
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well, and deteriorate the satisfying accuracy of the non-hybrid
sr-ctPBE functional.

In comparison with other excited-state methods that were
employed in previous studies with Thiel’s benchmark set,55 our
best performing CASSCF-DFT method, CI-sr-ctPBE (MAE
0.17 eV and SD 0.25 eV), is much more accurate than single-
reference TD-DFT125 (B3-LYP: MAE 0.37 eV and SD 0.33 eV;
BP86: MAE 0.67 eV and SD 0.41 eV) and also untranslated
linear-response srPBE126 (MAE 0.26 eV and SD 0.47 eV). CI-sr-
ctPBE (MAE 0.17 eV and SD 0.25 eV) also showed a similar
accuracy as the second-order correlation MR methods
CASPT2111 (MAE 0.21 eV and SD 0.21 eV) and NEVPT2127

(MAE 0.22 eV and SD 0.30 eV) which are, without introducing
further approximations, computationally more demanding
than CASSCF-DFT due to their inherent O(N5) scaling with
system size N.

4.3 Low-lying states of imidazole

So far, we have always averaged over a minimum number of
roots that are required to find the desired low-lying states, e.g.
all p - p* excitations of ethylene or the subset of singlet states
in Thiel’s benchmark set.111 Here, we investigate the sensitivity
of the 2 1A0 and 1 1A00 states of imidazole towards the number of
roots while employing state averaging. We limit ourselves to the

Fig. 3 Histogram of CAS-PBE deviations from the CC3 and icMRCC2 reference for 139 singlet excitation energies from Thiel’s benchmark
set.111,117,118,122

Table 3 Statistical analysis of CAS-DFT singlet excitation energies. Relative deviation with respect to CC3111,117,118 and icMRCC2122 are given in eV. The
following abbreviations were used: ME – mean error; MAE – mean absolute error; SD – standard deviation; MAX(+) – maximum error with positive sign;
MAX(�) – maximum error with negative sign

ctLDA ctPBE ctPBE0 sr-ctLDA sr-ctPBE sr-ctPBE0

SA CI SA CI SA CI SA CI SA CI SA CI

Count 139 139 139 139 139 139 139 139 139 139 139 139
ME �0.32 �0.99 �0.30 �0.92 1.20 0.56 �0.02 �0.09 0.01 �0.07 0.41 0.36
MAE 0.68 0.99 0.65 0.92 1.49 0.83 0.25 0.17 0.25 0.17 0.52 0.46
SD 0.83 1.13 0.81 1.05 2.82 0.99 0.34 0.25 0.34 0.25 0.62 0.53
MAX(+) 2.44 0.10 2.44 0.18 3.44 2.06 0.96 0.49 1.07 0.49 2.01 1.66
MAX(�) �2.81 �2.38 �2.79 �2.21 �2.38 �2.38 �1.44 �1.34 �1.43 �1.34 �1.37 �1.17
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different methods based on the srPBE functional for which one
approach gave the best performance for Thiel’s benchmark set
(CI-sr-ctPBE). In Fig. 4, the deviation from the reference is
shown for various number of roots in the state averaging.

The SA CAS-srDFT approaches with srPBE and sr-ctPBE
deviate up to 0.12 eV when comparing the NSA = 4 and NSA =
6 calculations and fluctuate notably when changing the num-
ber of SA roots NSA. In contrast to this, the 2 1A0 and 1 1A00 CI-sr-
ctPBE excitation energies only vary by 0.04 eV, at most, when
changing the number of SA roots. Thus, CI-sr-ctDFT is not only
the most accurate approach but also exhibits the least energy
changes while changing the number of SA roots.

4.4 Transition-metal complexes

Finally, we investigate the performance of excited-state
CASSCF-DFT methods for a family of transition-metal com-
plexes (TMC). We chose the divalent Th-symmetric first-row
transition-metal hexaquo complexes2 with Fe(II), Co(II), and
Ni(II) as metal centers. We have employed a minimal active
space including only the valence 3d orbitals and electrons in all
MR calculations presented here. With that active-space choice
the correct multiplet structure for the ground state as well as
the low-lying metal-centered (MC) ligand-field excited states is
obtained when using CASSCF.2 The frontier orbitals of the
three TMC are given as an MO diagram with their ground-
state term symbols in Fig. 5. Since the Co(II) and Ni(II) com-
plexes have an open-shell non-singlet ground state, we had to
use the spin-density approach75 for srDFT calculations of those
complexes. The more consistent variationally optimized sr-
(c)tDFT ansatz98 is unfortunately not available yet to study
excited states. Though the lowest-energy state is a quintet,2

we have deliberately chosen the singlet-spin states for the Fe(II)
complex to detect potential problems that may only occur for
the chosen treatment of open-shell systems Co(II) and Ni(II).

