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Assessment of a foundational machine-learned
potential for energy ranking of molecular
crystal polymorphs†

Cameron J. Nickersona and Erin R. Johnson *abc

First-principles crystal structure prediction (CSP) of isolable polymorphs of organic compounds is a

grand challenge in computational chemistry. The adoption of dispersion-correction density-functional

theory (DFT) has allowed great strides to be made in the accuracy of the final energy ranking of

candidate crystal structures. Consequently, CSP methods are seeing increasing use in development of

new pharmaceuticals, organic electronics, energetic materials, and pigments, among other applications.

However, lower-cost methods, such as classical force-field potentials, are still necessary for the early

stages of CSP, where hundreds of thousands of candidates are commonly generated. Recently

developed foundational machine-learned potentials represent a seductive alternative to force fields for

this purpose due to their promise of near-DFT accuracy at a vastly reduced computational cost. In this

work, the performance of the MACE-OFF23(M) machine-learned potential is assessed for geometry

optimisation and energy ranking of candidate crystal structures of 28 compounds from the first seven

CSP blind tests, as well as 12 helicene compounds. The performance of MACE-OFF23(M) is found to be

highly dependent on the particular compound, providing good accuracy for compounds similar to those

in its training set, but failing dramatically for compounds containing unusual functional groups (such as

diazo) and organic salts. Physically motivated inclusion of long-range electrostatic interactions remains

an open problem for development of foundational machine-learned potentials.

1. Introduction

Often, more than one crystal structure can be formed from the
same molecule. This phenomenon, known as polymorphism,
has important consequences in industry because different
polymorphs can have distinct physical properties, such as their
color, solubility, electronic properties, etc. For example, phar-
maceutical companies need to screen for polymorphs of the
solid-form drugs that they develop to ensure that they identify
(and patent) all isolable crystal structures. Consequently, there
is a large incentive to develop methods for predicting possible
polymorphs a priori to help avoid late-appearing1 or ‘‘dis-
appearing’’ polymorphs,2 which can have devastating costs.

Crystal structure prediction (CSP)3–7 uses the tools of com-
putational chemistry to suggest the polymorphs that are most

likely to be observed experimentally, given only a 2D diagram of
the molecule. The typical process for a CSP study begins by
generating an enormous landscape of pseudo-random candi-
date crystal structures, possibly in the range of 106–107 struc-
tures. The landscape is then narrowed down to the few hundred
structures with the lowest potential energies according to a
classical force field, or other low-cost method. Use of a low-cost
method at this stage is necessary due to the vast numbers of
structures involved, but they are not typically accurate enough
to predict the correct stability rankings. Thus, the remaining
structures then have their potential energies re-evaluated using
dispersion-corrected density-functional theory (DFT-D), which
is more accurate but comes with a significantly increased
computational cost. Finally, all candidates within a certain
threshold (perhaps B5 kJ mol�1) of the minimum-energy
structure are deemed as likely polymorphs.

The adoption of density-functional theory for the final energy
ranking stage has led to much of the current success in CSP.6–13

For example, our group has obtained highly accurate lattice
energies for molecular crystals using hybrid DFT in conjunc-
tion with the XDM14 dispersion correction.15,16 These studies
employed the FHI-aims software package,17–19 which uses numeric
atom-centered orbitals (NAOs) for its basis functions.
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While DFT-D has been established as the state of the art for
obtaining accurate lattice energies for molecular crystals, there
is still something to be desired in the way of low-cost methods
suitable for use in the initial phases of CSP. Unfortunately, the
degree of error when using empirical force fields (or tight-
binding DFT) is often much larger than the energy differences
between real polymorphs, which can lead to the correct struc-
ture being discarded before making it to the DFT phase of the
study.20 One potential avenue for improved low-cost energy-
ranking methods is the emergence of machine-learned poten-
tials as a possible alternative to empirical force fields.

There exist a number of machine-learned potentials that
have been developed for organic chemistry, the most note-
worthy of which are the series of ANI21–24 and AIMNet
potentials.25–27 ANI makes use of neural networks based on
local symmetry functions28 to create transferable potentials. In
recent years, the ANI-2X model has become the most widely
adopted machine-learned force field. The AIMNet models make
use of a message passing architecture29 and they extend their
applicability to a larger selection of chemical elements, as well
as to charged species. Both ANI-2X and AIMNet were utilized for
energy ranking by two groups in the seventh CSP blind test;30,31

however, both of these groups began by enhancing the model
with further training. Results showed that the system-specific
AIMNet machine-learned potentials ranked consistently
well, whereas the other machine-learned methods performed
inconsistently.

MACE-OFF2332 is a recently developed set of machine-
learned potentials for organic molecules that demonstrates
improved accuracy compared to the ANI-2X model. More spe-
cifically, MACE-OFF23 encompasses a series of three distinct
machine-learned potentials denoted (S)mall, (M)edium, and
(L)arge, which are designed to provide three different levels of
accuracy and cost. Like the ANI models, the MACE method
makes use of only the local atomic environment of each atom
in order to calculate the energy. MACE-OFF23 was trained
primarily to a subset of the SPICE dataset,33 consisting of only
neutrally charged species composed of up to ten elements: H,
C, N, O, F, P, S, Cl, Br, and I. SPICE contains slightly over
1.1 million conformers of selected small molecules, molecular
dimers, dipeptides, and solvated amino acids, and uses refer-
ence energies and forces computed at the oB97M-D3(BJ)34–36/
def2-TZVPPD level of theory. Additionally, MACE-OFF23 was
also trained on some larger systems (composed of 50–90 atoms)
from the Qmugs37 dataset, as there were no systems of this size
present in SPICE. Qmugs consists of minimum-energy confor-
mations of 665 000 neutral molecules comprised of the same 10
elements noted above. In the development of MACE-OFF23, the
energies and forces of these molecules were reevaluated using
the same level of theory as used for the SPICE reference data.

The MACE-OFF23 potential is of particular interest to us
because of its proposed applicability for molecular crystals. In
their work, the creators of MACE-OFF23 tested its performance
on several distinct tasks, which included predicting lattice
parameters and sublimation enthalpies for the X23 set38,39 of
molecular crystals. For these systems, MACE-OFF23(M) resulted

in a mean absolute error (MAE) of only 7.5 kJ mol�1 when
comparing the computed sublimation enthalpies to experi-
mental data;32 this represents a massive improvement com-
pared to ANI-2X, which gave a MAE of 20.5 kJ mol�1. For
comparison, the best dispersion-corrected DFT methods typi-
cally give MAEs of 2–5 kJ mol�1 for the X23 benchmark.16,38,39

This suggests that MACE-OFF23 may be directly applicable to
molecular polymorph ranking without the need for additional
system-specific training.

Ideally, a universal ML potential such as MACE-OFF23(M)
could be a direct replacement for the FIT40 or W9941 classical
force fields, which are routinely used in CSP without parame-
terization. We wish to avoid any system-specific training of the
ML potential (akin to construction of tailor-made force fields42)
as this would requires extensive DFT reference data to be
generated at the outset of a CSP study. In the usual hierarchical
CSP workflow, DFT calculations are performed only in the final
stages, on a small set of low-energy candidates already identi-
fied by the force field. Any initial system-specific training of
the ML potential to DFT would drastically increase both the
complexity and computational cost and, thus, is not desirable
for practical first-principles CSP on new compounds. For CSP
applications, this makes bespoke ML potentials impractical
and less appealing compared to foundational models that are
broadly applicable to organic chemistry.

The goal of the present work is to further test the applic-
ability of the MACE-OFF23(M) potential for molecular crystals
in order to assess whether it will be a good choice as the initial
energy ranking method in CSP studies going forward. Specifi-
cally, we considered the ability of the MACE-OFF23 potential
to reproduce DFT geometries and relative energies for two sets
of molecular crystal polymorphs: 28 organic compounds from
the seven CSP blind tests9,20,30,31,43–46 and 12 helicene
compounds.47,48 The results presented here will help researchers
decide whether or not to use MACE-OFF23(M) as an alternative to
empirical force fields in the early stages of a CSP protocol.

2. Data sets

Two distinct sets of compounds were considered in this work.
The first data set spans 28 compounds from the seven CSP blind
tests organized by the Cambridge Crystallographic Data Centre
(CCDC).9,20,30,31,43–46 While a total of 33 targets have appeared in
the blind tests to date, compounds III, XXVII, and XXVIII were
excluded as they contain elements for which the MACE-OFF23(M)
potential was not trained (B, Si, and Cu, respectively). Also,
compounds XXIX and XXX were excluded as these were the
experimentally assisted and stoichiometry challenges from the
seventh blind test and were not included in the energy-ranking
stage.30 The second set of compounds includes the [n] helicenes
with n = 2–12, along with 1-aza[6]helicene, which have been the
subject of previous CSP studies by our group.47,48 The structures of
the considered compounds are shown in Fig. 1 and 2.

Sets of candidate crystal structures were obtained from the
ESI† of ref. 15 for blind-test compounds I–XXVI, ref. 49 for
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blind-test compounds XXXI–XXXIII, ref. 47 for the [n] helicenes,
and ref. 48 for 1-aza[6]helicene. All of these structures were
already fully geometry optimized with the B86bPBE density
functional,50,51 the XDM dispersion correction,14,16 and the
‘lightdenser’ basis set and integration grid settings, using a
modified copy of FHI-aims17 version 210513. The one exception
was 1-aza[6]helicene, where the geometries had previously been

optimized with the same functional, but with a planewave
basis set, using Quantum ESPRESSO.52 The 1-aza[6]helicene
structures were consequently re-optimized here using the same
methodology as above for consistency.

3. Computational methods

Geometries of all candidate crystal structures were re-optimized
from the DFT starting point using the MACE-OFF23(M)
potential32 and the atomic simulation environment (ASE)53

python modules. Atomic positions and lattice vectors were
optimized using the PreconLBFGS algorithm to a force toler-
ance of 0.2 eV Å�1 (although this value was changed in a very
few cases that proved difficult to converge), followed by the
LBFGS algorithm to a tighter force tolerance of 0.005 eV Å�1,
the same as used in the previous FHI-aims optimizations.15,47,49

A total of five candidate structures (one for compound XII and
four for compound XXII) gave extremely large initial forces with
MACE-OFF23(M). Closer examination revealed that these were
all Z = 1 structures (i.e. a single molecule within the unit cell),
and optimizations on a 2� 2 � 2 supercell proceeded normally.
This may have occurred because the Z = 1 unit-cell dimensions
are smaller than the cutoff distances defining the atomic
environments within MACE-OFF23(M).

Fig. 1 Structures of all blind test compounds considered in this work. The boxes encapsulate the various components for cocrystals and salts.

Fig. 2 Structures of selected helicene compounds considered in this
work; structures for [n]helicenes with n = 7–12 are not shown due to
the difficulty of representing their helical structures in two dimensions.
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Single-point energy evaluations were then performed on (i) the
MACE-OFF23(M) optimized structures and (ii) the B86bPBE-XDM
optimized structures using version 240206 of FHI-aims.17,18 The
B86bPBE0-XDM hybrid functional16 (25% exact exchange) was
used for the blind test compounds, while the B86bPBE-XDM
functional was used for the helicenes, as in our previous
works.15,47,49 The lightdense basis set and integration grids
were used for both data sets. Due to some modifications to FHI-
aims between versions, and the change from the lightdenser
(recommended for geometry optimisations) to lightdense basis
(recommended for single-point energies), the results for the
DFT single-point energies at the DFT geometries are slightly
different to those previously reported15,47,49 in some cases.

When tabulating results, we use the standard energy//
geometry notation, where the method used for single-point
energies is given first, followed by //, and then the method used
for geometry optimization. Thus, MACE//MACE means MACE-
OFF23(M) energies evaluated at the MACE-OFF23(M) geo-
metries; DFT//DFT means B86bPBE-XDM or B86bPBE0-XDM
energies evaluated at the B86bPBE-XDM geometries, and DFT//
MACE means B86bPBE-XDM or B86bPBE0-XDM energies eval-
uated at the MACE-OFF23(M) geometries. This latter combi-
nation is an example of a composite method, which should
ideally yield results of similar quality to the high-level method
(DFT in this case) used for the single-point energies, with a
greatly reduced computational cost compared to performing
full geometry optimizations with that high-level method. Com-
posite methods combining DFT with classical force fields have
previously shown promise in molecular CSP.54 In theory, the
DFT//MACE approach should give similar or better results than
MACE//MACE in nearly all cases, with the only exceptions being
due to accidental error cancellation between the geometry and
the energy.

Finally, the similarity of the MACE-OFF23(M) structures,
compared to the B86bPBE-XDM reference structures, was eval-
uated using the variable-cell powder difference (VC-PWDF)
method,55 as implemented in critic2.56 These calculations com-
pare simulated powder X-ray diffractograms of various unit-cell
descriptions of a candidate crystal structure to a reference
crystal structure using the de Gelder cross-correlation function.57

In this case, the candidate is the MACE-OFF23(M) optimized
crystal structure and the reference is the B86bPBE-XDM optimized
structure. By its construction, VC-PWDF accounts for changes
in lattice constants (due to different temperatures, pressures, or
computational methods used) when comparing pairs of crystal
structures to determine if they are the same form or different
polymorphs.

4. Results and discussion
4.1. Crystal geometries

We begin by assessing the degree of change in the molecular
crystal geometries upon optimizing their lattice constants and
atomic positions with MACE-OFF23(M), as opposed to B86bPBE-
XDM. Fig. 3 shows the results of VC-PWDF comparison of the two

sets of structures in the form of a box-and-whiskers plot for each
compound studied. The VC-PWDF method provides a dissimilar-
ity score, with a value of zero indicating identical crystal structures
and a value of one indicating maximum dissimilarity. Thus, if
MACE-OFF23(M) provides crystal structures in good agreement
with the DFT optimizations, the distribution of computed
VC-PWDF values would be very narrowly clustered near zero.

From the results in Fig. 3, it can be seen that the distribu-
tions of VC-PWDF scores tend to be tightly clustered near zero
for many of the compounds considered. In these cases, there
were only minimal geometry changes upon re-optimization
with the MACE-OFF23(M) potential, such that the same poly-
morph was recovered as opposed to a migration to some other
polymorph on the potential-energy surface. However, despite
generally high packing similarity between the two sets of
optimized structures, some of the blind test compounds were
notable outliers. These included compounds II, IX, X, XII, XIII,
XVII, XIX, XXI, XXII, and XXXIII, although at least half of the
structures were still identified as the same polymorph before
and after MACE-OFF23(M) optimization based on VC-PWDF
scores of o0.03.55

The broadest distributions of VC-PWDF scores were observed
for compounds XVI and XXIV, where more than half of the
structures transitioned to different crystal forms during
MACEOFF23(M) optimization. Compound XVI contains a diazo
(QNQN) functional group, which is not well represented in the
training data, so it is unsurprising that the MACE-OFF23(M)
energy landscape differs from the DFT one to the point
where many local minima are no longer stable. We note that
MACEOFF23(M) shows significantly better performance for
compound XVIII, which also contains a diazo group; this is
likely due to the other functional groups having a proportion-
ally greater influence on the crystal packing.

The other large outlier, compound XXIV, is a 3-component
organic salt. Thus, the poorer performance of MACE-OFF23(M)
is again expected as this potential was only trained for neutral
molecules and included no ions, let alone ionic solids. Accurate
modeling of electrostatic interactions with machine-learned
potentials is problematic due to the incompatibility in their
length scales—electrostatic interactions decay as �1/r and are
inherently long range, while only short-range atomic environ-
ment information is typically used as input. This is indeed the
case for the MACE-OFF23(M) potential, which uses a radial
cutoff of 5.0 A and contains no charge or spin information.
Owing to its message-passing architecture, there is a receptive
field that allows atoms to exchange information up to 10.0 Å;
however, this still remains too short to properly capture elec-
trostatic interactions.32

The VC-PWDF method is designed to assess whether the two
input structures have the same packing and are the same
polymorph, while ignoring volume changes.55 Thus, low VC-
PWDF scores are necessary, but not sufficient, to guarantee
that the MACE-OFF23(M) geometries are in good agreement
with those obtained with DFT, as significant changes in
unit-cell volumes are still possible. Fig. 4 plots the volume
changes, expressed per molecule in the unit cell, between the
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MACE-OFF23(M) optimized structures and the B86bPBE-XDM
optimized structures. This plot reveals that the MACE-
OFF23(M) unit cells are typically more compact. This error
appears quite systematic for the helicenes, where the extent
of volume compaction seems to increase with ring size. How-
ever, there are some notable exceptions for some of the blind-test
compounds, with the cell volumes being consistently overesti-
mated for compound IX, and some structures having expanded
volumes for compounds XVII and XXIV. Large spreads in com-
puted volumes between MACE-OFF23(M) and B86bPBE-XDM will
likely translate to poorer performance of the composite DFT//
MACE approach, which relies on the MACE-OFF23(M) geometries
being a good proxy for their DFT counterparts.

4.2. Energy ranking

4.2.1. Blind-test compounds. Table 1 shows the results of
polymorph ranking studies performed using MACE-OFF23(M)
and a hybrid DFT//MACE approach, compared to DFT reference
data. It should be noted that the MACE-OFF23(M) potential was

in no way retrained for CSP using this DFT data or any other
data. Hence, the comparisons made here are drawn between
two independent methodologies, analogous to comparisons
between electronic structure theory and experiment. However,
experimental energy differences between candidate crystal
structures are, naturally, not available since the vast majority
of structures generated during CSP are not seen experimentally.

The reported data in Table 1 are the ranks of all experimen-
tally observed polymorphs (i.e. 1 indicates this is the most
stable structure, 2 indicates the second-most stable, and so
forth), along with their relative energies above the global
minimum obtained with that particular level of theory. As the
sets of candidate structures contain duplicates in some cases
(i.e. the same crystal structure was generated by multiple
groups participating in the blind tests), duplicate structures
were eliminated from the energy ranking in Table 1 if they had
a powder difference score of less than 0.01 when compared with
critic2.56 Typically, the experimentally isolated polymorphs
would be expected to be among the lowest-ranked structures,

Fig. 3 Distributions of computed VC-PWDF scores obtained for comparison of the MACE-OFF23(M) optimized crystal structures to the reference
B86bPBE-XDM optimized crystal structures for each compound. The boxes show the interquartile ranges, the whiskers encompass 90% of the data, and
remaining outliers are shown as individual points. The grey box shows the range of VC-PWDF scores where two structures can confidently be deemed
the same polymorph (i.e. o0.03).55 For visual clarity, the plots are truncated at a VC-PWDF score of 0.2, despite a few outliers having scores exceeding
this value. In the bottom row of plots, the [n]helicene structures are denoted by their n value, while ‘‘nhelic’’ refers to 1-aza[6]helicene.
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with energies within o2 kJ mol�1 of the global minima (with
this range combining both expected uncertainties in the DFT
relative energies and the magnitude of thermal free-energy
corrections,58 which are neglected here). However, there are
some exceptions where experimental screening can result in
formation of metastable polymorphs, for example due to sol-
vent loss from a solvate, as in the case of polymorph C of
compound XXXI.30

To aid assessment of the performance of the MACE-
OFF23(M) and DFT//MACE approaches, the results in Table 1
are divided into four groups based on the types of compounds
included in the blind tests. These groups are rigid molecules,
multi-component crystals composed of neutrally charged
molecules (i.e. cocrystals and solvates), organic salts, and
flexible molecules with multiple rotatable bonds. Molecules are
considered to be rigid if they have no rotatable bonds,
other than those that result in changing only H-atom positions
(as in compound II), or when steric factors prevent rotation
(as in XVII).

The results in Table 1 show that MACE-OFF23(M) performs
somewhat well for the majority of the rigid molecules, ranking
the experimental structure within 2 kJ mol�1 of the minimum
in 9/14 cases, and within 5 kJ mol�1 of the minimum in another
4 cases. The only large outlier is compound IX, where the
experimental structure is predicted to lie 16.1 kJ mol�1 above
the MACE-OFF23(M) energy minimum. Notably, IX is the only
compound in our data set than contains iodine, so perhaps this
element was insufficiently well represented in the original
SPICE and Qmugs data used to train the MACE-OFF23(M)
potential. Coincidentally, it is also the only compound for
which MACE-OFF23(M) consistently overestimates the unit-
cell volumes (Fig. 4).

