Deciphering the Electronic Structure and Conformational Stability of 2-Pyridinecarboxaldehyde

Abstract

The conformational structures and ionisation dynamics of 2-pyridinecarboxaldehyde (2-PCA) were explored using high-resolution vacuum ultraviolet mass-analysed threshold ionisation (VUV-MATI) spectroscopy, complemented by Franck–Condon (FC) simulations and quantum chemical calculations. The precise adiabatic ionisation energy of 2-PCA was determined to be 76,589 ± 4 cm⁻¹ (9.4958 ± 0.0005 eV), which is notably lower than the previous values obtained from electron impact ionisation studies. The vibrationally resolved VUV-MATI spectrum of the molecule confirmed that ionisation predominantly originates from its s-trans conformer, with no significant contribution from its s-cis conformer, indicating that the interconversion barrier effectively limits the population of this species under supersonic expansion conditions. Molecular and natural bond orbital analyses revealed that the highest occupied molecular orbital of the s-trans conformer is primarily composed of a nitrogen nonbonding orbital, which interacts with the oxygen lone pairs of the formyl group. This interaction stabilises the electronic structure of the conformer, resulting in an increased ionisation energy compared with pyridine. FC analysis further demonstrated that vibrational excitations in the cationic state are predominantly associated with the in-plane ring and formyl bending modes, producing distinct vibrational progressions in the VUV-MATI spectrum. These findings provide not only valuable insights into the electronic structure, conformational stability, and ionisation dynamics of 2-PCA, but also a deeper understanding of the effect of functional-group substitution in pyridine derivatives. Moreover, the results underscore the effectiveness of VUV-MATI spectroscopy in resolving conformer-specific ionisation processes, paving the way for further investigations into the electronic properties of heterocyclic molecules.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
28 Feb 2025
Accepted
04 May 2025
First published
05 May 2025

Phys. Chem. Chem. Phys., 2025, Accepted Manuscript

Deciphering the Electronic Structure and Conformational Stability of 2-Pyridinecarboxaldehyde

H. Kim, S. M. Park and C. H. Kwon, Phys. Chem. Chem. Phys., 2025, Accepted Manuscript , DOI: 10.1039/D5CP00792E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements