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Revisiting the inverse Abel integral for
reconstructing velocity-map images

Chris Sparling 2 *f and Jolijn Onvlee 2 *

The velocity-map imaging (VMI) technique is used near ubiquitously throughout the study of gas-phase
photophysics and chemical dynamics. Many VM| experiments rely on numerical reconstruction
techniques to recover the full three-dimensional (3D) velocity distribution of photoproducts from the
two-dimensional (2D) geometric projection — the Abel transform of the distribution — that is recorded in
a typical experiment. The simplest mathematical approach for this reconstruction procedure is through
use of the inverse Abel integral transform. Historically, though, this approach has performed poorly on
real experimental data, and so the VMI community has devoted much effort into the development of
alternative inversion strategies that avoid direct use of the integral. In this article, we challenge this firmly
held belief, and show instead what advantages can be realised through this approach. Unlike many other
competing approaches, the reconstruction technique presented here, which we refer to as the modified
Abel integral transform (MAIT), does not require the lengthy pre-computation time for a large basis set
or any manually adjustable regularisation parameters. Examples involving simulated and
experimental data are used to demonstrate the efficacy of our new approach. This method is shown to

real

perform similarly to the most popular alternative strategies for extracting photoproduct angular
distributions, and have a significant advantage over them when handling data with high levels of

rsc.li/pccp background noise, in particular.

|. Introduction

Since their introduction in 1987," photoion/photoelectron ima-
ging measurements have been used extensively for studying
dynamics and photochemistry in the gas-phase.>”® In subsequent
years, numerous refinements and extensions to the original
pioneering work of Chandler and Houston' have established
imaging firmly within the chemical physicists’ toolbox.”'® Per-
haps most notably, the introduction of velocity-map imaging
(VMI) by Eppink and Parker in 1997'® allows for the high-
resolution measurement of the complete (i.e., all 4n-steradians)
three-dimensional (3D) velocity distribution of photoproducts
(ions or electrons) following some optical interaction. Although
more advanced VMI spectrometers have been developed over the
years to measure the entire 3D distribution (or a subsection of it)
directly,”®'*171% in their most popular and simplest realisation,
VMI spectrometers do not directly resolve the entire 3D distribu-
tion, I(x,y,2). Rather, they measure a two-dimensional (2D) projec-
tion of the distribution, P(y,2); effectively an integration of the
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distribution along the entire time-of-flight axis of the spectro-
meter (here, the x-axis - see Fig. 1):

P = |

00

I(x,y,z)dx ®
—00

For unimolecular processes involving randomly oriented
atoms/molecules interrogated solely with linearly or circularly
polarised laser sources, the resulting 3D distributions will
possess cylindrical symmetry about some axis (the polarisation
direction for linear polarisation, or the optical propagation
direction for the case of circular polarisations). For this special
case, eqn (1) may be reframed in cylindrical coordinates as the
Abel transform® - the foundational equation for the analysis of
VMI projection data.

It is defined by the integral:

P(y,z) = 2J

oo g/

= Aty o
where I'(y,p) is a cylindrically symmetric distribution, and the
radial distance p from the symmetry axis (here, the y-axis) in the
xz-plane is p = v/x2 + z2. Throughout the remaining equations
in this article, A will be used to denote the forward Abel
transform. To instead reconstruct I'(y,p) [which is equivalent
to I(y,2); the yz-planar slice through the full 3D distribution]
from the measured image data P(y,z), the inverse Abel
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Fig. 1 A schematic illustration of the forward and inverse Abel transform
operations. A rendering of one hemisphere of a typical 3D-VMI distribution
is shown in the centre, with its projection P(y,z) and central slice /(y,z)
shown on the right and left, respectively. The forward Abel integral .4
transforms I(y,z) to P(y.z), and the inverse integral A~! transforms P(y.2)
back to /(y.z).

transform, A~!, is given by:*°

I’(y, P) - _ = A_I{P(y,z)} (3)

1

lrc(?P(}yz) dz
p 0z /22— p?

These different distributions and their relations to each
other are illustrated in Fig. 1 - along with the definition of the
coordinate system that will be used throughout this article. In
principle, once P(y,z) is measured experimentally, eqn (3) allows
for the full cylindrically symmetric 3D photoproduct distribution
to be reconstructed perfectly. Only with this recovered distribution
can the full volume of information about the system being studied
with VMI be extracted from the data. As an aside, it is also
possible to reconstruct 2D projections of non-cylindrically sym-
metric distributions, although these methods are far more
complex and require either multiple distinct projection
images,>' > extensive numerical simulations**>° or utilise novel
machine-learning approaches.*® For many experimental applica-
tions, however, cylindrical symmetry is preserved in imaging data,
allowing for the inverse Abel transform to be applied.

Some significant issues, though, begin to present them-
selves when one attempts to evaluate Abel’s inverse integral
directly with real (and imperfect) experimental data.> A naive
numerical integration of eqn (3) leads to a large amount of
noise (often several orders of magnitude larger than the physi-
cally meaningful reconstructed data) being directed toward the
central symmetry axis of the distribution (the y-axis in Fig. 1),
even for high-quality experimental data. The reason for this is
two-fold: (i) the derivative in eqn (3) can amplify any statistical
noise present across the experimental image data; and (ii) the
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1/4/z% — p? factor in the integral further magnifies the inte-
grand close to the centre line. The presence of this centre line
reconstruction artefact makes the analysis of photoproduct angu-
lar distributions particularly challenging. Furthermore, solving
the derivative required for the inverse Abel integral necessitates
replacing the real data matrix with some numerical approxi-
mation which can be differentiated. This leads to unwanted
‘smoothing’ of the data and potentially impacts the final resolu-
tion of the reconstructed image. Due to these inherent problems,
the simple inverse Abel integral has essentially been abandoned
by the VMI community. Instead, much research effort has been
devoted toward developing alternative approaches which are able
to avoid any of the pitfalls of the basic inverse Abel integral.
In 2019, many of the most popular strategies were compiled in
PyAbel - a Python library for Abel transform functions.*® This
excellent package allows for users to experiment with many
different inversion approaches within a user-friendly and consis-
tent environment. Interested readers are directed to this article®'
for a review and detailed comparison of various inversion strate-
gies, as only a brief overview will be given here.

Amongst the most popular forms of reconstruction algorithms
are recursive methods, which iteratively find a solution I(,z)
which [when projected - using eqn (2)] matches best with the
experimentally measured P(y,z).*>*® These can either use a simple
linear least-squares approach in the optimization step**** or use
more advanced maximum-likelihood models that can incorporate
the correct Poissonian sampling statistics of noisy image
data.**® Another family of inversion techniques is based on
the so-called ‘onion-peeling’ algorithm.*”~*! Starting at the edge of
the image, contributions to P(y,z) coming from the xz-plane can
be calculated and subtracted away. Repeating this at decrement-
ing radii effectively ‘peels away’ the projected components of
P(y,2), leaving behind only the central slice 1(y,z).

