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Fitting ambiguities mask deficiencies of the
Debye–Hückel theory: revealing inconsistencies
of the Poisson–Boltzmann framework and
permittivity†

Benjamin Janotta, *a Maximilian Schalenbach, *a Hermann Tempel a and
Rüdiger-A. Eichel abc

The more than 100-year-old Debye–Hückel theory displays the most widely used approach for model-

ing ionic activities in electrolytes. The Debye–Hückel theory finds widespread application, such as in

equations of state and Onsager’s theory for conductivities. Here, a theoretical inconsistency of the

Debye–Hückel theory is discussed, which originates from the employed Poisson–Boltzmann framework

that violates the statistical independence of states presumed for the Boltzmann statistics. Furthermore,

the static permittivity of electrolytic solutions is discussed as not directly measurable, while common

methods for its extraction from experimental data are assessed as erroneous. A sensitivity analysis of

modeled activity coefficients with respect to the permittivity and ionic radii as input parameters is con-

ducted, showing that their influences overshadow physicochemical differences of common variations of

Debye–Hückel models. Eventually, this study points out that the justification of the traditional and still

often used Debye–Hückel models by experimental validation is affected by fitting ambiguities that even-

tually impede its predictive capabilities.

1 Introduction

In ideal solutions, colligative properties like the boiling-point
elevation, freezing-point depression, and lowering of the
vapour pressure are proportional to the concentration of the
solute. The activity coefficient quantifies the deviations
between real and ideal solutions by relating the real properties
of solutes to their theoretical ideal values.1 Debye and Hückel
developed the first widely accepted model for the activity
coefficient of dissolved ions, assuming electrostatic interac-
tions between ions distributed in a dielectric continuum, with
their distribution governed by the Poisson–Boltzmann (PB)
equation.2 In the Debye–Hückel (DH) theory, the ionic radii
serve as input parameters to model the activity coefficient,
while the impact of concentration dependence of the relative
permittivity (also often referred to as dielectric constant) is still
being investigated.3 The modeled activity coefficients can be
accurately matched to those measured of strong electrolytes

(completely or almost completely dissociated ions) at low con-
centrations using ionic radii as fitting parameters and a constant
permittivity.2 This agreement of model and experiment reasoned
the success of the original DH theory and its rise to a standard
model.4 The DH theory displays the foundation for many
electrolyte models, such as thermodynamic equations of
state5,6 and the conductivity.7 However, the validity of the DH
theory is restricted to low-molar electrolytes with monovalent
ions.8–11 This restricted validity is often ascribed to the lineariza-
tion of the PB equation, the mean-field character of the electro-
static potential, and neglected physicochemical effects.

Although Arrhenius addressed the role of association in his
1903 Nobel Prize lecture, moderating his award-winning theory
of electrolytic dissociation,12,13 ion pairing was largely over-
looked in the formulation of the DH theory in 1923 and in
numerous subsequent extensions of the theory.14 To extend the
good match between the DH theory and experimental data to
higher salt concentrations and to include physicochemical
effects that are not incorporated in the original DH theory, a
variety of extensions were proposed that can be categorized into:

(1) (Semi-) empirical models with parametrized concentration-
dependent terms (like Hückel’s model for the concentration-
dependence of the permittivity,15 and the Davies equation16,17).

(2) Virial expansions of the thermodynamic potentials (like
Mayer’s and Pitzers models18–21), which enable a
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parameterization of interactions between electrolyte compo-
nents using virial coefficients.

(3) Models for physicochemical effects of ions in solution
(such as ion–solvent interaction,14,22,23 short-range repulsion,24

association25) that affect the thermodynamic potentials of
the ions.

All these extensions come at the cost of an increased amount
of parameters, as the parameters of one electrolyte are usually
not transferable to other electrolytes or mixtures.14 Although
models of the third category aim to overcome the restricted
applicability of parameters, the accuracy and validity of the
used physicochemical models are debated11,26–29 because iso-
lating individual contributions to the activity coefficient from a
single measurement technique is not possible.

The mean ionic activity coefficient of all ions in solution can
be measured accurately by physicochemical properties such as
electrochemical potentials, freezing point depression, and
vapor pressure.30 To better understand the individual contribu-
tions of the physiochemical effects (third category), other
(macroscopic) properties such as the conductivity or vibrational
spectra are often investigated.31 The inferred contributions
(such as the fraction of associated ions) are obtained by
comparing the measurement with models for the measured
property. A drawback of using models like Onsager’s conduc-
tivity models7 is their foundation in the DH theory or compar-
able theories for the ion distribution around a central ion and
their dependence on several parameters.

In the DH theory, the ion radii and the electrostatic inter-
actions between the ions determine the ion distribution around
the central ion. Three DH models with different assumptions
regarding the parameterization of the distance of closest
approach (the sum of ionic radii ai) between ions and the
central ion are commonly used in the literature: (i) the full DH
model (denoted as ‘‘DHFULL’’), which accounts for different
radii of the ions; (ii) the extended DH model (introduced by
Hückel15 and denoted as ‘‘EDH’’), where a mean distance of
closest approach for all ions is assumed; and (iii) the DH
limiting law (denoted as ‘‘DHLL’’) for low concentrations,
where the effects of the finite ion radius approach zero and
are thus neglected. Repulsive interactions between ions around
the central ion due to the finite volume (hard sphere) of the
ions and the concentration dependence of parameters like the
permittivity are not considered in the derivation of DH theory.