The DFT//MACE composite approach also appears promis-
ing for rigid molecules, with the experimental structure being
ranked first, second, or third, and lying within 2 kJ mol�1 of the
minimum-energy structure in 12/14 cases. The only two excep-
tions are compounds XVI and XXII, where the experimental
polymorphs are 9 and 7 kJ mol�1, respectively, above the

Fig. 4 Distributions of volume changes (per molecule) between the MACE-OFF23(M) optimized crystal structures and the reference B86bPBE-XDM
optimized crystal structures for each compound. The boxes show the interquartile ranges, the whiskers encompass 90% of the data, and remaining
outliers are shown as individual points. In the bottom row of plots, the [n]helicene structures are denoted by their n value, while ‘‘nhelic’’ refers to
1-aza[6]helicene.
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corresponding minimum. For compound XXII, Fig. 3 shows
that the distribution in VC-PWDF scores is clustered near zero,
indicating generally high similarity between the MACE-
OFF23(M) and B86bPBE-XDM structures, and this includes
the experimental structure. However, this compound does
contain three cyano (CRN) groups, a fused ring system with
three sulfur atoms, and no hydrogens, so it is quite far removed
from the compounds in the SPICE training set.

Compound XVI includes the diazo (QNQN) functional group
and, as noted above, is one of the two cases showing large
deviations between the MACE-OFF23(M) and B86bPBE-XDM

geometries. It is, therefore, expected that this would be a
problem case for the DFT//MACE composite method. The VC-
PWDF score obtained from comparing the MACE-OFF23(M) and
B86bPBE-XDM optimized structures for the experimental poly-
morph is 0.184, and COMPACK comparison59,60 yields only a
2/20 molecule match. This indicates a change in form upon
MACE-OFF23(M) optimization, meaning that the experimental
polymorph is not a stable minimum with the machine-learned
potential. Thus, using MACE-OFF23(M) in the initial stages of
CSP would cause the experimental structure of compound XVI to
be missed. Reoptimization of the MACE-OFF23(M) ‘‘experimental’’
structure with B86bPBE-XDM gives a yet another structure, with a
16/20 molecule match with COMPACK, and a VC-PWDF score of
0.061, compared to the MACE-OFF23(M) result.

For the three neutral co-crystals, the results in Table 1 show
that both the MACE-OFF23(M) and DFT//MACE methods per-
form very well. The experimental polymorphs are ranked either
first or second in energy, within 1 kJ mol�1 of the minimum, in
each case. Conversely, the results for the three organic salts are
extremely poor. While MACE-OFF23(M) happens to identify
the experimental polymorph as lowest in energy for compound
XIX, isolated forms are ranked 86th, 93rd, and 192nd for the
other two salts, with relative energies ranging from roughly
25–60 kJ mol�1 above the corresponding minimum. As such,
these structures would not be carried forward to further study
in most CSP protocols. Again, catastrophic failure of the MACE-
OFF23(M) potential for salts is completely expected given that it
was not trained on systems with net charges (or on ionic
crystals). Also as expected, based on the high VC-PWDF scores
in Fig. 3, the DFT//MACE approach predicts the experimental
polymorphs to be 28 and 31 kJ mol�1 above the minima for
compounds XIX and XXIV, respectively. The performance of
DFT//MACE for compound XXXIII is quite good, however,
which is consistent with the much lower VC-PWDF scores seen
in Fig. 3. Likely the quality of the MACE-OFF23(M) geometries
for salts is, in part, related to the extent of charge localization
and resemblance to the zwitterionic solvated amino acids in the
SPICE training set, with the chloride salt (XXIV) proving parti-
cular problematic.

Turning to the flexible molecules, Table 1 shows that these
can be challenging CSP cases even for DFT methods. It has
been shown that inclusion of thermal free-energy corrections
is necessary to identify the experimental structure as the most
stable for compounds XX, XXIII, and XXXI.11,49,61,62 In the most
recent blind test, none of the methods considered ranked the
two isolated polymorphs of compound XXXII as particularly low
in energy,31 implying either consistent errors for several
dispersion-corrected density functionals, importance of kinetic
effects on crystal growth, and/or the possibility of a more-stable,
late-appearing polymorph not yet characterised experimentally.63

Overall, the DFT calculations predict the experimental forms to be
within 10 kJ mol�1 of the minimum for all cases except form C
of compound XXXI; however, this polymorph was the result of
solvent loss from a solvate, leaving large crystal voids, and is
expected to be highly unstable. As shown in Table 1, the MACE-
OFF23(M) potential provides good agreement with DFT results for

Table 1 Results for selected blind test compounds. Shown are the
rankings of the experimental polymorphs and their energies, in kJ mol�1

per molecule, relative to the global minimum identified with each com-
putational method, specified as energy//geometry

Polymorph

MACE//MACE DFT//MACE DFT//DFT

Rank DE Rank DE Rank DE

Rigid molecules
I-1 9 3.8 1 0.0 2 0.1
I-2 4 1.2 3 1.3 1 0.0
II 1 0.0 2 1.0 2 0.7
IV 1 0.0 1 0.0 1 0.0
V 1 0.0 3 1.6 4 2.0
VII 1 0.0 1 0.0 1 0.0
VIII 1 0.0 1 0.0 1 0.0
IX 9 16.1 1 0.0 1 0.0
XI 7 2.8 2 0.4 1 0.0
XII 4 1.9 1 0.0 1 0.0
XIII 1 0.0 2 0.0 1 0.0
XVI 2 0.3 16 9.0 1 0.0
XVII 10 4.4 2 0.3 1 0.0
XXII 18 3.9 25 7.0 3 0.4