In an alternative linear algebra-based approach, the BAsis
Set EXpansion (BASEX) method introduced by Dribinski et al.**
expands the measured P(y,z) line-by-line as a sum of basis func-
tions that have a known Abel inverse. By simply expanding the
inverse functions using the basis coefficients calculated from the
projected data, one arrives at the linear least-squares solution for
I(y,z) without having to apply the inverse Abel transform directly to
the imaging data. This gives rise to high-quality reconstructions,
often with less centre line noise than the inverse Abel integral.
Noise levels may be reduced even further by using matrix regular-
isation techniques [such as Tikhonov regularisation or truncated
singular-value decomposition (SVD)] to stabilise the system of
linear equations used in the inversion procedure, though the value
used for these regularisation parameters are often chosen arbitra-
rily to make the most visually appealing reconstructions. The rapid
matrix inversion approach,® introduced to the VMI community by
Livingstone et al.** operates and performs similarly to BASEX and
is extremely fast. This makes it perfect for processing large
volumes of imaging data, such as is required in time-resolved
photoelectron imaging experiments, for example.*>*®

Both of these linear-algebra methods operate on the image data
line-by-line; effectively treating each value of y independently. In an
alternative approach, Garcia et al. proposed to instead fit to the
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whole image simultaneously using 2D basis functions in their
polar coordinate formulation of BASEX, named pBASEX."” This
approach is possible because the angular structure of most typical
VMI images is easily described by a small expansion of Legendre
polynomials P; in cos 6:>*®

Imax

I(y,z)=1(r,0) = [gob/(r)P/(cos 0) 4

where 0 is the emission angle of the photoproducts with respect to

the symmetry axis of the distribution and r = +/y* + 22 is the
radial coordinate in the yz-plane. The coefficients b, are often
referred to as anisotropy parameters and determine how much
each Legendre polynomial term contributes to the full angular
distribution. The upper bound on the expansion /. is usually
determined by the specific nature of the measured photofragmen-
tation/ionization process. Constraining the reconstructed solution
in this way reduces the presence of any reconstruction noise down
to a single point at the image centre. Some onion-peeling algo-
rithms also make uses of angular basis sets to fit to the reconstruc-
tion distribution at each peeling step.***® Similar results are also
possible by using one-dimensional (1D) projections of these 2D
basis functions in a formulation known as linBASEX.*

At time of writing, BASEX appears to be the most popular
Abel inversion routine in use, with pBASEX being a close
second (judging by citation records available from Web of
Science). This is likely because versions of these algorithms
have been in circulation in the community since the early 2000s
and the use of simple matrix algebra operations makes them
fast, direct (i.e. non-iterative) and intuitive. Basis expansion
approaches do, however, come with the minor drawback that a
basis set must be computed prior to the inversion of any
experimental data. For the 1D functions used in BASEX, this
procedure is not too time-consuming, but for the 2D functions
of pBASEX the write times can be significantly longer, particu-
larly for high-resolution images with complicated angular
structures (although recent work has demonstrated that accel-
erated pBASEX basis write times are possible®®). Alternatives to
PBASEX that offer the same centre-line noise suppression
qualities have been developed, but these either still require
some form of pre-written basis function or have an extended
reconstruction time per image.*>*>*" As such, research con-
tinues in the development and refinement of fast, basis set-free
reconstruction routines for VMI data analysis.

This article presents one such method, that begins - per-
haps surprisingly - with the unfashionable inverse Abel integral
introduced in eqn (3). By simply multiplying and dividing by z
inside the integral of eqn (3):

(1 9P(y,z) zdz

- _E, o Z T oz, /22 — p? (5)

and rearranging some terms, the inverse transform may now be
reframed as the forward (and far more numerically stable) Abel
transform of another related function [after a change of
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Fig. 2 The steps of the MAIT image reconstruction strategy. Starting from
the bottom left image and following the arrows clockwise. The projection
of Iy,z) is described using the forward Abel transform, yielding P(y.z). After
defining a new image by differentiating P(y,z) with respect to z and
multiplying the result by 1/z, the original projection operation can be
reversed by finding the Abel transform of the new image distribution.

variables and accounting for the factor of 2 in eqn (2)]:
(6)

This publication will illustrate how, in part because of the
properties this new intermediate function must possess and
how fast and simple it is to calculate the forward Abel trans-
form, this method - which we dub the modified Abel integral
transform or MAIT approach - is far more suitable for VMI
image reconstruction purposes than a naive numerical integra-
tion of eqn (3). The following sections will discuss this in detail
and illustrate with simulated and real data examples the
performance of MAIT. It is shown how this method can achieve
reconstructions of comparable quality to the basis set recon-
struction approaches BASEX and pBASEX but without any
regularisation parameters or the associated basis write time,
which in the case of pBASEX can be several hours. This method
also has some considerable advantages over these other
approaches when handling imaging data with large levels of
background noise.

II. Numerical details

The derivative present in the inverse Abel integral [eqn (3)] is
often cited as one of the primary motivations behind avoiding
this approach altogether and developing alternative image
reconstruction methods. This is because for real, pixelated
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and imperfect data, this derivative step can magnify any noise

present in the image. When combined with the 1/4/z% — p?
factor required for the integration, this noise is amplified
considerably toward the centre (y-axis) of the derivative image.
By considering first a noise free distribution, we can see what
properties the intermediate functions in eqn (6) posses.

Fig. 2 shows an example slice through a VMI distribution
(bottom left) and the corresponding projection image that
would be recorded in an experiment (top left). Upon differen-
tiating with respect to z across the image, each projected ring in
the simulated test image splits into an inner and outer ring
[note the alternating red/blue (positive/negative) radial struc-
ture]. This numerical derivative is calculated simply using the
built-in gradient function in MATLAB. While we find this
produces acceptable results for each of our tested scenarios
on real and simulated experimental data (see Section III A, D
and E), it may have an impact on the reconstruction resolution
of particularly narrow image features that are only a few pixels
wide - as was mentioned briefly in the Introduction. This is
discussed further in Section III C. Note that now, the derivative
distribution is no longer symmetric about the y-axis like the
original projection image, but is instead anti-symmetric (the
left half of the image is the negative of the right half). This
means that the angular structure of the derivative image may be
described using an expansion of Legendre polynomials, analo-
gous to eqn (4), but now with only odd-degree terms
contributing.

These odd-degree polynomials must, by construction, be
equal to zero along the symmetry axis (y-axis) of the distribution
image. Therefore, the 1/z factor in eqn (5) will not necessarily
introduce any infinitely large noise values to the intermediate
function being Abel transformed. Rather, it results in a 0/0
indeterminate form. The true value the function takes as z
approaches zero may be found algebraically. Since the derivative
image is already an odd 2D function (given its anti-symmetry
properties, see Appendix), it must already contain a factor of z.
With this z factor divided out, the resulting image is shown in
the lower right image in the cycle in Fig. 2. The inverse Abel
transform of the image data P(y,2) can then be found by
calculating the (far more numerically stable) forward Abel trans-
form of the intermediate function and multiplying by —%.

