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Electrochemical–mechanical model of the space
charge zone at the interface

Fuqian Yang *a and Erwin Hüger bc

The interface between a solid electrolyte and an electrode plays an important role in determining the

physical processes controlling the electrochemical performance of metal-ion batteries. In this work, we

developed an electrochemical–mechanical model for the determination of net charge density, stress

and electric fields in a solid electrolyte, which is in contact with an electrode, under the framework of

thermodynamics and linear elasticity. Mobile species are cations, which occupy interstitial sites through

the formation of Frenkel defects. Analytical solutions of net charge density, stress and electric fields are

derived using the linear coupling model, which is a simplification of the nonlinear coupling system under

low stress and electric fields. For a solid electrolyte sandwiched between two parallel electrodes, numer-

ical results predict that there exists an accumulation/adsorption of a layer of charges (interstitial ions)

onto the electrode, i.e., the presence of a space charge zone whose size is dependent on the electric

potential and elastic constants of the solid electrolyte. Such behavior is similar to the Stern layer of a

liquid electrolyte and allows for the storage of energy in a capacitive form, similar to an electrical double

layer. The ratio of the nominal size of the space charge zone to the thickness of a solid electrolyte

decreases as the thickness of the solid electrolyte increases. The nonlinear and coupling system devel-

oped in this work lays a foundation to analyze the interface behavior of heterogeneous structures and

the effects of the space charge zone on the energy storage of multilayer structures. The approach pre-

sented in this work can be extended to investigate the multi-field coupling problems in solid oxide fuel

cells, mixed halide quantum dots and transducers.

Introduction

Lithium-ion batteries (LIBs) with liquid electrolytes have been
dominant in the applications of mobile electronics and electric
vehicles for many years. The safety concern for LIBs under fast
charging and discharging and/or dynamic environments has sti-
mulated the development of solid state electrolytes for all-solid-
state batteries.1 One of the challenges faced by all-solid-state
batteries is their low capacity under fast (dis)charging,2 which is
likely due to the factors associated with the interface between
electrode and electrolyte, such as ‘‘imperfect’’ contact,3,4 large resis-
tance to ionic migration,5,6 and the space-charge zone.7,8 Among
these factors, the roles of space-charge zones remain elusive.

The existence of a space-charge zone and its effect on
interfacial Li-ion accumulation in all-solid-state LIBs have been
reported in the literature.7,9–13 Using transition electron

microscopy (TEM)-based techniques, the potential profile was
directly determined at the interface of the electrode-active
material (negative or positive electrode) and the solid-state
electrolyte. TEM-based electron holography was used for oper-
ando observations to determine the distribution of electric
potential around the interface between the positive electrode
(cathode) and a solid electrolyte for all-solid-state LIBs and
assess how Li ions move in the batteries during charging and
discharging.9,11,12 Yamamoto et al.10 used a TEM-based technique
equipped with electron energy loss spectroscopy to ‘‘visualize’’ the
Li distribution at the interface between the negative electrode and
the solid electrolyte in all-solid-state LIBs. Masuda et al.13 deter-
mined the distribution of internal potential in all-solid-state LIBs
via in situ Kelvin probe force microscopy. Wang et al.7 visualized
the effect of the space charge zone on the interfacial accumulation
of Li ions in situ in all-solid-state LIBs using differential phase
contrast (DPC) scanning TEM. They observed the presence of net
charge density at the interface between the LiCoO2 positive
electrode (cathode) and the Li6PS5Cl solid state electrolyte.

There are conflicting reports on the role of space-charge
zones in electrochemical performance of all-solid-state bat-
teries. For example, it is stated that the interfacial resistance
associated with space-charge zone can hinder the motion of
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electrolyte ions9,13 and dissipate energy during electrochemical
cycling. However, the recent review of Hüger et al.14 commented
on the experimental findings that inserting an LiNbO3 layer
leads to the decrease of the barrier imposed by the space-charge-
layer for the migration of Li through the interface between
electrolyte and electrode. Essentially, space charge zones are
present at all interfaces depending on their differences in the
Fermi-energy (electron work function) and can alter the charge
transport, transfer and storage properties.15–19 For the case with
a space charge zone being built up between LiNbO3 and the
active materials of positive LIB electrodes (which is very likely to
occur), the space charge zone may facilitate and does not hinder
the transport of lithium. In general, this points to the need to
understand the physicochemical characteristics of space-charge
zones and ionic transport through them.

Concerning theoretical calculations, Braun et al.20 consid-
ered the contributions of both elastic energy and electric energy
to the free energy, while they did not include elastic deforma-
tion in the analysis of the distribution of electrolyte ions, i.e.,
the Poisson–Boltzmann equation. The mechanical equation
used in their analysis is similar to the one for inviscid flow
with electric force as the body force. Landstorfer et al.21

assumed that the solid electrolyte was a crystal and included
the contribution of vacancies in the analysis of the space-charge
zone. They did not consider the deformation effect on the
diffusion and electric fields. de Klerk and Wagemaker22

included the contribution of the Coulomb interaction between
defects to the chemical potential of electrolyte ions and used
the formulation determined numerically by Gobel et al.23 in
analyzing the spatial distribution of electrolyte ions. They did
not include the contribution of strain energy to the chemical
potential and the Poisson–Boltzmann equation. Chen et al.24

incorporated the mechanical work done by hydrostatic pressure
in the chemical potential of point defects, which includes the
contribution of self-stress, and discussed the charge distribu-
tion in a bent beam. However, they did not present the analysis
of the defect effect on the stress field. Xiao et al.25 suggested
that the discrete characteristics of the space charge zone can be
described by linear distribution of electric potential in indivi-
dual regions. All these studies reveal the complexity of space
charge zones from different viewpoints and point to the need to
understand the effects of electric field and mechanical defor-
mation on the distribution of electrolyte ions in space charge
zones. However, there are few studies on the contribution of the
interaction between ionic concentration and the stress to space
charge zone.

Currently, most analyses of electric potential/field in the
space charge zone at the interface between electrode and elec-
trolyte have relied on the Boltzmann distribution with the state
energy of electrolyte ions solely dependent on electric energy, i.e.,
the ionic concentration is an exponential function of electric
potential, which is similar to the study of the electric double
layer in liquid solutions.26 Such an approach is applicable if
electric energy is the dominant one contributing to the state
energy of the system as well as the electrolyte in the space charge
zone. In general, there is a size misfit between different ions and

between ions and defects, e.g., free volume for amorphous solid
electrolytes and vacancies for crystalline solid electrolytes. Thus,
the difference between the spatial distribution of ions in the
space charge zone and the corresponding one at the equilibrium
state can introduce local strain and strain energy from the size
misfit. The strain energy then contributes to the state energies of
the system and the electrolyte in the space charge zone. The co-
existence of the electric field and stress field likely leads to a
multifield-coupling problem in addition to the coupling between
the stress field and ionic concentration.

This work is targeted at the development of governing
equations and constitutive relationships for the description of
the spatial distributions of the electric field, stress/strain field,
and ionic concentration in the charge space zone. The contribu-
tion of strain energy to the free energy of electrolyte ions was
incorporated, which allows for the analysis of the effect of the
stress field on the electric field and highlights the effects of the
size misfit between ions and defects on the field distributions in
stressed solid electrolytes. Numerical methods were used to solve
the linear, multifield-coupling problem in the one-dimensional
case and to illustrate the coupling effects. The approach devel-
oped in this work can be extended to investigate the multifield-
coupling problems presented in solid-oxide fuel cells,27,28 mixed-
halide quantum dots,29–31 and transducers.32,33

Mathematical formulations

Consider a solid electrolyte AB, in which an A cation can migrate
into an interstitial site from a lattice site to form a Frenkel defect.
Let NA and NV be the numbers of interstitial cations and the
associated vacancies in a RVE (representative volume element),
shown in Fig. 1a. Both the interstitial cations and the associated
vacancies distribute randomly in the RVE at an equilibrium
state, and there are no electric field and stress gradients.