Multi-component crystals
XV 2 0.3 1 0.0 2 0.6
XXI 1 0.0 2 0.8 1 0.0
XXV 1 0.0 1 0.0 1 0.0

Organic salts
XIX 1 0.0 14 28.5 4 2.3
XXIV 86 60.5 50 31.4 3 0.8
XXXIII-A 93 24.6 7 8.2 4 4.5
XXXIII-B 192 33.5 1 0.0 1 0.0

Flexible molecules
VI 2 1.8 1 0.0 1 0.0
X 12 26.5 1 0.0 2 0.6
XIV 1 0.0 1 0.0 1 0.0
XVIII 2 0.1 1 0.0 1 0.0
XX 3 1.3 6 5.8 4 6.4

XXIII-A 37 8.6 55 6.2 10 2.1
XXIII-B 4 2.2 3 0.3 3 0.5
XXIII-C 1 0.0 1 0.0 2 0.3
XXIII-D 34 8.3 36 4.9 13 2.9
XXIII-E 51 10.7 7 1.6 9 1.9

XXVI 1 0.0 3 0.2 1 0.0

XXXI-AMaj 7 6.6 3 1.8 4 2.5
XXXI-AMin 42 12.5 8 3.0 10 4.2
XXXI-B 6 5.9 18 6.5 12 5.0
XXXI-C 85 19.8 53 11.6 70 11.5

XXXII-AMaj 31 14.9 17 9.2 22 8.8
XXXII-B 135 22.0 19 10.5 26 9.1

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/2
9/

20
26

 9
:3

3:
21

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cp00593k


This journal is © the Owner Societies 2025 Phys. Chem. Chem. Phys., 2025, 27, 11930–11940 |  11937

compounds VI, XIV, XVIII, XX, and XXVI, but its performance for
the various polymorphs of the remaining flexible molecules is
erratic. In general, the DFT//MACE results are in much better
agreement with the DFT reference data, illustrating the promise of
this composite approach using geometries optimized with MACE-
OFF23(M) for the early stages of CSP.

4.2.2. Helicene compounds. The [n]helicene compounds
may represent a more ideal case for machine-learned poten-
tials, such as MACE-OFF23(M), as they contain only aromatic
rings and no other functional groups. However, the polymorph
ranking will be controlled by small energy differences between
various p-stacking and T-shaped intermolecular interaction
motifs (synthons) within the crystal structures, which were
not extensively sampled in the training data. The results
obtained for the helicenes are summarized in Table 2. Overall,
MACE-OFF23(M) performed reasonably well, predicting the
experimentally isolated polymorphs to lie within 5 kJ mol�1

of the corresponding minimum for most cases. One exception
is [5]helicene, where the DBPHEN05 polymorph was ranked
quite high (73rd) in energy, just over 9 kJ mol�1 above the
minimum. The other exception is the entantiopure form of
1-aza[6]helicene (KAWRUY), although the MACE-OFF23(M) pre-
diction is actually in good agreement with both DFT and
experiment.48 This polymorph is known to be significantly less
stable than the racemic form (COBNUD), but can be isolated
from enantiopure starting material.

The results in Table 2 show that the composite DFT//MACE
approach offers improvement over MACE-OFF23(M) alone
for phenanthrene, 1-aza[6]helicene, and most polymorphs of

[5]helicene. However, agreement with DFT reference data wor-
sens when applying the composite approach to [9]helicene and,
particularly, [4]helicene, where the experimental structure is
ranked 30th. Visualisation of the MACE-OFF23(M) structure for
the experimental form of [4]helicene reveals a large volume
contraction that resulted in very short intermolecular H� � �H
contacts of o2.2 Å, which explains its lesser stability with DFT.
A similarly short contact is also found in the MACE-OFF23(M)
structure of only one of the four experimental forms of [5]heli-
cene, DBPHEN02, which was ranked spuriously high in energy
with DFT//MACE. Nevertheless, except for the enantiopure form
of 1-aza[6]helicene discussed above, all experimental forms are
predicted to lie within 5 kJ mol�1 of the corresponding energy
minimum with the composite method. As such, they would still
be carried forward to full DFT calculation in a practical CSP
protocol.

5. Summary

In this work, we applied the recent machine-learned MACE-
OFF23(M) potential to two sets of molecular crystals to inves-
tigate its effectiveness as a low-cost method for use in the early
phases of CSP. The agreement between MACE-OFF23(M)
and DFT results was assessed for both relative energies and
crystal geometries. The performance of a composite DFT//MACE
approach, which uses DFT energies evaluated at MACE geometries,
was also evaluated. It should be emphasized that the MACE-
OFF23(M) potential was used as originally formulated32 and was
not retrained using any DFT data for molecular crystals.