Since the forward transform is perfectly numerical stable,
this step can be performed in principle using any established
method. Here in this work, for speed and simplicity, we opt for
the rapid matrix Abel transform developed for VMI analysis by
Livingstone et al.** This approach, discussed briefly earlier,
models the Abel transform as a simple matrix multiplication.
The matrix can be pre-computed ahead of time (like the basis
sets matrices used in BASEX and pBASEX), but in practice this
is often not necessary since it can be calculated very quickly on-
the-fly.

As was mentioned briefly in the introduction [see eqn (4)],
for multiphoton ionization and dissociation measurements
there is a clear interpretation decomposing the projection
image into Legendre polynomials. For example, in the
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Fig. 3 The varying reconstruction results possible by using different
numerical approaches to find solutions to the inverse Abel integral for a
simulated image. Even for relatively noise-free data, egn (3) performs
poorly. Egn (6), on the other hand, presents with far less reconstruction
noise. The numbered ring positions indicated in the top left panel will be
used throughout the discussion in this article.

laboratory measurement frame, the maximum number of
Legendre polynomials /,,.x required to describe a photoproduct
angular distribution I(y,z) resulting from an overall N-photon
ionization/dissociation of randomly oriented atoms/molecules
is 2N. Furthermore, only even degree polynomials typically
contribute to the angular distribution, except for a handful of
notable cases, such as the ionization of chiral molecules with
circularly polarised light.>*™* When the derivative of the pro-
jection data is taken in the first step of the MAIT cycle, however,
one additional Legendre polynomial term (resulting in 2N + 1
terms overall) must be included to properly describe the
derivative image. Applying the 1/z factor in the following step
of MAIT effectively divides this extra odd polynomial term back
out again, and so the final Legendre polynomial content of the
reconstructed I(y,z) image has [,.x = 2N, as expected. The
presence of only odd symmetry polynomial terms up to and
including 2N + 1 in the derivative distribution can be used
explicitly as a noise filter during the image reconstruction
procedure, like the use of Legendre polynomials within pBA-
SEX. We refer to this particular reconstruction procedure as the
filtered modified Abel integral transform or fMAIT.

This polynomial expansion of the projection image, however,
is more challenging for other experimental imaging techniques,
such as molecular scattering,””>>"” strong-field ionisation,>*
and Coulomb explosion imaging,'*®" where highly anisotropic
and/or structured images with very large or unknown values of
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Imax are commonplace. In these instances, it is still possible, of
course, to proceed with this inversion procedure without the
polynomial expansion step. The anti-symmetry of the derivative
image can still be enforced by subtracting a copy of the derivative
image mirrored about the y-axis from itself. This is implemented
as standard in the MAIT and fMAIT algorithms. With this
approach, a small amount of noise is present around the centre
line of the final reconstruction, but this (as will be demonstrated
thoroughly in Section III) amounts to a small level similar to
the reconstruction noise typically present in images produced
using BASEX.

Fig. 3 shows an example simulated projection image (details
on how this was generated are include in the following section)
along with three reconstructions, all produced using different
image reconstruction strategies. The top right reconstruction is
produced by simply numerically integrating the inverse Abel
integral [i.e., eqn (3)] and results in a large amount of noise
being directed toward the centre of the reconstruction, even for
a high-quality projection image. The bottom left reconstruction
is produced instead using eqn (6) on which MAIT is based,
where the reconstruction noise is almost eliminated entirely
except for a very small amount on the centre line. Using
Legendre polynomials to restrict the shape of the derivative
image, fMAIT reduces this noise even further to a single spot at
the centre, as can be seen in the lower right-hand panel. The
remainder of this publication will investigate the performance
of MAIT and fMAIT on both simulated and real experimental
data. First, the ability for MAIT and fMAIT to handle varying
image quality (i.e. signal levels and background noise) is
systematically tested. We then show how MAIT and fMAIT have
a unique advantage in the way they handle (and effectively
eliminate) any background noise present in the image data.
Some typical reconstruction times for MAIT and fMAIT are also
provided, as well as an assessment of the achievable radial
resolution of our approach. As a final definitive test of MAIT, we
analyse high-resolution O, photodissociation images,®* and
scattering images for collisions between velocity controlled
NO radicals and Ne or Ar atoms;”” in each case drawing
comparisons with other reconstruction approaches.

lll. Results
A. Simulated images

The performance of MAIT and fMAIT are evaluated by recon-
structing distributions with varying levels of noise added. This
is modelled by varying the average number of counts per pixel
(cpp) sampled from a known perfect distribution. This distri-
bution is comprised of a series of Gaussian rings each with a
varying level of angular anisotropy. The anisotropy is modelled
using the well-known equation:

1(0) x 1 4 fP2(cos0) (7)

which is a special case of eqn (4). This form of angular
distribution is widely applicable to studies involving ion-
imaging of photodissociation and fragmentation,”® and
also for photoelectron angular distributions resulting from a
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Fig. 4 Simulated projection images with varying levels of signal noise (top
row) and their corresponding reconstructions (the remaining four rows)
using different Abel inversion techniques. No background noise contributions
are included in these simulations. Visually, MAIT has similar performance to
BASEX, but produces slightly sharper reconstructions with less overall back-
ground noise at lower signal levels. fMAIT performs near identically to pBASEX
across all noise levels investigated. See main text for full discussion.

single-photon ionisation,® making it an ideal first test for our
proposed new reconstruction methods. Here, 6 is the angle
between the emitted photoproduct and the polarisation vector
of the ionizing radiation, and f is the angular anisotropy
parameter with limiting values of —1 and 2 (for perpendicular
and parallel electric dipole transitions, respectively). Random
statistical samples were drawn using the Poissonian imnoise
filter in MATLAB onto a 512 x 512 pixel grid. In this section,
image signal levels of 1, 10 and 100 cpp are considered. For
sparser VMI data (with signal levels around 0.1 cpp or lower),
the treatment of the projection image as a distribution (as is
required to calculate its derivative) may begin to break down. In
these cases, more advanced reconstruction procedures based
on maximume-entropy reconstruction are required that can
directly take into account the Poissonian nature of the
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individual ion/electron strikes that the image is composed
of,***® and MAIT/fMAIT (and to some extent, BASEX) will not
formally be suitable. The simulated images are shown in the
top row of Fig. 4. The symmetry axis of these images lies in the
vertical direction, with 6 = 0° at the top of the image. Beneath
each of these simulated projection images, reconstructions are
shown using (from top to bottom) BASEX, MAIT, pBASEX or
fMAIT. It is then easy to compare and identify qualitative
differences between each of the reconstruction approaches.
Links to download the specific MATLAB implementations of
BASEX and pBASEX used in this work may be found here.>®

Starting with the ‘unfiltered’ BASEX and MAIT methods;
BASEX has the option of adding an additional regularisation
parameter to the reconstruction procedure. As discussed briefly
earlier, this regularisation effectively damps the system of linear
equations involved in the inversion and results in the reduction
of noise toward the centre of the reconstruction image, with only
a slight compromise in the final resolution. Compared with
MAIT, BASEX does indeed present with less of a centre line
artefact, but at the cost of some additional background noise
being introduced, which is visible between the reconstructed
rings in the VMI reconstruction data. Thus, although the recon-
struction noise levels using MAIT may be slightly larger at the
centre line when compared to BASEX, they are noticeably smaller
throughout the remainder of the inverted image.

Next, comparisons can be drawn between the ‘filtered’
methods pBASEX and fMAIT, where some general form of
angular distribution is assumed a priori during the reconstruc-
tion procedure. Here, the angular distribution in the recon-
structions is constrained to follow eqn (7). As can be seen in the
PBASEX and fMAIT rows of Fig. 4, this effectively removes the
centre line artefact, and instead concentrates any reconstruc-
tion noise toward the very centre of the image. This extra
angular fitting step helps produce smoother reconstructions,
in particular on noisy data (see the 1 cpp column of Fig. 4).
Each of the methods considered here produce qualitatively
similar results. Although, considering the additional numerical
complexities involved behind the scenes of the pBASEX recon-
struction (i.e. the computation of a large basis set), it should be
highlighted that fMAIT produces the same high-quality recon-
structions at a minimal computational cost.

More quantitative comparisons between the reconstruction
approaches may be revealed by instead extracting the spectro-
scopic content available from these VMI images. The angle-
integrated velocity distributions obtained from each of the
reconstructed images (shown in Fig. 4) are plotted in Fig. 5.
Perhaps the most notable thing about these plots is that the
simulated signal level and subsequent reconstruction noise has
very little effect on the retrieved velocity distribution. This is
due to the rsin(0) Jacobian weighting that must be applied to
the reconstruction during the angle integration procedure. This
is a general feature of the integral nature of calculating velocity
distributions and highlights the fact that they are not highly
sensitive to the reconstruction method used.

The retrieved angular anisotropy parameters, however, are a
somewhat more sensitive test of the inversion procedure and
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Fig. 5 Angle-integrated velocity distributions for the different recon-
structions displayed in Fig. 4, each of which is derived from a simulated
VMI image with a signal level of either 1, 10 or 100 cpp. All reconstruction
methods produce reasonable broadly similar results for low count rates,
which improve as the count rate increases. The numbers in the top panel
indicate the corresponding position of the rings in Fig. 3. See main text for
full discussion.

are more susceptible to reconstruction noise. These are dis-
played in the upper half of Table 1. For each combination of
signal level and reconstruction technique, six values are given
corresponding to the mean anisotropy parameter value aver-
aged over the full-width half-maximum (FHWM) of each peak
in the velocity distribution. As the simulated signal levels
increase (i.e. moving down the table), the retrieved f values
generally approach the original simulated values (shown in the
leftmost column) with the error bounds also decreasing for all
reconstruction approaches. The BASEX and MAIT methods
show similar performance to each other; as do the pBASEX
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Table 1 Reconstructed values for the f angular anisotropy parameter for the images shown in Fig. 4 and 6. For each simulated signal or background
noise level and each reconstruction method, the ff value averaged over the full-width half-maximum (FWHM) of each peak in the corresponding velocity
distribution is shown. The error bounds denote the 1o standard deviation of the mean value across the FWHM. For the varying signal levels, all methods
produce results in reasonable agreement with the initial values. For the background noise cases, however, MAIT and fMAIT show a much better
agreement with the original simulated values compared to BASEX and pBASEX, where the anisotropy is consistently underestimated for high background

noise levels

Ring Simulation BASEX MAIT PBASEX fMAIT
1 cpp signal 1 -1 —0.75 £ 0.20 —1.18 £ 0.20 —1.02 + 0.11 —1.03 £ 0.09
2 0 0.05 £ 0.14 -0.07 £+ 0.21 —0.01 + 0.07 0.08 £ 0.07
3 2 1.99 £ 0.10 2.04 £ 0.17 2.03 £ 0.15 2.07 £ 0.04
4 -1 —0.98 + 0.08 —0.94 + 0.07 —0.94 + 0.07 —1.01 + 0.04
5 0 0.06 £ 0.04 —0.10 £+ 0.08 0.03 £ 0.05 0.01 £ 0.03
6 2 1.94 + 0.07 1.91 £ 0.08 2.09 £ 0.10 2.02 £ 0.05
10 cpp signal 1 -1 —1.04 = 0.06 —1.05 £ 0.05 —1.00 &+ 0.03 —0.99 £ 0.04
2 0 0.11 £ 0.05 0.05 £ 0.05 0.03 £ 0.02 0.04 £ 0.03
3 2 1.97 £ 0.02 1.97 £ 0.03 1.98 £ 0.02 1.99 £ 0.02
4 -1 —1.00 & 0.02 —1.02 £ 0.03 —1.00 &+ 0.02 —1.00 £ 0.02
5 0 —0.01 £ 0.01 0.03 £ 0.02 —0.03 £ 0.01 0.00 £ 0.01
6 2 1.99 £ 0.01 1.95 £+ 0.02 2.00 £ 0.01 2.02 + 0.01
100 cpp signal 1 -1 —0.98 + 0.02 —0.95 £ 0.02 —0.98 + 0.02 —0.97 £ 0.01
2 0 —0.01 + 0.02 0.04 £ 0.02 0.00 £ 0.01 0.03 £ 0.01
3 2 1.97 £ 0.01 2.02 £ 0.01 2.01 £ 0.02 2.02 £ 0.01
4 -1 —0.99 + 0.01 —0.97 £+ 0.01 —0.99 + 0.01 —0.99 + 0.01
5 0 —0.01 + 0.01 0.02 £ 0.01 —0.01 + 0.01 0.00 £ 0.01
6 2 1.98 £ 0.01 1.99 £ 0.01 2.01 £ 0.01 2.01 £ 0.01
1 cpp background 1 -1 —0.99 + 0.04 —1.05 £ 0.11 —0.97 £ 0.03 —1.03 £ 0.04
2 0 0.04 £ 0.03 0.16 £ 0.07 0.07 £ 0.01 0.08 £ 0.05
3 2 1.93 £ 0.04 2.07 £ 0.02 1.97 £ 0.02 2.04 £ 0.02
4 -1 —1.00 & 0.02 —1.01 £ 0.02 —0.97 £ 0.01 —0.98 £ 0.02
5 0 —0.01 + 0.02 0.01 £ 0.03 0.03 £ 0.01 —0.06 £ 0.03
6 2 1.94 £ 0.02 1.98 £ 0.02 1.97 £ 0.02 2.06 £+ 0.05
10 cpp background 1 -1 —0.92 + 0.03 —0.99 £ 0.07 —0.90 + 0.05 —1.00 £ 0.09
2 0 0.03 £ 0.05 0.16 £ 0.05 0.03 £ 0.02 0.03 £ 0.04
3 2 1.81 £ 0.05 2.02 £ 0.07 1.90 + 0.04 2.05 £ 0.01
4 -1 —0.91 + 0.02 —1.00 + 0.05 —0.92 + 0.01 —1.02 + 0.02
5 0 —0.07 = 0.03 —0.04 £ 0.03 0.01 £ 0.01 0.06 £ 0.04
6 2 1.74 £ 0.04 2.00 £ 0.05 1.77 £ 0.03 2.15 £ 0.03
100 cpp background 1 -1 —0.60 = 0.05 —1.19 £ 0.16 —0.57 & 0.04 —1.10 £ 0.15
2 0 —0.01 £ 0.07 0.19 £ 0.12 0.01 £ 0.07 —0.06 £+ 0.14
3 2 1.02 £ 0.05 1.98 £ 0.06 1.06 £ 0.06 1.79 £ 0.06
4 -1 —0.59 + 0.02 —0.89 £ 0.05 —0.48 = 0.02 —1.16 £ 0.03
5 0 —0.13 £ 0.02 —0.09 £ 0.06 0.01 £ 0.01 —0.28 £ 0.06
6 2 0.85 £ 0.02 1.95 £ 0.08 0.89 £ 0.01 2.16 £+ 0.09