These shortcomings are reasons for the ongoing discussion
on the validity and applicability of the DH models.32–46 Conse-
quently, adaptations42,47–50 of and alternatives51–53 to the DH
theory were developed aiming to overcome these intrinsic
shortcomings. Refined derivations of the DH theory starting
with the PB equation such as the one by Shilov et al.54,55 and
Valiskó et al.22,56 enable incorporating measurement data of
the concentration dependent permittivity and predicting
the activity coefficients over a larger range of concentrations
without the introduction of new parameters. The non-
monotonic behaviour of ionic activity coefficients of ions is
explained by ion–solvent interaction. Alternative theories like
the hypernetted chain theory,51 and the Mean Spherical

Approximation (MSA)52 intrinsically account for hard-sphere
repulsion (and association), showing significant theoretical
improvements compared to the DH theory. Unlike the explana-
tion of Hückel15 and Shilov et al.,54,55 the non-monotonic increase
of the activity coefficient is (largely) attributed to hard-sphere
repulsion. By developing a modified PB theory based on thermo-
dynamic perturbation theory, Budkov et al.57,58 developed a model
that intrinsically accounts for the local permittivity of the solvent
and explicitly accounts for the dipole moment of the solvent and
ions. Nevertheless, to date, theoretical models and foundations
for electrolytes still lack a wide range of applicability, and
improvements in electrolyte theories are regarded as the most
crucial research area for applied thermodynamics.59

In this study, the assumptions underlying the derivation of
the DH theory are examined and its parametrizability is criti-
cally investigated. First, the PB framework is discussed to
violate the statistical independence of states presumed for the
Boltzmann theory. Then, the measurement and calculation of
the permittivity and its concentration dependence are critically
discussed, showcasing the uncertainty of a property that is
usually assumed to be known exactly. To assess the impact of
parameter uncertainties, a sensitivity analysis is conducted
comparing the three DH models with the MSA. Furthermore,
contributions due to hard sphere repulsion of the ions, hydra-
tion, and association are compared which are used as physico-
chemical model extensions. The activity coefficient is
calculated using the four named model contributions on pre-
sumed parameter intervals to mimic a predictive input of
uncertain physical parameters. Additionally, the impact of the
parameterization on the calculated conductivity is discussed, as
transport properties are often used to determine thermody-
namic properties like the degree of association. The uncertainty
of the input parameters is shown to significantly impact the
model results. Consequently, the good agreement between
measurement data and models based on the DH theory are
found to be a result of overfitting rather than a rigorous
physicochemical modeling. With this approach, a critical dis-
cussion on the parameterization and physicochemical assump-
tions of the DH theory is presented, motivating the further
development of modern models for electrolytic solutions as
well as experimental techniques and atomistic modeling60–64

for detailed validations.

2 Results and discussion
2.1 Conceptual inconsistencies of the Debye–Hückel theory

The qualitative and quantitative description of ion–ion and
ion–solvent interactions for macroscopic models is intensely
debated in the contemporary literature.14,65 A key characteristic
for models of (dilute) electrolytes is the propagation of the
electrical field inside the electrolyte for which the Debye–
Hückel (DH) theory displays the most widely used theory
regarding macroscopic modeling.4 In the following, the suit-
ability of the DH theory as foundation for predictive electrolyte
theories (in contrast to merely fitting available data) is
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discussed. Detailed analyses of mathematical assumptions (like
the linearization of the Poisson–Boltzmann equation) during
the derivation and further discussions (charging process) that
often take the Poisson–Boltzmann framework as starting point
can be found in the literature.4,8,50,66

2.1.1 The Poisson–Boltzmann framework. The following
argumentation shows that the DH theory violates a rigorous
application of fundamental principles of statistical mechanics,
even if the mean field assumption is assumed to be correct
(which is briefly discussed afterwards). The approximate nature
of the DH theory arises from the violation of statistical
independence of the microstates in the Poisson–Boltzmann
equation. For the argumentation regarding this criticism,
important fundamentals of the Boltzmann distribution are
briefly recapitulated, before the approximate nature of the
employed Poisson–Boltzmann distribution is discussed.

The Boltzmann distribution is derived for the assumption
that the probability ps to observe a system in a microstate
(namely that a well-defined subsystem has the energy ws) is
proportional to the number of possible states M for a system
with total energy W: p p M(W � ws).67,68 Here, M is a function
of (W � ws). The probability ps for the microstate is

ps ¼ 1

Z
exp � ws

kBT

� �
; (1)

where Z defines the canonical partition function (sum over all
microstates)

Z ¼
X
s

exp � ws

kBT

� �
: (2)

To avoid the necessity to calculate all microstates, the DH
theory compares the probabilities to find an ion k in the two
specific states denoted with superscripts N and s. The super-
script s denotes the state of interest with a specified energy ws

k of
k near a central ion, and N a well known (reference) state far
away from the central ion. By dividing one probability by
another, Z gets eliminated and their relation can be expressed as

psk
p1k
¼ exp

w1k � ws
k

kBT

� �
: (3)

The probability ps
k manifests as the concentration ck of the

macroscopic system. Using the electrostatic potential energy
wk = zkeFk, where Fk, and zk are the potential acting on k and the
valence of k, and assuming that the potential far away from the
central ion is negligible (FN

k = 0) reveals the starting point of
the derivation of the DH theory

csk
c1k
¼ exp

�zkeFs
k

kBT

� �
: (4)

Since eqn (4) describes the distribution of a species k around
the central ion j based on the mean concentration of the
solution cNk (assuming radial symmetry), it is often written as
the radial distribution function gkj(d) = cs

k(d)/cNk . The potential
at a distance d from the central ion is determined by the

Poisson equation

rd
2FðdÞ ¼ �F

e

X
j

zjcjðdÞ; (5)

using the valence of the central ion as boundary condition,
where F denotes the Faraday constant and e the permittivity of
the solvent. The electrostatic potential field emerges as a
function of the concentrations of all ions, importantly, includ-
ing ck(d). Noting that the potential field depends on ck gives

csk
c1k
¼ exp

�zkeF cs�k
� �

kBT

� �
; (6)

where s* denotes all the states in which the ion is closer to
central ion than in s. Using the proportionality between prob-
ability and concentration, again, the probability ps

k of a species
k to occupy a state s in the DH theory is expressed by

psk ¼
1

Z
exp �

ws
k ps�k
� �
kBT

� �
: (7)

Hence, the energy ws
k and the associated probability ps

k

depend on the probability for other states. Therefore, the
microstates are not independent and the proportionality
between the probability and the number of possible state M
is violated. This dependence violates the statistical indepen-
dence of the microstates presumed for Boltzmann statistics.

Fig. 1 illustrates the dependence of the probability for a state
on the probability for a different state. The propagation of the
electrostatic potential in Fig. 1(B) is determined by the prob-
abilities for the states (by means of the concentrations, eqn (5))
in Fig. 1(A). Therefore, the probability to find an ion at a
distance d from a central ion is calculated based on the
potential energy (by means of the potential field) of different
states, which, however are not simultaneously occupied.

The critique on the intrinsic approximation of the employed
Poisson–Boltzmann equation discussed in this work is in

Fig. 1 (A) Calculated probability distributions of cations and anions, and
(B) electrostatic potential around a central cation for a one-one electrolyte
(solution of Debye and Hückel, see ESI† for equations), where a is the
distance of closest approach. The probability for an ion to occupy a state in
(A) affects the propagation of the electrostatic potential in (B) (see eqn (5)).
Hence, the electrostatic potential energy of the same ion at a distance d is
affected by the probability for the states with a smaller distance that d
(which are not occupied at that time).
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contrast to statements in contemporary literature4 claiming
that the only approximation in the Poisson–Boltzmann equa-
tion is the used potential of mean force F (before linearization
of the exponential). Importantly, even the DH limiting law is
not free of the approximation discussed so far.

The approximate nature of the potential of mean force was
criticised by Onsager who showed that eqn (4) is not self-
consistent because the reciprocal relations (Onsager’s Nobel
prize in 1968) for two ions k and m are in general not fulfilled:
zkeFm(d) a zmeFk(d).69 The inconsistency found by Onsager
(and Fowler70) stems from the mean-field approximation,
because the mean-field does not coincide with the potential of
mean force (for the virtual displacement of the ion). The potential
of mean force near a central ion calculated via the static Poisson–
Boltzmann framework does not include the thermal ion move-
ment by Brownian motion. Hence, the radial distribution function
around the central ion derived in the static Poisson–Boltzmann
framework does not portray the physical ion dynamics, leading to
an intrinsic inaccuracy of the static fundament. In the presence of
localized ions, the electrostatic potential field deviates signifi-
cantly from the mean electrostatic potential field (DH theory) due
to the de-localized (smeared) ion distribution. Furthermore, the
average (mean) field due to localized ions does not coincide with
the field due to smeared ions because of the non-linearity of the
electric field strength as a function of the distance:

FðciðdÞÞaF ciðdÞð ÞÞ. The bar over a variable denotes local aver-
aging. Therefore, a localized ion at a distance d from a central ion
is subjected to a different field and electrostatic potential energy
than calculated in the DH theory. This argumentation coincides
with the simulation results by Lyubartsev et al.71 who used a
reverse Monte Carlo approach for a NaCl solution. The Mean
Spherical Approximation (MSA) is affected by similar mean-field
assumptions, but the ion distribution is modeled based on a more
realistic function for the potential of mean force.

2.1.2 The static permittivity. Fig. 2(A) shows measurement
data of the static relative permittivity for aqueous NaCl solu-
tions from the literature,72–74 obtained via dielectric spectro-
scopy at probing frequencies in the microwave range. For pure
water, the measured static relative permittivity is approximately
er = 78 (at 25 1C), while it decreases towards higher concentra-
tions. The results from molecular dynamics (MD) simulations
by Kalcher75 using SPC/E water show a similar trend to the
measurement data but start with an offset of about Der = �6.
The negative offset is due to a too small dipole moment, and
the non-polarizability of the water model.76 Fig. 2(B) shows a
histogram of the static relative permittivity of pure water
calculated with different MD models as reported by Kadaoluwa
et al.77 (water models that were optimized to match a value for
the relative permittivity are not included). Values for the static
relative permittivity range from 51 to 197, while 60% are
between 60 and 100, showing that MD simulations are currently
still subjected to uncertainties.

The permittivity e is typically measured by dielectric spectro-
scopy, in which a sinusoidal perturbation is applied and the
sinusoidal response in terms of phase angle and amplitude is
measured (like in impedance spectroscopy). For the dielectric

spectroscopy of aqueous solutions, microwave-frequencies
between 108 and 1010 Hz are typically employed.78 Lower
frequencies increase the measurement challenges as the capa-
citive impedance diverges to infinity towards low frequencies.
Hence, the permittivity obtained in the high-frequency regime
are typically applied in the DH-theory, where they describe a
static system without a perturbation (0 Hz). In the case of an
ideal dielectric, which is purely capacitive and non-conducting,
the permittivity is mostly frequency independent and can be
extrapolated to that at zero frequency. Resonance phenoma in
real dielectrics are described by the Debye relaxation model79 in
which the complex permittivity approaches a static value with
decreasing frequency. Using the Debye model,80,81 measure-
ment data for water (a bad conductor) from measurement
frequencies between 1 GHz and 40 GHz may be represented
with an accuracy of 1% in this range.82 However, for conducting
electrolytes, the real and imaginary part of the permittivities
typically diverge with power-law-dependencies towards low
frequencies.83,84 The power-law can be ascribed to the many-
body interactions of strongly interacting bodies (such as water
molecules), while weak interactions lead to the Debye
characteristic.84–87 Therefore, the static relative permittivity of
water and especially electrolytes is not directly measurable and
its estimation by fits80 can be erroneous, while its real values
might be significantly larger than the commonly measured
values obtained at microwave-frequencies. Such larger values
of the static permittivity of pure water were reported by some

Fig. 2 (A) Measurement data and simulation results for aqueous NaCl
solutions from literature.72–75 (B) Simulation results from molecular
dynamics simulations for water by Kadaoluwa et al.77
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authors based on molecular dynamics simulations (see
Fig. 2(B)). Here, the static permittivity of a conducting medium
is proposed to be undefined, as in electrostatics (at zero fre-
quency) a conductor is electric field-free (Gauss law). Therefore,
the permittivity of a conducting medium is only defined for the
electrodynamic probing with alternating voltages. Thus, the
static permittivity is considered inaccessible from measured data
(also referring to the described diverging power-law-dependence
towards zero frequency). Hence, the use of the static relative
permittivity of conducting electrolytes displays a thus far unrec-
ognized and unquantified source of error for the DH theory.