The MACE-OFF23(M) geometries were compared to their
DFT counterparts using the VC-PWDF method, which provides
a packing similarity score between two crystals while allowing
for distortions of the unit cell. The VC-PWDF scores were
frequently clustered near zero, indicating that the MACE-
OFF23(M) geometry optimizations converged to the same crystal
polymorph as the B86bPBE-XDM optmizations in the majority of
cases. Even in cases with broader distributions of VC-PWDF
scores, more than 50% of the candidate crystal structures were
deemed as matching (VC-PWDF o0.03) the DFT reference struc-
ture after optimization with the MACE-OFF23(M) potential. The
two noted exceptions were the blind-test compounds XVI and
XXIV. Poor performance in these cases is unsurprising since
compound XVI contains a diazo (QNQN) group, which is not
well represented in MACE-OFF23(M)’s training data, while com-
pound XXIV is an organic salt. Ions are inherently problematic for
local models such as MACE-OFF23(M) because of the long range
of the electrostatic interaction. In addition to VC-PWDF scores,
we also considered changes in unit-cell volumes between the
B86bPBE-XDM and MACE-OFF23(M) geometries. The MACE-
OFF23(M) geometries were typically more compact, with the
notable exception of the blind-test molecule IX, which was the
only iodine-containing compound present in our study and,
again, was not well represented in MACE-OFF23(M)’s training
data. Machine-learned potentials are naturally limited by their
training data, so it is expected to obtain good performance for

Table 2 Results for selected helicene compounds. Shown are the rank-
ings of the experimental polymorphs and their energies, in kJ mol�1 per
molecule, relative to the global minimum identified with each computa-
tional method, specified as energy//geometry. CCDC64 refcodes are given
for each experimental polymorph, except for phenanthrene, where the
experimental structure was reported in ref. 65, and the intergrowth form of
[6]helicene, which was reported in ref. 66

Compound Polymorph

MACE//MACE DFT//MACE DFT//DFT

Rank DE Rank DE Rank DE

Naphthalene NAPTHA18 1 0.0 2 0.1 1 0.0
Phenanthrene Ref. 65 22 2.7 1 0.0 1 0.0
[4] helicene BZPHAN 1 0.0 30 4.4 4 1.3

[5] helicene DBPHEN05 73 9.1 5 1.4 2 0.0
DBPHEN04 25 5.1 9 1.8 3 0.4
DBPHEN02 2 0.1 22 4.0 4 0.6
DBPHEN03 28 5.3 14 2.8 5 0.8

[6] helicene Intergrowth 1 0.0 1 0.0 1 0.0
HEXHEL 2 0.6 3 1.0 2 0.2

1-aza[6] helicene COBNUD 12 3.0 1 0.0 1 0.0
KAWRUY 38 13.3 36 11.6 31 10.0

[7] helicene IMEJIW 1 0.0 1 0.0 1 0.0
HPTHEL01 3 4.7 5 4.6 3 3.4

[9] helicene QUJNEQ 1 0.0 3 3.2 1 0.0
[10] helicene THELIC 1 0.0 1 0.0 1 0.0
[11] helicene UHELIC 1 0.0 1 0.0 1 0.0
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compounds or intermolecular interaction motifs similar to those
in the training set, and uncertain or poor performance for new or
little-sampled regions of chemical space.

The energy ranking of each experimentally isolated polymorph
was evaluated relative to the most-stable candidate structure
provided by each method (MACE//MACE, DFT//MACE, DFT//
DFT). MACE//MACE performed reasonably well for the rigid
blind-test molecules, where 9/14 experimental polymorphs were
ranked within 2 kJ mol�1 of the minimum-energy structure. The
rankings were further improved by DFT//MACE, which predicted
12/14 experimental polymorphs to lie within this energy range.
For the helicene compounds, the MACE//MACE method ranked
the experimental forms within 6 kJ mol�1 of the minimum-energy
structures in 14/16 cases, with the DFT//MACE method generally
providing improved agreement with the DFT//DFT reference data.
The flexible blind-test molecules, which are challenging even
for DFT, were also unsurprisingly challenging for the MACE-
OFF23(M) potential. Here, the performance of the MACE//
MACE method was somewhat erratic, with large fluctuations
in rankings of experimental structures, although there was
again improvement when using the composite DFT//MACE
approach. Finally, we saw a complete failure of the MACE-
OFF23(M) potential for the experimental form of molecule XVI,
where geometry optimization resulted in a different crystal
structure, meaning that it would never be found in a CSP study
using this methodology. A catastrophic failure of the MACE-
OFF23(M) potential was also seen for organic salts, which is
entirely expected due to the neglect of long-range electrostatics
and lack of any ionic compounds in the training data. Devel-
oping machine-learned potentials that include a physically
reasonable description of long-range electrostatic interactions
remains an outstanding challenge.

We conclude that the MACE-OFF23(M) potential provides
a promising step forward for the use of machine-learned
potentials in CSP. For crystals composed of rigid molecules,
containing common functional groups, the MACE method
gives remarkably good results for both geometries and energy
ranking, and the latter is improved by the DFT//MACE compo-
site approach. Furthermore, our results suggest that this com-
posite approach may even be accurate enough for application to
flexible molecules, for selection of candidate structures that
would progress to the final DFT energy ranking stage of a CSP
study. Unfortunately, it does not seem possible to know a priori
how well the MACE structure will approximate the DFT struc-
ture for specific compounds, which detracts significantly from
the reliability of the DFT//MACE approach. Users of MACE-
OFF23(M) should be aware of its pitfalls: it should never be
used for ionic systems, and should also be avoided when
considering compounds with any uncommon functionals
groups, or elements, which may be poorly represented by its
training data.
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and Gabor Csányi for helpful discussions. We also thank the
Natural Sciences and Engineering Research Council (NSERC) of
Canada, the Government of Nova Scotia, and the Royal Society
for financial support, and the Atlantic Computing Excellence
Network (ACENET) for computational resources.