and fMAIT methods. This reflects the same behaviour already
observed in the reconstructed images (Fig. 4) and the velocity
distributions (Fig. 5). Thus, we can conclude that for the
reconstruction of typical images formed in photodissociation
and photoelectron angular distributions studies, our two new
methods MAIT and fMAIT perform at least as well as the most
popular alternatives over a range of experimental data quality.

One significant benefit to the new MAIT approaches intro-
duced here, though, is how they handle background noise (i.e.,
erroneous ion/electron strikes that are detected, but do not
originate from the intended photoionization events). This can
be effectively modelled as an additional random homogenous
contribution across the image with an effective average cpp. For
reasonably low levels of background noise, this noise will
present as isolated Gaussian-like strikes on the otherwise
empty background of the detector. In this regime, background

18700 | Phys. Chem. Chem. Phys., 2025, 27,18694-18709

noise has little effect on any extracted velocity distributions or
angular anisotropy parameters. If increasing levels of back-
ground noise are present in images, however, most Abel inver-
sion algorithms will attempt to also reconstruct the noise - a
procedure with no physically sensible interpretation. In prac-
tice, efforts are usually made to subtract away low and constant
levels of noise via some form of background subtraction.
However, during the initial differentiation step of MAIT and
fMAIT, rather pleasingly, any homogenous background noise
vanishes since the derivative of this contribution is naturally
zero. This benefit of our approach is highlighted in Fig. 6, by
comparing reconstructions (once again produced using BASEX,
MAIT, pBASEX and fMAIT) of simulated data with varying levels
of background noise. In these examples, the signal level is held
constant at 10 cpp (the case shown in the centre column of
Fig. 4), while the background noise is now set to 1, 10 or 100
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cpp on average. As can be clearly seen in Fig. 6, for increasing
levels of background noise in the projection image data, a
corresponding increase in positive background noise is seen in
the BASEX and pBASEX reconstruction images. For MAIT, the
background noise present in the reconstruction also increases
with the cpp value of the projection image, but this noise is
comparatively small and (as can be seen from the colourmap)
fluctuates between positive and negative values. Therefore, it is
not expected to contribute significantly when integrated to find
the velocity distributions or when angular distributions are
extracted, both of which will be discussed shortly. The fMAIT
reconstructions present with the least amount of reconstruc-
tion noise. Any noise that is not filtered out during the
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Fig. 6 Simulated projection images with varying levels of background
noise (top row) and corresponding reconstructions (the remaining four
rows) using different Abel inversion techniques. The total signal level is
held at 10 cpp in each case, with only the background noise contribution
changing. For high background noise levels, both the BASEX and pBASEX
reconstructions begin to display a great deal of background noise. This,
however, is absent in the MAIT and fMAIT methods. See main text for full
discussion.
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derivative step is taken care of during the Legendre expansion,
leading to very qualitatively appealing reconstructions across
all simulated levels of background noise.

Analogous to the previous noise test, angle-integrated velo-
city distributions and angular anisotropy parameters can be
calculated from the reconstructions. These are shown in Fig. 7
and in the lower entries of Table 1, respectively. As was
anticipated given the reconstruction images, both BASEX and
PBASEX produce distributions with an erroneous background

Intensity (arb.)
=
3

Intensity (arb.)
=
3

Intensity (arb.)
=
3

Intensity (arb.)
=
3

128 192

Radius (pixels)

Fig. 7 Angle-integrated velocity distributions for the different recon-
structions displayed in Fig. 6, each of which is derived from a simulated
VMI image with a background noise level of either 1, 10 or 100 cpp. BASEX
and pBASEX perform the poorest here, with peaks being less well resolved
and a background artefact appearing at large radii for larger background
noise levels. The derivative step in our new method, however, filters away
most of the background noise contribution and so it does not significantly
effect the retrieval of velocity distributions.
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Fig. 8 A comparison of reconstruction times using MAIT (for the 'none’
case) and fMAIT (for the remaining points) for different image sizes and for
different polynomial expansion sizes. Times are produced by performing
10 reconstructions for each image size and polynomial combination

and averaging the result. Error bars denote the lo uncertainty in this
mean value.

feature extending out to large velocities (radii). On the other
hand, this background feature is completely absent in the MAIT
and fMAIT reconstructions. Interestingly, this benefit of MAIT/
fMAIT would also apply in cases where the apparent ‘back-
ground’ contribution actually originates from high velocity
components, with a velocity corresponding to a radius larger
than that of the imaging detector. In this case, the corres-
ponding peak in the velocity distribution would not be acces-
sible experimentally, but it would be known to fall outwith the
velocity range captured by the detector and have no influence
on the slower components that are detectable; exactly as is
recovered using MAIT and fMAIT. For the case of the extracted
angular distributions, the background noise also introduces
further problems for BASEX and pBASEX. The background
offset present in these images effectively reduces the anisotropy
in the data, resulting in f§ values that are consistently smaller
than those originally simulated for BASEX and pBASEX at
higher background noise levels. In contrast, the MAIT and
fMAIT approaches are again more robust to the simulated
background noise, and in most cases, § values are extracted
that are in remarkably good agreement with the original
simulations, given the background noise level present.