Additional arguments regarding the uncertainty of mea-
sured permittivities of electrolytes were discussed by Shilov
et al.54 (see their introduction), who incorporated the possibi-
lity to integrate an arbitrary function for the concentration
dependent permittivity in the DH theory. Using concentration
dependent literature data of the static relative permittivity
(which are subjected to the discussed uncertainties), their
model shows a qualitatively correct trend of the activity coeffi-
cients of solvent and solutes for one-one electrolytes.

The influence of the permittivity on the activity coefficient,
especially the electrostatic contribution is still debated in the
literature.3,5,88–90 In the DH theory, the ions are assumed to be
dispersed inside a dielectric continuum (primitive model),
which allows for the derivation of analytical solutions of the
models.91 However, the permittivity is a heterogeneous prop-
erty in electrolytes.92 Molecular dynamics simulations support
the conception of a heterogeneous permittivity as the dielectric
response changes from bulk to confined fluids93,94 and empha-
size the anisotropy of the permittivity of water near charged
surfaces.95 Due to the preferred orientation of dipoles close to
ions, the permittivity of the solvent close to the ion is smaller
than that of the pure solvent which ultimately leads to the
dielectric decrement for the bulk electrolyte.46,92,96 The dielec-
tric decrement affects the permittivity of the bulk electrolyte
upon external excitation because less water molecules react to
the excitation as depicted in Fig. 3. This explanation implies
that the water molecules close to a central ion have more robust
orientations to the ion than those of more distant ones.
However, as long as the orientation of water molecules in the
(first) hydration shell is not affected by the increased ion
concentration, the electric field propagating from a central
ion should also not be affected by the decrease of the

(dynamically measured) bulk permittivity. Therefore, the elec-
trostatic contribution (DH theory) is affected differently by the
dielectric decrement than the bulk electrolyte. In other words,
the concentration dependence of the static permittivity mea-
sured for the bulk electrolyte (Fig. 2(A)) is probably not directly
integrable for the electrostatic contribution (as exemplary done
in Fig. 4(A), (C), and (D)).

2.1.3 Solvation shells. Solvation shells and the corres-
ponding radii of hydrated ions in (aqueous) electrolytes are
concentration dependent and intricately linked to the dielectric
properties of the solvent. Molecular dynamics simulations
show that the solvation shell is not rigid and that association
may be favoured or not, depending on the valence and size of
the considered ion and its counter ion.99,100 The probability for
association and the related disruption of the (first) solvation
shell decreases towards larger ion radii of an ion, but increases
with increasing radius of the counterion.100

The effect of ion solvation on the activity coefficient is often
modeled using the Born term or derivations of it.3 To evaluate
the Born term, the dependence of the permittivity on the
concentration is intrinsically required. Therefore, the uncer-
tainty of the local dielectric properties also affects the Born
term. The approach to calculate the contribution of the ion–
solvent interaction using the Born term was criticized in gen-
eral in a study by Simonin,101 as the solution permittivity is
probably irrelevant for the ion–solvent interaction it was meant
to describe.

2.1.4 Dissociation, association, and homogeneous reac-
tions. Measured association constants are often determined
using indirect techniques such as conductivity or activity
measurements, where the deviation of a model and the
measurement data is attributed to association.31 As a result,
the accuracy of measured association constants depends not
only on the precision of the measurements but also on the
model used for data interpretation. For example, the DH theory
(or Onsager’s law for the conductivity) is often used to derive
association constants,102 so that the uncertainties and inaccura-
cies of the models discussed in this study affect the outcome of
calculated association constants. The tendency of ions to associ-
ate depends on their valence, size, counterion, and the dielectric
properties of the solvent. Associated ions decrease the effective
ion concentration in the solution, thereby reducing the magni-
tude of the electrostatic contribution.25,103 Furthermore, asso-
ciated ions increase the bulk permittivity due to their strong
dipole.104 Ion pairs are typically differentiated between contact
ion pairs, solvent shared ion pairs, and solvent separated ion
pairs.31 However, for modeling activity coefficients, dissociated
and associated ions are usually distinguished based on the
distance between an ion and the central ion, while their ratio
is quantified by equilibrium constants (based on the mass action
law).31 Already in 1926, Bjerrum25 pointed out that the choice of
a specific cutoff distance for the definition of ion pairs is
arbitrary. This cutoff distance is often defined as a minimum
in a distribution function.25,99 Models accounting for association
usually include a parameter for the distance of closest approach.
Hence, calculated equilibrium constants and fractions of free

Fig. 3 Common explanation for the dielectric decrement: dipoles that
are part of the hydration shell keep their orientation with respect to the ion
upon external excitation.46,92,96
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ions depend on the chosen distance of closest approach and the
cutoff distance. Consequently, verification of association models
by comparison with experimental data is vital. The detailed
overview over advantages and disadvantages of measurement
techniques for ion pairing given in the comprehensive review on
ion pairing by Marcus et al.31 emphasizes the importance of
spectroscopic, and relaxation methods.

2.2 Sensitivity analysis

In the following sensitivity analysis, the impact of the uncertain
value of the (concentration dependent) permittivity is com-
pared to the impact of the usual parameters, the ionic radii.
The three DH models (DHLL, EDH, DHFULL) introduced in
Sections 1 and 4.1.1 are applied to calculate activity coefficients
and are (exemplary) compared to the MSA. Additionally,
selected models for contributions that account for the hard
sphere (HS) repulsion, ion hydration (Born term), and associa-
tion are evaluated regarding their impact on the activity coeffi-
cient. For the variation of the distance of closest approach,
intervals of 0.95 to 3.84 Å for Na+ and 1.81 to 3.60 Å for Cl� were
chosen, corresponding to the Pauling radii and a hydration
number of up to 7.9, and 6, respectively.105 The static relative
permittivity is varied between literature values of 78.14 and 95
as exemplary significantly higher value.