We have recomputed highly accurate reference energies
employing the internally contracted105–107 difference-dedicated
(DD) CI(3) method128 with Davidson correction129 (+Q) in con-
trast to uncontracted spectroscopy-oriented CI (SORCI) in the
original benchmark set of Neese et al.2 Concerning the SORCI

calculations in ref. 2, additional states with multiple spin multi-
plicities were included in the SA-CASSCF calculations and refer-
ence energies for the singlet Fe(II) states were not provided. For
the Co(II) and Ni(II) complexes the reference energies in Table 4
deviated from the uncontracted SORCI results of ref. 2 only
slightly by at most 0.05 eV for 1 4Ag of Co(H2O)6

2+ and are also in
good agreement with most of the experimental results. In our
opinion, this supports the assumption that a minimal 3d valence
active space should be sufficient to describe the lowest MC
transitions.

For the lowest excitation energies to the Ag and Tg MC states
in Table 4, SA-CASSCF gives already a qualitatively correct
picture for the excitation energies. The differences to DDCI3+Q
are not larger than 0.42 eV (3 4Tg of Co(H2O)6

2+). Already
CASSCF yields the correct order of states that does not change
when the subsequent dynamic correlation method DDCI3+Q is
employed. Therefore, it seems those hexaquo TMC should not
be a major obstacle for our CASSCF-DFT excited-state methods,
but the opposite is true.

Even though these low-lying Ag and Tg MC states are
energetically well separated from one another, none of the

Fig. 4 Excitation energy differences of various srPBE models from the
reference for the lowest n - p* (1 1A00) and p - p* state (2 1A0) of
imidazole.

Fig. 5 Geometric structure of Th-symmetric divalent first-row transition-
metal hexaquo complexes and schematic frontier-orbital occupation for
the corresponding Fe(II), Co(II), and Ni(II) complexes.
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CASSCF-DFT methods is capable of predicting, at least, the
order of states correctly for all three complexes. According to
Tables 4 and 5, the order of states is only correct for some of the
SA calculations (Fe(II): ctLDA and ctPBE, Co(II): srLDA and
srPBE; Ni(II): srLDA, sr-ctLDA, srPBE, sr-ctPBE, ctPBE, and
ctPBE0). When inspecting the CI-DFT calculations, there is
always a pair of states that collapses to the same or, at least,
nearly the same excitation energies (Fe(II): 1 1Tg and 3 1Tg;
Co(II): 2 4Tg and 3 4Tg, Ni(II): 1 3Tg and 2 3Tg). The lower-energy
state of this pair is always too large with CI-DFT (up to 0.19 eV
for 1 1Tg of Fe(II) with CI-sr-ctPBE) while the higher-energy state
is always way too small (up to 1.41 eV for 3 4Tg of Co(II) with CI-
sr-ctPBE). Furthermore, we could not observe that excitation

energies of the singlet Fe(II) complex are more accurate than the
open-shell Co(II) and Ni(II) complexes which we assumed to be
caused by the spin-density approach.75

In contrast to our previous findings for organic chromo-
phores, our excited-state CASSCF-DFT methods perform worse
than CASSCF for the TMC investigated so far. We assume that a
fully variational energy minimization of the (complex) trans-
lated functionals47,98 would improve the accuracy. At the
moment, only, if at all, the CI coefficients are optimized in
the presence of OTPD functionals that incorporate explicit
electron correlation in the XC functionals what we refer to as
the CI-DFT method. Orbital relaxation for OTPD functionals is
still missing for any of our excited-state CASSCF-DFT methods.
Note, however, that in a variational state-averaged OTPD func-
tion calculation the DFT part would be evaluated still with
averaged densities and for those calculations state-specific
orbital relaxation is not possible. Therefore, we think that
excited states with fully variational (complex) translated
CASSCF-DFT methods47,98 should be better computed within
the framework of linear response theory.50–52