B. Timing comparisons

Reconstruction times can vary dramatically across different
Abel inversion algorithms. More complex algorithms (particu-
larly iterative algorithms that incorporate a more advanced
statistical analysis of the data) are typically slower and invert
images in a few seconds, whereas strategies that rely solely on
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linear algebra (as discussed in the introduction) are usually
incredibly fast and are capable of processing megapixel images
at rates of over one hundred frames per second.®’ Typical
reconstruction times for a variety of different image resolutions
(shown as different coloured data points) and I, values
(plotted along the horizontal axis) are presented in Fig. 8 for
MAIT/fMAIT. Timings were recorded on a 2023 Apple MacBook
M2 Pro with 16 GB of RAM. Unsurprisingly, the reconstruction
time is longer for larger images and scales proportionally with
~n>® for an n x n pixel image - which is comparable to most
other approaches.®" Even for relatively large images, however,
the absolute reconstruction time is competitively fast and is
perfectly suitable for real-time analysis applications, or for the
analysis of large volumes of imaging data, such as is recorded
in time-resolved photoelectron imaging experiments.*>*

As for the number of Legendre polynomials used in the
fMAIT filtering step, we see perhaps more surprising behaviour.
The rate-limiting step for our algorithm is in the calculation of
the forward Abel transform of the intermediate image. In
comparison to this step, the Legendre polynomial filtering step
executes in an essentially negligible time. Therefore, there is
really no difference in processing time when using the filtered
fMAIT compared with the standard MAIT method. This is
different from what is seen in other Abel inversion strategies
which offer a ‘fitted’ and ‘non-fitted’ option, where typically the
fitting step significantly extends the total reconstruction time.*°
Furthermore, the threshold value of /.« also has no bearing on
the total reconstruction time. This can be seen clearly in Fig. 8,
since for each image size the reconstruction times for different
Imax all lie on a horizontal line. When using pBASEX, to include
higher order terms in the reconstructed angular distribution, a
new basis set must be constructed from scratch and inverted
each time (i.e. you cannot simply add terms to a pre-existing
basis set). This can potentially be extremely time consuming
(as has been highlighted elsewhere®") particularly for high-
resolution images requiring correspondingly high-resolution
basis sets. Our new approach, though, is far more user friendly
- only requiring the change of a single number in the analysis
with no knock-on effects for the reconstruction time. This
makes this approach particularly appealing in circumstances
where larger values of [, may be expected, such as in
Coulomb explosion imaging,"*®' above-threshold ionization

processes,**®° and molecular scattering measurements.>>>’

C. Radial resolution

The use of the derivative in the MAIT/fMAIT procedure, as was
mentioned in the introduction, may have an effect on its
maximal possible reconstruction resolution. This is because
the calculation of the numerical derivative necessitates repla-
cing the real measured data with some approximation that can
be differentiated. This is equivalent to introducing a small level
of smoothing to the data, which will potentially result in
problems when trying to reconstruct particularly fine and sharp
features in VMI data. For many applications where features are
several pixels wide - such as the examples already discussed
in Section IIT A - this will be a negligible effect. Even for the
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high-resolution images that will be discussed later in Section III
D and E, we see no significant influence of this in the recon-
structed data. In the interest of full transparency, though, we
illustrate here the consequences of using this numerical deri-
vative approximation, and the mitigating effects it may have on
the achievable radial resolution in extreme cases.

Test VMI images were simulated consisting of three isotro-
pic rings spaced 20 pixels apart with a signal level of 10 cpp
(using the procedure established previously). The full-width
half-maximum (FWHM) of each ring was varied as the input
for this test from 1 to 20 pixels, and the corresponding
integrated radial distributions were recovered using the inverse
Abel integral, BASEX, pBASEX and MAIT. The reconstructed
FWHM may then be easily compared with the original simu-
lated FWHM value to assess the inherent radial resolution of
each approach. We do this here by convoluting the simulated
velocity distribution with a Gaussian of variable width and
performing a least-squares minimization search to find the
convolutional width which is in best agreement with the
reconstructed data. This may then be used to find the actual
reconstructed peak FWHM for each method, and the relative
difference from the simulated input FWHM value may be
determined. Fig. 9 shows a plot of how this error changes as
the simulated FWHM is varied.

With this analysis, pBASEX gives the lowest reconstruction
error for all simulated peak widths, followed by BASEX. The
MAIT (and fMAIT - not shown as it performs identical to MAIT
in this test) method consistently outperforms the standard

% BASEX @ pBASEX
S Inverse Abel MAIT
10° T T T

—
S
IS

Relative reconstruction error in FWHM
=

3 . L N
10 0 5 10 15 20

Simulated FWHM (pixels)

Fig. 9 Relative errors in reconstructed FWHM values for different recon-
struction approaches. The MAIT/fMAIT approach (yellow) consistently
outperforms the simple implementation of the inverse Abel transform
(purple). For widths greater than around 15 pixels, the derivative step in the
MAIT/fMAIT procedure has a negligible additional effect on the recon-
struction resolution, and the result is comparable to that of BASEX (blue).
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inverse Abel transform; likely because of the significant
reduction in the centre line artefact with MAIT. For particularly
narrow features (i.e., FWHM < 15 pixels) however, MAIT has a
larger reconstruction error than that of BASEX. This is attrib-
uted to the small degree of smoothing that must be inherently
present due to the differentiation step. For wider features,
though, the MAIT and BASEX error curves converge and overlap
each other, indicating that this smoothing becomes negligible
for features wider than ca. 15 pixels. Similar trends were also
noted for other signal levels, though the point at which the
reconstruction models converge moved to larger simulated
FWHM values for higher signal levels.

Though this may place a limit on the use of MAIT/fMAIT for
particularly high-resolution imaging applications, for general
use cases we anticipate the effects to be negligible (as can be

O

Projected VMI Data

Q@

BASEX pBASEX
; L]
MAIT fMAIT

Fig. 10 Raw (top panel) and reconstructed (rest) VMI data of O ions from
the photodissociation of O, via the 3dn X (v =2) Rydberg state using
various reconstruction approaches. See main text for discussion. An
extended discussion if this data may be found elsewhere.®?
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seen in Section III A). We also would like to stress that the
differentiation has no effect on the angular resolution of the
reconstructions, as shall be demonstrated and discussed in
more detail in Section III E.

D. Photodissociation of O,

In these final two sections, the abilities of MAIT and fMAIT are
showcased with demonstration reconstructions of experi-
mental VMI images. For the first example, the image in the
top panel of Fig. 10 comes from a recent publication focussing
on the photodissociation dynamics of O, via two-photon reso-
nant Rydberg states in the 200-240 nm region.®* O, photodis-
sociation was also used in the seminal demonstration of the
VMI technique by Eppink and Parker in 1997," and so is a
highly appropriate test system for the initial use of MAIT and
fMAIT presented in this article. The particular image shown in
Fig. 9 is obtained by imaging O" ions formed by exciting O, via
the 3dn 7 (v = 2) Rydberg state at 224.983 nm - see ref. 62 for
full details.

As was done in the previous section, the respective outputs
of MAIT and fMAIT are also compared with BASEX and pBASEX.
The reconstructions produced using BASEX and pBASEX are
shown in the centre panels of Fig. 10, with the MAIT and fMAIT
reconstructions shown in the lower panels. As was the case for
the test imaging data presented in Section III A, the BASEX
reconstruction has a slightly reduced central noise line com-
pared to the MAIT reconstruction at the cost of a larger
oscillating background contribution (note the green/yellow
colour dispersed over the image). This background reconstruc-
tion contamination is almost entirely absent from the MAIT
reconstruction, with the vast majority of any reconstruction
artefacts lying at the symmetry axis. Also in analogy with the
simulated examples discussed earlier, the pBASEX and fMAIT
reconstructions are near identical as a consequence of forcing
the inverted images to obey eqn (7).

Fig. 11 shows the velocity distributions obtained by angular
integration of each reconstructed image in Fig. 10. Despite the
small variation in image reconstruction quality seen in Fig. 10,
there is no appreciable difference between the velocity distribu-
tions. This again demonstrates the robust nature of the angular
integration process within any small levels of reconstruction
noise. As stated earlier, there is no discernible difference
between the output of fMAIT and pBASEX. Note again, though,
that the fMAIT reconstruction does not require the pre-
calculation of a 2D basis set, unlike pBASEX. Thus, fast, high-
resolution, basis set-free reconstructions are made possible
using the fMAIT approach.

E. NO-Ne and NO-Ar scattering images

As a final and most challenging test of MAIT and fMAIT, we
consider VMI images recorded from atom-diatom scattering
measurements. These are an excellent proving ground for new
data reconstruction strategies, since they can often contain rich
features which are challenging to resolve.>® In general, how-
ever, crossed-beam scattering VMI data is not Abel invertible.
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Fig. 11 Velocity distributions extracted from the reconstructed images
shown in Fig. 10. Due to the high quality of the raw experimental data (also
Fig. 10), the retrieved velocity distributions are essentially identical.

This is due to kinematic effects between the two collision part-
ners, resulting in a pixel-dependent so called flux-to-density
transformation which effectively breaks the cylindrical symmetry
prerequisite for an Abel inversion. As such, the inverse Abel
transform is rarely used for interpreting scattering data and
instead more advanced image reconstruction procedures must be
used.’*2° For the specific cases of ‘head-on’ collisions with
counterpropagating molecular beams or for perfectly merged
beams, however, flux-to-density effects are uniform across the
detection plane and cylindrical symmetry is preserved in the
scattering images — allowing for the data to be reconstructed via
Abel inversion. These particular collision geometries — in combi-
nation with the Stark deceleration technique - also minimize the
effects of the velocity spread of each beam on the final angular
resolution possible in the imaging data. This allows for the finest
of details present in scattering differential cross-sections (DCSs),
such as diffraction oscillations,> to be measured with exquisite
precision. Diffraction oscillations are a result of quantum inter-
ference between different collision trajectories across the inter-
action potential energy surface which result in the same final
deflection angle.

Segments of ‘head-on’ collision images recorded in a pre-
vious study of the inelastic scattering of NO with rare gas atoms
(Ar and Ne) are shown in Fig. 12.° For both cases, the image
has been reconstructed using BASEX (as was done in the
original publication of this data) and using the new MAIT
and fMAIT methods proposed in this article. pBASEX is not
included here in this comparison since, as discussed earlier,
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Fig. 12 Cropped views of NO ion images recorded following inelastic
scattering with Ar (top row) and Ne (bottom row). The original VMI data is
shown on the far left and the various reconstructions are shown on the
right. In these images, the NO velocity vector points from left to right.
Small areas of the distributions around the forward scattering direction are
masked due to imperfect state selection of the NO packet. While all
inversion approaches clearly resolve the diffraction oscillations present in
the original data, there is slightly less background reconstruction noise
dispersed over the MAIT/fMAIT images. See main text for full discussion. A
detailed discussion and extended analysis of this data is available
elsewhere >

constructing a 2D basis set capable of modelling the oscillations
seen in this form of measurement would be prohibitively time
consuming. If the extensive computer memory required was
available, we tentatively estimate it would take in excess of
30 hours to construct a basis set with I, = 720 (which allows
for oscillations at the scale of ~0.5° to be reconstructed). Further-
more, the system of linear equations to be solved with such a large
basis set would be unstable and impractical to solve. The success of
PBASEX (and also fMAIT) relies on being able to efficiently com-
press the VMI data with a simplified description in terms of a
relatively small Legendre polynomial expansion. When this is no
longer appropriate — as is the case for the images in Fig. 12 - there
is no real advantage to these approaches, and in fact, the need to
limit the angular resolution of the reconstructions with some 7,
threshold can only spoil the otherwise achievable angular resolu-
tion. The fMAIT reconstruction (with /,.x = 720) is therefore only
shown here for completeness in Fig. 12 and to show that even
angularly complex reconstructions are possible using fMAIT on
reasonable time scales. It will not be considered further here.
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Comparing the BASEX and MAIT approaches (the centre
four panels of Fig. 12), it can be seen that there is a more diffuse
background reconstruction noise present in the BASEX recon-
structions (the yellow/green points just inside the rings). For
the MAIT reconstructions, however, this noise is reduced and is
instead only found much closer to the centre line where it is
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Fig. 13 DCSs extracted from the scattering images shown in Fig. 12. For
each combination of rare gas collision partner and reconstruction
approach, the angular resolution has been extracted using a non-linear
least-squares fitting procedure. For BASEX, angular resolutions of 0.35°
and 0.42° were determined for Ar and Ne colliders, respectively. The
optimal resolution possible using our new approach was found to be
similar with 0.36° and 0.41°, respectively. This indicates that each recon-
struction approach is capable of the same high- resolution, which is only
limited by the imaging spectrometer itself.
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much less detrimental to the analysis of angular distributions.
Integrating over each of the rings in Fig. 12, DCSs displaying
the diffraction oscillations can be extracted as a function of 6,
defined as the angle between the relative velocity vector of the
two collision partners and the final velocity of the scattered
products. In the images in Fig. 12, the right-hand side of the
images corresponds to forward scattering (0 = 0°).

Fig. 13 shows these extracted DCSs for NO-Ar and NO-Ne
collisions extracted from the BASEX and MAIT reconstructions
in Fig. 12 (blue lines). As with the images, clear oscillations can
be observed using both reconstruction approaches. The full
interpretation of these results can be found in the original
publication.” Here, instead, we focus on the relative resolution
achieved with each reconstruction method. Also shown in
Fig. 13 is the theoretical prediction for the DCS (red dotted
lines). These oscillations are free from any resolution-limiting
factors introduced either in the experimental imaging appara-
tus or from the reconstruction procedure. If the final resolution
in the experimental DCSs reconstructed using either BASEX or
MAIT are different, this will be due only to the inversion
method. By convolving the theoretical DCSs with a Gaussian
function of a variable width, the inherent resolution of the
instrument combined with each reconstruction approach can
be estimated by finding the Gaussian convolution width that
best reproduces the experimental DCS - as was done previously
in Section III C to investigate the radial resolution of each
approach. These are shown overlaid in Fig. 13 as red solid lines.
This fitting procedure retrieved an angular resolution of 1o =
0.35° and 0.42° for the BASEX-reconstructed Ar and Ne collision
images, respectively. For the MAIT images, a near-identical
resolution of 16 = 0.36° and 0.41° was retrieved from the same
optimisation algorithm. This clearly demonstrates that our new
method is a robust and valid alternative to BASEX, with the
same high-resolution capabilities, and does not introduce any
further detrimental effects on the final images and ultimate
experimental result quality.