2.2.1 Models for the activity coefficient. Fig. 4 shows the
measured activity coefficient of NaCl97,98 at 25 1C and models for
the electrostatic contribution to the activity coefficient calculated
with the variation of the distance of closest approach. All depicted
models for the electrostatic contribution show a good match with
the experimental data at concentrations below 0.1 M. The Debye–

Hückel limiting law (DHLL) shows the highest negative deviation
from the measurement data and is independent of the distance of
closest approach. The extended Debye–Hückel model (EDH) and
the full Debye–Hückel model (DHFULL) overlap almost perfectly
for the considered radii due to the rather size-similar radii of
the anion and cation considered in this work. The MSA shows a
slightly more negative impact of the electrostatic contribution
compared to EDH and DHFULL, but they still overlap to a large
degree. This result coincides with the findings of Maribo-
Mogensen et al.106 who conclude that the MSA gives similar
results as DHFULL if the distance of closest approach in the
MSA is 5/6th that of DHFULL. Accounting for the concentration
dependence of the static relative permittivity (er(c), eqn (18))
significantly increases the magnitude of the electrostatic contri-
bution as shown for the DHFULL model. This result is qualita-
tively consistent with the (more rigorous) model of Shilov et al.54

for the ion–ion interactions.
Fig. 4(B) shows the distribution of the hard sphere (HS)

contribution for the given radius intervals. The HS contribution
is more sensitive to the specified ion radii than the electrostatic
contribution and is always positive. The spread of the HS
contribution increases significantly with concentration.
Fig. 4(C) shows the Born term accounting for the hydration of
ions. Like the HS contribution, the activity coefficient calcu-
lated from the Born term is always positive, but the dependence
on the ion radius is smaller. For the Born term, the same radii
are assumed as for the other contributions (to reduce the
degrees of freedom). Fig. 4(D) shows the summation of the
three contributions in Fig. 4(A)–(C) combined using ‘‘DHFULL,
er(c)’’ from Fig. 4(A). For c r 0.25 M, the predicted activity

Fig. 4 Logarithmic activity coefficient as a function of the square root of the concentration. Dots: measured activity coefficients for NaCl at 25 1C from
the literature.97,98 Coloured areas: activity coefficients between the lower and upper margins of the span of assumed ion radii calculated with different
models. (A) The electrostatic contribution to the activity coefficient. (B) The hard sphere (HS) contribution to the activity coefficient. (C) The contribution
due to Born hydration to the activity coefficient. (D) Sum of the logarithmic activity coefficients of the HS, Born hydration, and the electrostatic term of
DHFULL including the concentration dependence of the permittivity. The black arrows indicate the direction the activity coefficients change towards
larger ion radius/distance of closest approach.
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coefficient fits the measurement data well for the whole inter-
vals of radii, while the spread around the measurement data is
large for c Z 0.25 M and increases.

Fig. 5 shows the measured activity coefficient of NaCl97,98 at
25 1C and models for the electrostatic contribution to the
activity coefficient calculated with the variation of the static
permittivity. The magnitude of the electrostatic contributions
(Fig. 5(A)) are inversely proportional to the static relative
permittivity (the Pauling radii are used). The effect of the
changed permittivity increases with increasing concentrations.
Below c = 0.04 M, the static relative permittivity of 95 leads to a
small positive deviation of the models from the measurement
data. For higher concentrations, the prediction using e = 95 is
closer to the measurement data than 78.14. Fig. 5(B) shows the
impact of assuming the static relative permittivity of water to be
95 on the Born term for concentrations up to the solubility limit
(in contrast to Fig. 5(A)) assuming the same variation with
concentration (eqn (18)). The absolute value of the activity
coefficient decreases assuming a higher static relative permit-
tivity for water and becomes significant above about 0.25 M.

To compare models for association, Fig. 6(A) shows the
fraction of free ions a in a NaCl solution at 25 1C as a function
of the concentration. In Bjerrum’s model (based on the DH
theory), the cutoff distance q between two ions for association
for NaCl is smaller than the distance of closest approach of Na+

and Cl� necessary to fit measured activity coefficients (for all
considered relative permittivities). Therefore, NaCl does not
show association in this model and the fraction of free ions a

equals 1 for all concentrations.25 Hence, NaCl is considered a
strong electrolyte. The binding mean spherical approximation
(BiMSA) predicts association even at low concentrations
(r0.25 M, Fig. 6(A)). The data of molecular dynamics (MD)
using a SPC model in simulations for 1 m (molal) NaCl by
Driesner et al.99 indicate that incomplete dissociation needs to
be considered even for a strong electrolyte like NaCl as only
about 63% of the ions are completely dissociated. The simula-
tion at 25 1C shows the formation of various aggregates besides
the fully dissociated ions such as the species NaCl(aq), Na2Cl+,
NaCl2

�, and Na2Cl2(aq). The resulting fraction of free ions is
shown for all ions and only the fully dissociated Na+ and Cl�,
respectively. Data from MD calculations by Alejandre et al.107

using SPC/E, TIP4P/2005, and SPCE-FH force fields indicate
negligable association for a concentration of 0.494 M, but a
reduction of a to 0.55 at 2.375 M. Based on the concentrations
given by Driesner et al.,99 the fraction of free ions is calculated
for all concentrations using the mass-action-law (MAL) assum-
ing DHLL, and EDH-H for the activity coefficient, respectively.
The MAL based on DHLL predicts increasing fractions of free
ions above 1 M which is counterintuitive. Using the data of
Driesner et al. as fix points for the mass action law leads to
negligible dependence of a on the distance of closest approach
(for EDH-H). Nevertheless, the data indicate the significance of
ion association even for a strong electrolyte like NaCl in water,
but also shows that the degree of association deviates strongly

Fig. 5 Variation of the static relative permittivity of the solvent (from 78.14
to 95) in models for the activity coefficient (A) electrostatic contribution for
DH models. (B) Born term. The arrows indicate the trend with increasing
static relative permittivity of the solvent.