5 Conclusions

In the present work, we introduced and investigated two
different state averaging-based approaches to access excited
states either with the multiconfiguration pair-density func-
tional theory (MC-PDFT) method or the long-range CASSCF
short-range DFT approach (CAS-srDFT). The so-called SA ansatz
for CAS-srDFT first determines the variational parameters of an
approximate srDFT functional that operates with state-averaged
densities. Then, after convergence, the CAS-srDFT energies of
each state are computed from the state-specific one- and two-
body densities. An analogous approach termed SA-MC-PDFT is
readily applicable to MC-PDFT when executing the

Table 4 Excitation energies in eV for divalent first-row transition-metal
hexaquo complexes with CASSCF, srDFT methods, and DDCI3+Q. For SA
methods the average over the multiplet (SAav) is given along with its
maximum absolute deviation (|Dav|, in meV)

State

DDCIa CAS srLDA srPBE srPBE0

SAav CI SAav |Dav| SAav |Dav| SAav |Dav|

FeII(H2O)6
2+

1 1Ag 0.00 0.00 0.00 — 0.00 — 0.00 —
1 1Tg 0.94 0.73 0.80 11 1.02 2 2.82 121
2 1Tg 1.78 1.41 1.79 76 1.98 123 4.82 44
3 1Tg 2.19 2.05 1.89 2 2.21 13 3.07 81

CoII(H2O)6
2+

1 4Tg 0.00 0.00 0.00 5 0.00 1 0.00 o1
2 4Tg 0.83 0.69 0.80 17 1.09 134 0.62 o1
1 4Ag 1.80 1.52 1.83 — 2.02 — 1.56 o1
3 4Tg 2.44 2.86 1.87 12 1.81 89 1.95 o1

NiII(H2O)6
2+

13 Ag 0.00 0.00 0.00 — 0.00 — 0.00 —
1 3Tg 0.98 0.80 1.11 1 1.31 232 1.13 132
2 3Tg 1.68 1.40 2.27 o1 2.38 77 2.34 2
3 3Tg 3.15 3.42 2.53 o1 2.51 15 2.33 2

a |Dav| o 3 meV.

Table 5 Excitation energies in eV for divalent first-row transition-metal hexaquo complexes with CASSCF, complex-translated srDFT and MC-PDFT
methods, and DDCI3+Q. For SA methods the average over the multiplet (SAav) is given along with its maximum absolute deviation (|Dav|, in meV)

State

DDCIa CAS sr-ctLDA sr-ctPBE sr-ctPBE0 ctLDA ctPBE ctPBE0

SAav CI SAav |Dav| CI SAav |Dav| CI SAav |Dav| CI SAav |Dav| CI SAav |Dav| CI SAav |Dav| CI

FeII(H2O)6
2+

1 1Ag 0.00 0.00 0.00 — 0.00 0.00 — 0.00 0.00 — 0.00 0.00 — 0.00 0.00 — 0.00 0.00 — 0.00
1 1Tg 0.94 0.73 0.98 48 1.04 1.24 94 1.15 2.99 159 2.53 1.04 3 0.94 1.22 4 1.06 3.39 5 2.65
2 1Tg 1.78 1.41 1.96 13 2.02 2.25 35 2.24 3.24 47 4.67 1.93 3 1.82 2.32 14 2.04 7.01 29 5.24
3 1Tg 2.19 2.05 1.23 118 1.07 2.06 57 1.18 4.88 56 2.83 2.59 4 0.95 2.94 3 1.06 6.95 34 2.65

CoII(H2O)6
2+

1 4Tg 0.00 0.00 0.00 5 0.00 0.00 1 0.00 0.00 o1 0.00 0.00 o1 0.00 0.00 2 0.00 0.01 27 0.00
2 4Tg 0.83 0.69 0.80 17 1.04 0.97 82 1.01 0.64 o1 0.93 0.66 o1 0.98 0.57 o1 0.94 0.02 9 0.88
1 4Ag 1.80 1.52 1.83 — 2.09 1.89 — 2.02 1.58 o1 1.85 1.65 — 1.97 1.52 — 1.88 0.89 — 1.76
3 4Tg 2.44 2.86 1.87 12 1.07 1.72 26 1.03 1.85 o1 0.95 1.46 o1 0.98 1.48 o1 0.94 1.50 1 0.88

NiII(H2O)6
2+

13 Ag 0.00 0.00 0.00 — 0.00 0.00 — 0.00 0.00 — 0.00 0.00 — 0.00 0.00 — 0.00 0.00 — 0.00
1 3Tg 0.98 0.80 1.11 1 1.12 1.22 138 1.08 1.12 114 1.01 1.01 o1 1.02 0.97 1 0.98 0.91 o1 0.91
2 3Tg 1.68 1.40 2.27 o1 1.15 2.22 83 1.11 2.23 2 1.03 1.87 1 1.02 1.90 10 0.98 3.06 27 0.91
3 3Tg 3.15 3.42 2.53 o1 2.25 2.47 10 2.17 2.30 1 2.02 1.87 3 2.04 1.94 6 1.95 3.15 o1 1.82

a |Dav| o 3 meV.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/2
8/

20
26

 1
1:

59
:2

4 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cp00881f


This journal is © the Owner Societies 2025 Phys. Chem. Chem. Phys., 2025, 27, 15331–15349 |  15345

corresponding SA-CASSCF calculation in the initial step and,
then, utilizing the state-specific one- and two-body CASSCF
densities for the state-specific MC-PDFT energy evaluation.
The second approach is termed CI-srDFT and originates from
the work of Pedersen64 for which a first-order correction is
added to the approximate SA-density srDFT functionals. In
contrast to the SA-CAS-srDFT approach, diagonalization of the
first-order corrected CI matrix yields orthonormal CI solutions
for every state.

In both approaches, the total one-body and on-top pair
density (OTPD) was employed for the final energy evaluation
which avoids the issue of spin contamination and suppressed
accuracy associated with the spin-density approach.75 For elec-
tronic positions that feature complex densities when employing
the OTPD formalism,72,80 we have not introduced further
approximations or modified the underlying XC functionals
what is referred to as complex functional translation.80 We
have applied complex functional translation for the first time
also to the dedicated short-range LDA and GGA functionals and
reported their superior accuracy when computing excitation
energies. For the potential curves of the lowest states of
ethylene, we observed that complex translation is highly rele-
vant for the excited-state curves since most of the electronic
positions feature complex rather than real density matrices, at
least for our excited-state approaches that are based on SA.

It has been demonstrated that the CI-srDFT approach pro-
vides potential curves for ethylene that are physically correct, in
contrast to the SA-CAS-srDFT method, which features a false
minimum at the maximally twisted conformation of ethylene.
Furthermore, the dependence of excitation energies on the
number of states in the average is reduced when using the
CI-srDFT approach as opposed to SA-CAS-srDFT. We investi-
gated the accuracy of the various CASSCF-DFT methods for 139
singlet excitation energies that are part of Thiel’s benchmark
set of 28 typical organic chromophores.111 We have also found
that our CI-srDFT methods are more accurate than the corres-
ponding SA approaches. For instance, the mean absolute error
(MAE) of SA sr-ctPBE is 0.24 eV while MAE of CI sr-ctPBE is
reduced to 0.17 eV. Furthermore, we have seen in this study
that the CAS-srDFT variants outperform their corresponding
MC-PDFT analogues clearly. The best MC-PDFT approach, SA
ctPBE, exhibit an MAE of 0.65 eV which is four times larger than
our best CAS-srDFT method, CI CAS-sr-ctPBE. The enhanced
accuracy of CAS-srDFT relative to MC-PDFT for excited states is
presumably attributable to the absence of Hartree–Fock (HF)-
like exchange terms in the non-hybrid MC-PDFT functionals
ctLDA and ctPBE employed in this study. Though, the hybrid
ctPBE0 that includes these HF-like exchange terms results in a
significant blue shift (ME: SA 1.20 eV, CI 0.56 eV). CAS-srDFT
functionals always incorporate HF-like exchange in the long-
range CASSCF part. Another potential cause of the accuracy
discrepancy between CAS-srDFT and MC-PDFT could be the
effectiveness with which double counting of dynamic correlation
is handled by either method.79 It is encouraging that our most
advanced CASSCF-DFT methods, CI CAS-sr-ctPBE, demonstrate
comparable or even superior accuracy to second-order single- or

multi-reference perturbation theory methods when applied to
Thiel’s benchmark set.55

It is unfortunate that the remarkable accuracy observed for
organic molecules when employing our most advanced CAS-
srDFT methods is not transferable to the investigation of
excited states of transition-metal complexes. For three divalent
hexaquo complexes of Fe(II), Co(II), and Ni(II), the lowest d-to-d
metal-centered transitions are adequately described by the
state-averaged CASSCF model already. It is evident that the
CASSCF-DFT excited-state methods introduced in this study,
despite their potential, have not yielded a consistent improve-
ment of CASSCF excitation energies. However, it is noteworthy
that the CI-srDFT approach, despite its limitations, maintains
the correct degeneracy of states, i.e. the multiplet structure. It is
challenging to draw further conclusions from the results
obtained thus far without further advancements in theory
and computer implementations.

In the future, we would like to improve the accuracy of our
CASSCF-DFT methods by providing a fully variational optimiza-
tion, also with respect to variations of the on-top pair density.47,98

The effect of state-specific orbital relaxation should also be
investigated ideally within the framework of linear-response
theory.50–52 In that way, we would try to find a way for also
improving the accuracy for transition-metal complexes or other
challenging systems. More efficient implementations employing
sophisticated integral-decomposition techniques110,130–133 are
also important for applications on larger molecules and are
currently pursued in our groups.
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Appendix

In the spin-density approach for open-shell molecules,75 the
exchange–correlation energy Exc[r,m] depends on the total one-
body density r (13) and the spin density m (14) and, depending
on the functional type, also derivatives of the densities. Follow-
ing such a spin-density approach necessitates the computation
of functional derivatives of Exc with respect the spin density for
the srDFT electronic gradients and sigma vectors. A potential
term that involves triplet excitation operators (16),

V̂ sr-xc-s ¼
X
pq

Vsr-xc-s
pq T̂pq (99)

V sr-xc-s
pq ¼

ð
@Esr-xc

@m

� �
f�pðrÞfqðrÞdr; (100)

is employed for the evaluation of the orbital and configuration
gradient equations

@Esr-xc-s

@kpq

� �����
�
¼
ð
@Esr-xc½r;m�

@m

� �����
�

@m

@kpq

� �
dr

¼ � 2
X
v

dquV sr-xc-s
vp DS

vu � dptDS
tvV

sr-xc-s
qv

� 	
(101)

@Esr-xc

@Si

� �����
�
¼
ð
@Esr-xc½r;m�

@m

� �����
�

@m

@Si

� �
dr

¼ � 2 i V̂ sr-s�� ��0� �
¼ � 2

X
tu

Vsr-xc-s
tu i T̂ tu

�� ��0� �
;

(102)

that are added to (46) and (47), respectively. Note that for the
evaluation of CI sigma vectors and density matrices in eqn (101)
and (102) coupling coefficients involving T̂tu are required.134–136

The XC energy derivatives contribute to the sigma vectors
with the following terms

siðy0Þ ¼
ð

@r
@xi

� �
@2Esr-xc

@r2

� �����
�
r
0ydrþ

ð
@r
@xi

� �
@2Esr-xc

@r@m

� �����
�
m
0ydr

þ
ð
@m

@xi

� �
@2Esr-xc

@m@r

� �����
�
r
0ydr

þ
ð
@m

@xi

� �
@2Esr-xc

@m2

� �����
�
m
0ydr

þ
ð
@Esr-xc

@r

� �����
�

X
j

@2r
@xi@yj

� �
y0jdr

þ
ð
@Esr-xc

@m

� �����
�

X
j

@2m

@xi@yj

� �
y0jdr:

(103)

In the equations above, x and y correspond to either of the
two variational parameters k and S. The derivative densities are

defined as

r
0y ¼

X
j

@r
@yj

� �
y0j (104)

m
0y ¼

X
j

@m

@yj

� �
y0j : (105)

The additional spin-density terms for the sigma vector can
be implemented very conveniently when following the same
strategies that were outlined in Section 2 of the main text.
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F. Montorsi, M. Mörchen, A. Nenov, V. H. A. Nguyen,
Y. Nishimoto, M. S. Oakley, M. Olivucci, M. Oppel,
D. Padula, R. Pandharkar, Q. M. Phung, F. Plasser,
G. Raggi, E. Rebolini, M. Reiher, I. Rivalta, D. Roca-
Sanjuán, T. Romig, A. A. Safari, A. Sánchez-Mansilla,
A. M. Sand, I. Schapiro, T. R. Scott, J. Segarra-Martı́,
F. Segatta, D.-C. Sergentu, P. Sharma, R. Shepard, Y. Shu,
J. K. Staab, T. P. Straatsma, L. K. Sørensen, B. N. C. Tenorio,
D. G. Truhlar, L. Ungur, M. Vacher, V. Veryazov, T. A. Voß,
O. Weser, D. Wu, X. Yang, D. Yarkony, C. Zhou, J. P. Zobel
and R. Lindh, J. Chem. Theory Comput., 2023, 19, 6933–6991.

105 K. Sivalingam, M. Krupicka, A. A. Auer and F. Neese,
J. Chem. Phys., 2016, 145, 054104.
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