References

1 S. R. Chemburkar, J. Bauer, K. Deming, H. Spiwek, K. Patel,
J. Morris, R. Henry, S. Spanton, W. Dziki and W. Porter,
et al., Org. Process Res. Dev., 2000, 4, 413–417.

2 D.-K. Bucar, R. W. Lancaster and J. Bernstein, Angew. Chem.,
2015, 54, 6972–6993.

3 S. L. Price, Chem. Soc. Rev., 2014, 43, 2098–2111.
4 S. L. Price and J. G. Brandenburg, in Non-Covalent Interac-

tions in Quantum Chemistry and Physics, ed A. Otero-de-la
Roza and G. A. DiLabio, Elsevier, 2017, ch. 11, pp. 333–363.

5 J. Nyman and S. M. Reutzel-Edens, Faraday Discuss., 2018,
211, 459–476.

6 R. Nikhar and K. Szalewicz, Nat. Commun., 2022, 13, 3095.
7 G. J. O. Beran, Chem. Sci., 2023, 14, 13290–13312.
8 M. A. Neumann, F. J. J. Leusen and J. Kendrick, Angew.

Chem., 2008, 47, 2427–2430.
9 G. M. Day, T. G. Cooper, A. J. Cruz-Cabeza, K. E. Hejczyk and

H. L. Ammon, et al., Acta Crystallogr., Sect. B: Struct. Sci.,
2009, B65, 107–125.

10 M. A. Neumann, J. Van De Streek, F. P. A. Fabbiani,
P. Hidber and O. Grassmann, Nat. Commun., 2015, 6, 7793.

11 J. Hoja, H. Y. Ko, M. A. Neumann, R. Car, R. A. Distasio and
A. Tkatchenko, Sci. Adv., 2019, 5, eaau3338.

12 M. Mortazavi, J. Hoja, L. Aerts, L. Quéré, J. van de Streek,
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37 C. Isert, K. Atz, J. Jiménez-Luna and G. Schneider, Sci. Data,
2022, 9, 273.

38 A. M. Reilly and A. Tkatchenko, J. Chem. Phys., 2013, 139,
024705.

39 G. A. Dolgonos, J. Hoja and A. D. Boese, Phys. Chem. Chem.
Phys., 2019, 21, 24333–24344.

40 D. S. Coombes, S. L. Price, D. J. Willock and M. Leslie,
J. Phys. Chem., 1996, 100, 7352–7360.

41 D. E. Williams, J. Comput. Chem., 2001, 22, 1154–1166.
42 M. P. Metz, M. Shahbaz, H. Song, L. Vogt-Maranto, M. E.

Tuckerman and K. Szalewicz, Cryst. Growth Des., 2022, 22,
1182–1195.

43 J. P. M. Lommerse, W. D. S. Motherwell, H. L. Ammon,
J. D. Dunitz and A. Gavezzotti, et al., Acta Crystallogr., Sect. B:
Struct. Sci., 2000, B58, 647–661.

44 W. D. S. Motherwell, H. L. Ammon, J. D. Dunitz,
A. Dzyabchenko and P. Erk, et al., Acta Crystallogr., Sect. B:
Struct. Sci., 2002, B58, 647–661.

45 G. M. Day, W. D. S. Motherwell, H. L. Ammon, S. X. M.
Boerrigter and R. G. Della Valle, et al., Acta Crystallogr., Sect.
B: Struct. Sci., 2005, B61, 511–527.

46 D. A. Bardwell, C. S. Adjiman, Y. A. Arnautova, E.
Bartashevich and S. X. M. Boerrigter, et al., Acta Crystallogr.,
Sect. B: Struct. Sci., 2011, B67, 535–551.

47 J. A. Schmidt, E. H. Wolpert, G. M. Sparrow, E. R. Johnson
and K. E. Jelfs, Cryst. Growth Des., 2023, 23, 8909–8917.

48 Y. Yang, B. Rice, X. Shi, J. R. Brandt, R. Correa da Costa,
G. J. Hedley, D.-M. Smilgies, J. M. Frost, I. D. W. Samuel,
A. Otero-de-la-Roza, E. R. Johnson, K. E. Jelfs, J. Nelson,
A. J. Campbell and M. J. Fuchter, ACS Nano, 2017, 11,
8329–8338.

49 R. A. Mayo, A. J. A. Price, A. Otero-de-la-Roza and E. R.
Johnson, Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng.
Mater., 2024, 80, 595–605.

50 A. D. Becke, J. Chem. Phys., 1986, 85, 7184.
51 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.,

1996, 77, 3865.
52 P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B.

Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli and
M. Cococcioni, J. Phys.: Condens. Matter, 2017, 29, 465901.

53 A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli,
R. Christensen, M. Dułak, J. Friis, M. N. Groves, B. Hammer,
C. Hargus, E. D. Hermes, P. C. Jennings, P. B. Jensen,
J. Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal,
K. Kaasbjerg, S. Lysgaard, J. B. Maronsson, T. Maxson,
T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz,
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