Fig. 6 (A) Fraction of free ions of NaCl at 25 1C as a function of the
concentration for different models. The Bjerrum length at 25 1C in water
for a 1-1 electrolyte is 3.55 Å which is smaller than the distance of closest
approach for the radii considered for the fits in (B). Data by Alejandre
et al.107 using SPC/E, TIP4P/2005, and SPCE-FH force fields with similar
results, the x denotes little association (without a given value). MD:
molecular dynamics; BiMSA: binding means spherical approximation;
MAL: mass action law (based on the MD by Driesner et al.99 (pink points)).
(B) Models with different physical interpretation fitted to measured activity
coefficients of NaCl at 25 1C. The parameterization is summarized in the
ESI.† EDH-H: DH theory as extended by Hückel; DHFULL: full DH theory;
HS: hard sphere contribution; Born: Born term. BiMSA and EDH-H + MAL
(upper limit of a) depict the same models in (A) and (B), respectively.
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between the models. The arbitrariness of the parameterizations
is exemplified in Table 1, where the equilibrium constants
based on DHLL and EDH-H deviate up to a factor of ten for
the same reaction.

The outcome of the models for the individual contributions
for electrostatic interaction, hard sphere repulsion, solvation,
and association (Fig. 4, 5, and 6(A)) show a significant depen-
dence on their parameterization and model assumptions.
Combining different contributions with an appropriate para-
meterization allows to match all the different models with
measurement data as exemplified in Fig. 6(B). The four selected
contributions here are combined to six different models for the
activity coefficient of NaCl. Hückel’s extension of the DH theory
(EDH-H) accounting for the semi-empirical concentration
dependence of the permittivity (denoted by C) is parametrized
with C = 0.1. In combination with the MAL to account for
association (EDH-H + MAL) it is parameterized by C = 0.2. The
activity coefficients shown in Fig. 6(B) using EDH-H + MAL and
BiMSA correspond to the graphs in Fig. 6(A). The BiMSA
includes contributions due to electrostatics, hard sphere repul-
sion and association. Lastly, a model using DHLL, the hard
sphere contribution and the Born term is shown assuming ew =
95 (eqn (18)). All models shown above describe different
physicochemical assumptions, but (unsurprisingly) match the
measurement data reasonably.

Importantly, Fig. 4–6 show that variation of the parameter-
ization of the permittivity (be it the static value or the concen-
tration dependence) can be compensated by fitting the ionic
radii. The ionic radii used for the models depicted in Fig. 6(B)
span over the complete intervals given in the Introduction.

2.2.2 Parameterization of transport properties. Transport
properties such as diffusion coefficients and conductivities are
used to explore thermodynamic characteristics such as associa-
tion constants.31 Fig. 7 shows experimental data for the con-
ductivity of NaCl along with calculated data based on the
Debye–Hückel–Onsager limiting law (DHO-LL), which is applic-
able only at low concentrations (r10 mM), as well as two more
modern conductivity models, DHO108 and DHO3.109 While
Fig. 7(A) shows the impact of varying the ion radii (with er =
78.14), Fig. 7(B) shows the impact of the static relative permit-
tivity (using Pauling radii). The comparison of Fig. 7(A) and (B)
shows that the variation of the permittivity of water has a much
smaller impact than the ionic radii for the assumed intervals.
Additionally, using experimental data for the viscosity in the
electrophoresis term improves the trend of the modeled con-
ductivities significantly. DHO3 with experimental viscosities
and the Pauling radii shows a good match to the measurement
data. Assuming this parameterization is accurate would impli-
cate that no association occurs for NaCl (assuming associated

ions do not contribute to the conductivity); however, no asso-
ciation contradicts the results of advanced models graphed in
Fig. 6(A).

2.3 Interdependence of properties, measurements, and models

For the development of predictive electrolyte theories (especially
with a focus on multi-ion models), the microscopic interactions
in electrolytes must be described by precise physicochemical
models.110 As shown above, almost arbitrary model combina-
tions can be used to precisely describe experimental data;
however, it confines the model to the domain of the data used
for fitting, making extrapolations beyond this range generally
unreliable.14 Hence, this interchangeability of the contributions
including their physicochemical parameterization prohibits the
assessment of the validity of individual contributions based on
fitting accuracies.65 Furthermore, a challenge for the develop-
ment of models and their parameterization is the interdepen-
dence and interaction of physical contributions as exemplary
illustrated in Fig. 8. With changing concentration, the effect of
one contribution (like the association) on the other contribution
changes. This interdependence is seldom displayed in the
models. As stated by Onsager111 in 1968 with reference to
association parameterization: ‘‘in a complete theory this [arbi-
trary definition of associated ions] would not matter; what we
remove from one page of the ledger would be entered elsewhere
with the same effect.’’ To develop validate such models, a variety
of independent measurement data is essential. Besides thermo-
dynamic properties and their thermodynamic entanglement (e.g.
by the Gibbs–Duhem equation), data based on non-equilibrium
thermodynamics and transport models can help to develop and
validate models but require a rigorous foundation.