Fig. 1b shows the contact between the electrolyte material of
AB and an electrode material. The differences of work functions
and surface states between the electrolyte material of AB and
the electrode material lead to change in the spatial distribution

Fig. 1 Schematic of (a) a solid electrolyte AB and (b) the contact between
the electrolyte material of AB and an electrode material.
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of the interstitial A cations and the corresponding vacancies for
associated Frenkel defects, as illustrated in Fig. 1b. This
introduces stress/strain field due to the size misfit between
the cation and the interstitial site and electric field, resulting in
change in the state of local energy.

Let N and N0 be the numbers of lattice sites and interstitial
sites available in the RVE, respectively. Note that the number N
is of the same order of magnitudes as N0. The number of
possible states, $, consists of the number of possible states
of vacant sites in the lattice, $1, and the number of possible
states of interstitial atoms in the interstitial sites, $2, as

$ ¼ $1 �$2 ¼
N!

NVð Þ! N �NVð Þ! �
N 0!

NAð Þ! N 0 �NAð Þ!: (1)

Using Boltzmann’s entropy relation, S = ln$, the configuration
entropy (entropy of mixing) can be calculated from eqn (1) as

Sconf¼

�k NAln
NA

N 0
þ N 0�NAð ÞlnN

0�NA

N 0
þNVln

NV

N
þ N�NVð ÞlnN�NV

N

� �
;

(2)

where NA and NV are the numbers of interstitial cations and
vacant lattice sites, respectively.

The migration of an A cation into an interstitial site creates a
vacant lattice site (vacancy), which is surrounded by B anions and
nearby A cations. This results in a net negative charge of the same
magnitude as the A cation, whose gravity center is at the vacant
lattice site. Thus, the total charge in the RVE, Q, is proportional to
the number difference of (NA � NV) and can be calculated as

Q = ze(NA � NV). (3)

According to the theory of electricity,34 the electric energy of a
point charge, q, is equal to q f (f is the electric potential of the
point charge). Thus, the electric energy, Ue, of the RVE in an
electric field is calculated as

Ue = Qj = ze(NA � NV)j, (4)

where z is the charge number carried by the cations/anions, e is
the electronic charge, and j is the electric potential in the RVE.

The migration of A cations to interstitial sites leads to
volumetric changes due to the size misfits at two individual
locations: one is at the interstitial site with A cation, and the
other is at the vacant site with a vacancy. Let eA and eV be the
respective volumetric strains at the interstitial site with A cation
and at the vacant site associated with a migrated A cation.
According to the theory of elasticity,35 the strain energy stored
in the RVE, Us, is calculated as

Us ¼
K

2
� 4
3
pra3 NAeAð Þ2þpa

4

3
pra3 NAeAð Þ

þ K

2
� 4
3
prV3 NVeVð Þ2þpV

4

3
prV3 NVeVð Þ

(5)

Here, K is the bulk modulus of the electrolyte material, ra and rV

are the radii of the cation and vacancy, respectively, and pa and
pV are the respective pressures externally applied to the

interstitial site with the A cation and the vacant lattice associated
with the migrated A cation. Note that the pressure pa consists of
external pressure and the stress from the vacant lattice sites
associated with migrated A cations and pV consists of external
pressure and the stress from the interstitial A cations.

According to the theory of thermodynamics,36 the change in
the Gibbs free energy is

DG = kSconf + Us + Ue + DHA + DHV, (6)

with DHA and DHV as the energies needed to form the corres-
ponding interstitial cations and vacancies without stress and
electric fields. Using eqn (2), (4) and (5), we have the change of
the Gibbs free energy for the solid electrolyte in the RVE under
stress and electric fields as

DG ¼ kT NA ln
NA

N 0
þ N 0 �NAð Þ lnN

0 �NA

N 0

�

þNV ln
NV

N
þ N �NVð Þ lnN �NV

N

�

þ ze NA �NVð ÞjþNAwV þNVwV

þ K

2
� 4
3
pra3 NAeAð Þ2þpa

4

3
pra3 NAeAð Þ

þ K

2
� 4
3
prV3 NVeVð Þ2þpV

4

3
prV3 NVeVð Þ;