Confirming these high angular resolution image reconstruction
capabilities of MAIT and fMAIT helps build confidence in these
newly developed approaches. This, coupled with the competitively
fast reconstruction times - especially for pBASEX-style reconstruc-
tions utilising large basis sets — and the unique ability to filter away
background noise makes MAIT/fMAIT an excellent choice of Abel
inversion approach across a broad range of VMI applications.

V. Conclusion

A new approach for reconstructing VMI projection data has
been presented. This method uses a modified version of the
inverse Abel transform integral, which has been mostly avoided
due to its historical poor performance on experimental data. It
has been shown here that by reframing the problem in terms of
the more stable forward Abel transform, the majority of the
reconstruction artefacts directed toward the centre of the
image can be made to vanish. This is particularly useful for
extracting photoproduct angular distributions and differential

18706 | Phys. Chem. Chem. Phys., 2025, 27,18694-18709

View Article Online

Paper

cross-sections. Some fine radial resolution is lost using the
MAIT/fMAIT procedure when compared to other reconstruction
approaches, though this is negligible in many cases and only
becomes important for features that are only a few pixels wide.
We have demonstrated here how our methods typically perform
favourably against BASEX and pBASEX over a range of data
quality and can even outperform these methods when a high
level of unwanted background signal is present in the images - a
feature we believe to be unique to the approach described here.
This, in addition to the fast processing time, makes MAIT and
fMAIT particularly attractive for on-the-fly reconstructions where
signal-to-noise ratios may be poor. Our methods, however, may
struggle to discern particularly sharp features in product velocity
distributions when compared to alternative strategies. Although
it is not discussed here, with some further modifications to the
integral step, we also anticipate that this method will be readily
applicable for the reconstruction and correction of partially
sliced data."®"" The MAIT/fMAIT MATLAB algorithm is available
from the MATLAB File Exchange.®
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Appendix: additional mathematical
details

Reframing the ill-conditioned inverse Abel integral as the
forward Abel transform of a related function will only prove
to be a robust approach if this new related function is well-
behaved and does not contain any unphysical values (intro-
duced by trying to divide by zero, for example). The goal of this
Appendix is to verify that MAIT is on firm mathematical
foundations, and does not produce any surprising artefacts.
This can be demonstrated by first considering an isotropic
Gaussian ring defined in the imaging plane, P(y,2):
2
(L) )
P(y,z)=e

which is an example of the simplest structure present in VMI
data, with width w, and radial size r,. More complex VMI
images can be constructed as a sum of this simple building
block with different ring sizes and different degrees of angular
anisotropy (to be discussed shortly). To differentiate eqn (A1)
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with respect to z (as is required in the MAIT procedure):

d d (‘mm)z
TPr = fen (42)
the chain rule can be applied:
2
d d|[(Vy*+22—r
—P =P | A3
02 =P02) o ( - (A3)

Using the chain rule a second time:

P (VI EE ) (P ) ()

w2

and simplifying:

. YOV e R S
WOz P(y,Z) 2( Yotz }’()) \/m (AS)
leads to:
Vyr+z2 =
iP(y7 z) = *2ng(y, z) (A6)
dZ Ozm

The important point from this result is that, once differ-
entiated, the original isotropic distribution (i.e. only dependant
on the radial distance r = y/y? + z2) now contains a term in z.
This demonstrates why dividing the derivative image by z does
not formally introduce any divide by zero errors, since z is
already a factor within the derivative image. The z factor also
coincides with the first order Legendre polynomial term, which
explains the increase in the number of polynomials required to
expand the derivative image compared to the original

“N
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Fig. 14 The first two steps of the MAIT reconstruction procedure applied
to a model isotropic (top row) and anisotropic (bottom row) distribution.
No singularities arise in the equations that produce these images, and this
behaviour generalises to more complex shaped angular distributions.
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distribution by one. Although it should be possible to handle
it formally, in practice, there are no instances of dividing by
zero in the programming of MAIT or fMAIT. The image coordi-
nate system is defined so that the extreme right/left of the
image is defined as z = £1, respectively. When processing an
image with an even number of pixels (as is required by the
matrix transform of Livingstone et al.), this will result in there
being no pixel with coordinate z = 0, and therefore no divide by
zero instances.

Fig. 14 shows examples of the derivative and division steps
for this isotropic ring (top row) and also for an anisotropic ring
with f, = 2 (top row). The angular description of this differ-
entiation step is more complicated than the original definition
of the angular distribution [ie. in eqn (4) of the main text],
since the differentiation is made with respect to z but the
angular annistropy is described in 6. Nevertheless, because of
the requirement of cylindrical symmetry, the y-axis (i.e., z = 0)
must be a local extremum of the image, and the derivative will
be equal to zero.

@ € v b

W AN AN D
AN

e ( ) N
Y — N 2 VA W
3 \ J

— =~ S—" p——

F—N F R PN s
P, ( )

\__/ \\\/ \'/ \_/

Fig. 15 The MAIT procedure applied to projected angular distributions of
different Legendre polynomials for [ = O through to [ = 4. For distributions
with even symmetry (i.e. even values of [) the image produced in the
derivative step (second column) can be expanded using only odd Legendre
polynomials as a noise filtering step when using fMAIT. For odd symmetries
(i.e., odd (), the derivative image must instead be expanded in associated
Legendre polynomials. The remainder of the reconstruction procedure is
identical for both symmetries.
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For images of even symmetry (i.e., containing only even
Legendre polynomial contributions), their derivative image will
be of entirely odd symmetry and contain only odd Legendre
polynomials, as discussed in the main text. Note now that the
symmetry axis for this new expansion is the z- rather than the y-
axis. For images containing odd terms, however (such as those
encountered in scattering images and in photoelectron circular
dichroism measurements), the description becomes more com-
plicated. This is because there is no longer a symmetry between
the upper and lower halves of the yz-plane. Instead, associated
Legendre polynomials, P} need to be used for the expansion,
where [ is set to /. and m runs from 0 in integer steps through
to Imax- This is illustrated for projections of the first five
Legendre polynomials in Fig. 15. In practice, the choice of
using either the standard or associated Legendre polynomials
enforces forward/backward symmetry or allows for forward/
backward asymmetry, respectively, in the reconstructed images.
With the polynomial expansion complete, the division by z will
still result in a 0/0 indeterminate form along the symmetry axis,
but this will always produce a finite answer since the derivative
image already contains a factor of z, as has already been
discussed.
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