Table 1 Equilibrium constants K with units [M]1�(m+n) derived for the mass
actions law (eqn (20))

m + n 2 3 4

DHLL 3.09510�3 1.87810�6 3.47810�9

EDH-H 0.96810�3 0.58810�6 0.34010�9

Fig. 7 Parameter variation of (A) the distance of closest approach from
2.76 to 7.44 Å (with er = 78.14) and (B) the relative static permittivity of
water from 78.14 to 95 (using Pauling radii) for conductivity models. The
arrows indicate the impact of increasing the respective varied values.
DHO-LL: Debye–Hückel–Onsager limiting law. DHO denoting the exten-
sion of the DHOLL from ref. 108 and DHO3 from ref. 109.
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The DH theory predicts the electrostatic contribution to the
activity coefficient, while other contributions like association, hard
sphere repulsion and hydration are neglected during its derivation.
Although these contributions can be added explicitly to improve
the alignment with measured electrolyte properties, the interde-
pendence between the electrostatic contribution and these other
contributions is not considered in the DH theory (see Fig. 8).
Introducing for example the hard sphere contribution during the
derivation of the electric field, changes it and the outcome of the
activity coefficient (compare DH theory to MSA). It is also shown
above that the parametrizability of the DH theory in combination
with other contributions allows to model a wide range of possible
trends for measurement data up to their solubility limit. However,
if the electrostatic contribution is modeled incorrectly at moderate
to high concentrations (as key assumptions are violated) while the
measurement data is fitted well, then the other contributions are
inevitably also modeled incorrectly. The uncertainty of the DH
theory at moderate concentrations is transferred into other model
contributions, while these contributions are being studied. There-
fore, a good match between model and measurement does not
necessitate a physically accurate model. Since modern theories
aim to predict electrolyte properties based on detailed, quantitative
physical understanding in contrast to just describing them, it is
questionable whether the DH theory is the proper basis for such
theories, especially since more physically detailed models exist. For
now, the enduring success of the Debye–Hückel theory, spanning
more than a century, is attributed in part to its high degree of
parametrizability, rather than to its physical rigor.

3 Conclusions

This work has explored physicochemical assumptions, simplifi-
cations, and fitting ambiguities of the Debye–Hückel theory. In

detail, the solution of the Poisson–Boltzmann equation as it is
employed in the Debye–Hückel theory is shown to violate
assumptions necessary for its derivation. Furthermore, the
uncertainty of the static permittivity due to measurement chal-
lenges and its impact on exemplary model contributions are
discussed. For that purpose, the influence of the uncertainty of
the permittivity is compared to the parametrizability of the
distance of closest approach (linked to the ionic radius) for the
Debye–Hückel models, as well as the mean spherical approxi-
mation, hard sphere repulsion, Born term, and ion association.
The analysis demonstrates that the ability of these models to fit
experimental data does not necessitate an accurate physical
representation of the system. In particular, uncertainties for
the value and the concentration dependence of the permittivity
can be compensated by the parameterization and model selec-
tion. Therefore, an assessment of any contribution and its
parameterization without a fundamentally rigorous background
is ambiguous. The interdependence of the DH theory and
theories for other contributions is discussed, revealing that the
complexity of physiochemical interactions in electrolytes cannot
be easily displayed by non-interacting models.

4 Methods

The activity coefficient of a species describes the (energetic)
deviation of a compound from ideal behavior in a mixture. The
non-ideality of ions in solution consists of multiple dominant
contributions. Here, the electrostatic (el) contribution, the hard
sphere (HS) contribution, the solvation (sol) and the associa-
tion (asso) are discussed. The activity coefficient yi of ion i is
related to the individual contribution112 by eqn (8)

ln(yi) = ln(yel
i ) + ln(yHS

i ) + ln(ysol
i ) + ln(yasso

i ) + . . . (8)

Fig. 8 Contributions to the activity (blue boxes) and their interdependences are exemplified for the electrostatic contribution, association, solvation, and
the hard sphere contribution using simplified sketches. The Debye–Hückel (DH) theory does not incorporate any dependencies of other contributions.
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The mean molar activity coefficient y� of a binary salt is
defined as the average of the single ion activity coefficients46

eqn (9)

y
nþþn�
� ¼ y

nþ
þ yn�� : (9)

4.1 The electrostatic contribution

The first model for ions in solution to be successfully matched
with experimental data (for activity coefficients, and for the
conductivity) was the Debye–Hückel (DH) theory.2,113 The primary
distinction between electrolytes and non-electrolytes in terms of
their contributions to the activity coefficient stems from the
electrostatic interactions between ions. The DH theory aims to
describe this contribution but is restricted to low concentrations.8

In the literature, different equations for the DH theory (based on
different simplifications) are used.114 The three most important
ones,114 namely the Debye–Hückel limiting law (DHLL), the
extended Debye–Hückel theory (EDH) and the full Debye–Hückel
theory (DHFULL) are briefly discussed in the following.

4.1.1 The Debye–Hückel theory. The complete activity
coefficient yel

i,DHFULL as predicted by Debye and Hückel reads2

RT ln yeli;DHFULL

� �
¼ �F2

4pe
kzi2

6NA
2Xi þ

P
k

ckzk
2s0kP

k

ckzk2

0
B@

1
CA; (10)

where R denotes the ideal gas constant, T temperature, F
Faraday’s constant, z the valence, c concentration, e the
permittivity (with e = e0eR, e0 representing the vacuum
permittivity and eR denoting the static relative permittivity),
and NA is Avogadro’s number. The substituents Xk and s0k are
defined by

Xi ¼
3

kakð Þ3
3

2
þ ln 1þ kakð Þ � 2 1þ kakð Þ þ 1

2
1þ kakð Þ2

� �
;

(11)

s0k ¼
3

kakð Þ3
1þ 1þ kakð Þ � 2 ln 1þ kakð Þ þ 1

2 1þ kakð Þ

� �
;

(12)

with

k2 ¼ F2

eRT

X
k

zk
2ck; (13)

and ai representing the ionic radius. The characteristic Debye
length l is defined by l = k�1.2 For very dilute solutions, the
effect of the ion radius approaches zero, leading to the Debye–
Hückel limiting law (DHLL, eqn (7)):2

RT ln yeli;DHLL

� �
¼ �F2

4pe
kzi2

2NA
: (14)

Hückel15 assumed a common mean distance of closest
approach a for both ions in binary electrolytes during the
derivation of the influence of the permittivity. This model is

called extended DH theory (EDH), leading to:

RT ln yeli;EDH

� �
¼ �F2

4pe
zi
2

2NA

k
1þ ka

: (15)

4.1.2 The Mean Spherical Approximation. In contrast to
the DH theory, the Mean Spherical Approximation (MSA) treats
ions as impenetrable spherical molecules.10 This approach
incorporates the finite size of ions and accounts for hard-
sphere interactions between them, providing a more realistic
representation of ion behaviour in solutions than the DH
theory.10 In contrast to the analytical DH models, this more
complex framework requires numerical solutions. The electro-
static contribution yel

i,MSA is obtained by solving a system of
equations that originates from the interdependence of the
hard-sphere ion distribution and the electric field. The approach
exemplary used within this work is discussed by Verweij et al.115

4.2 The hard sphere contribution

The hard sphere contribution yHS
i accounts for the repulsive

short-range interactions by treating ions as impenetrable
spheres that cannot overlap.10 The hard sphere contribution
is assumed to account for the contribution to the free energy by
volume exclusion due to the ions and the hydration shell.116

The equations for the hard sphere contribution used in this
work are available in the literature.115

4.3 Hydration and changing relative permittivity

Besides the volume exclusion, the solvation (hydration) of ions
also affects the solution permittivity.15 To account for the
hydration, Hückel15 extended the DH theory with the semi-
empirical extension for the concentration dependence of the
permittivity (EDH-H) using a constant parameter C. The activity
coefficient of the EDH-H is calculated by:

RT ln yEDH-H
k

� �
¼ �F2

4pe
zk

2

2NA

k
1þ ka

þ 2Cc: (16)

If association is neglected, C is set to C = 0.1 here, while
C = 0.2 is used in combination with models for association (for
better fits). Another model accounting for the hydration by
means of the changing permittivity is the Born term, which is a
semi-empirical expression inspired by the model for the Gibbs
solvation energy. Eqn (17) shows a simplified model for the
Born term which is discussed in detail by Silva et al.3 (being
denoted as ‘Born-0’ there)

RT ln ysolk

� �
¼ F2zk

2

8pe0bkNA

1

er
� 1

ew

� �
; (17)

where ew denotes the static relative permittivity of pure water,
and bk denotes the Born radius. In this study, we restrict the
Born radius to coincide with the distance of closest approach
(bk = ak) to reduce the degree of freedom for the parameteriza-
tion (instead of calculating if from the Gibbs solvation energy
or using it as fitting parameter). The concentration dependent
permittivity of aqueous NaCl is modeled using the equation
from Buchner et al.:72
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er(c) = ew � 15.2c + 3.64c3/2. (18)

where ew = 78.14 is the static relative permittivity of water.

4.4 Association

Association has a substantial impact on electrolyte properties as
it decreases the fraction of free ions a (number of ions in
solution divided by number of ions assuming complete dissocia-
tion) in solution, directly affecting other contributions such as
the electric contribution, or properties like the conductivity.31

Therefore, an accurate association model is vital for modeling
electrolytes. Three models for the association are briefly com-
pared within this study: the Bjerrum model,25 a mass action law
(MAL) based on results from molecular dynamics simulations,99

and an association model based on MSA.116 The first extension
of the DH theory for association was proposed by Bjerrum.25

Bjerrum defined ions as associated when their distance is
smaller than a cutoff distance q where the probability of to find
an ion near a central ion has a minimum:

q ¼ e2zczk

4pekBT
(19)

The association is described by the fraction of free ions a,
which can be calculated based on the energy to separate the
ions.25 As a compensation for a lack of reliable measurement
data, results from molecular dynamics simulations for a NaCl
solution from Driesner et al.99 are shown for comparison with
the models. Based on these results, equilibrium constants are
derived in this work to show results for a simplified mass action
law,117 assuming an equilibrium constant K for each associated
species:

Knþm ¼
y NamCl

m�n
n

� 	
ym Naþ½ �myn Cl�½ �n: (20)

The simulation data of Driesner et al.99 shows that at 25 1C
only n,m A [0,1,2] are relevant. Here, the activity coefficient of
all anions and cations is assumed to equal the mean activity
coefficient for this equation, whereas the activity coefficient of
neutral species is assumed to equal 1.

The last association model is based on the Binding Mean
Spherical Aapproximation (BiMSA) which extends the MSA to
explicitly account for the equilibrium between free ions and ion
pairs. Details on and the derivation of the BiMSA can be found
in the literature.103,116 For the simulation, the published code
of Crothers et al.116 was adapted for aqueous NaCl and used. In
a 1-1 electrolyte, a can be calculated based on an equilibrium
constant, the activity coefficient and geometrical data of the
ions in solution.116

4.5 Conductivity models

Conductivity measurements are often used to investigate elec-
trolyte properties such as the degree of association of the ions
in solution.109,118,119 In detail, the difference between model
and measurement is typically explained with association.31

Here, three different conductivity models are compared, start-
ing with the most important one: the Debye–Hückel–Onsager

limiting law (DHOLL). The DHOLL reads120

L ¼ L0 � k
z�zþj je2qL0

3ekBT 1þ ffiffiffi
q
p� �þ F2 zþj j þ z�j jð Þ

6pZNA

 !
; (21)

where L denotes the molar conductivity, L0 the limiting molar
conductivity, I the ionic strength and q = 0.5 for 1-1 electrolytes.
The first term inside the brackets describes the relaxation
effect, while the second term describes the electrophoresis.
The extension of the DHOLL for the finite size of ions by
Robinson and Stokes108 which introduces a factor of 1/(1 +
ka) as a factor for the bracket in eqn (21) is also implemented in
this study. Furthermore, the model named ‘DHO3 presented by
Naseri Boroujeni et al.121 is implemented here, representing an
exemplary modern model that is based on the Debye–Hückel–
Onsager theory but uses the crystallographic ion radii.
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