(7)

where wA and wV are the energies needed to have an A ion at an
interstitial site and a vacancy at a lattice site, respectively,
without stress and electric fields. It should be mentioned that
eqn (7) does not include the contribution of ion–ion interaction
due to the low concentration of Frenkel defects in ionic crystals.
For example, the formation energy of Frenkel defects in LiNbO3

is B1.2 eV per def,37 which yields B3.6 � 10�7 in atomic ratio
for the concentration of Frenkel defects. According to the
theory of thermodynamics, the change in the Gibbs free energy
is the lowest at an equilibrium state under constant tempera-
ture and pressure. This requires that the partial derivatives of
the change in the Gibbs free energy with respect to NA and NV

are equal to zero, i.e.,

wA þ kT ln
NA

N 0 �NA
þ zejþ s

4

3
peAra3

� �
¼ 0; (8)

wV þ kT ln
NV

N �NV
� zej� s

4

3
peVrV3

� �
¼ 0; (9)

where s (= p1 + KNAeA = p2 + KNVeV) is the resultant hydrostatic
stress on the RVE. Eqn (8) and (9) yield the concentrations of
interstitial cations, Ca, and vacancies, CV, in the RVE as

Ca ¼
NA

N0VREV
¼ C0 exp �

1

RT
z=jþ sOAð Þ

� �
; (10)

CV ¼
NV

N0VREV
¼ C0 exp

1

RT
z=jþ sOVð Þ

� �
; (11)

with the units of Ca and CV being mole per unit volume, = ¼
N0e (N0 is the Avogadro constant) being the Faraday constant,
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R being the gas constant, and OA and OV being respective volume
changes of the solid electrolyte per mole of interstitial cations
and vacancy. The parameter C0 is the concentration of interstitial
cations and the associated vacancies without stress and electric
fields. Eqn (10) uses the condition of Ca = CV = C0 at an
equilibrium state for j = 0 and s = 0. It is evident that the
concentrations of interstitial cations and the associated vacan-
cies are exponentially dependent on electric potential and strain
energy from the size misfits. Eqn (10) and (11) reduce the
Boltzmann distribution of electrolyte ions in an electric field if
there are no contributions from external stress and self-stress.

As an approximation used in the work by Chen et al.,24 we
have OA E OV E O. Thus, the charge density in the units of
Coulomb per unit volume is calculated from eqn (10) and
(11) as

r ¼ z= Ca � CVð Þ ¼ �2z=C0 sinh
1

RT
z=jþ sOð Þ

� �
: (12)

Substituting eqn (12) into Gauss’s law, r2j ¼ �r=e (r is
effective charge density and e is the dielectric constant), gives
the differential equation as

r2j ¼ 2z=C0

ere0
sinh

1

RT
z=jþ sOð Þ

� �
; (13)

which is used to determine the spatial distribution of the
electric potential. Eqn (13) is reduced to the Poisson–Boltz-
mann equation if there is no stress effect, i.e., s = 0. The
linearized form of eqn (13) is

r2j ¼ 2z=C0

ere0

1

RT
z=jþ sOð Þ: (14)

Here, er and e0 are the relative dielectric constant and the
dielectric constant of the vacuum. Similar to the linear Pois-
son–Boltzmann equation, eqn (14) rests on the conditions of
low surface potential and small stress with the contributions of
higher order terms of ( jz=jþ sOj=RTð Þn (n = 2, 3, 4, . . .)) being
negligible.

For mechanical deformation with small strain, the theory of
linear elasticity prevails. The relationship between the displace-
ment vector, u, and the strain tensor, e, is

e ¼ 1

2
ruþ ðruÞT
� �

: (15)

Analogous to thermal stress and diffusion-induced stress,38–41

the constitutive relationships for the elastic deformation of the
solid electrolyte induced by interstitial cations and the asso-
ciated vacancies can be expressed as

r ¼ nE
ð1þ nÞð1� 2nÞ TrðeÞ � Ca � CVð ÞO½ �I

þ E

1þ n e� Ca � CVð ÞO
3

I

� �
; (16)

where r and I are the stress and unit tensors, respectively, and E
and n are Young’s modulus and Poisson’s ratio of the solid
electrolyte, respectively. The term of (Ca � CV)O represents the
volumetric strain associated with the presence of interstitial
cations and the associated vacancies.

The ‘‘1/3’’ comes from the contribution of linear strain
components in three orthogonal directions to volumetric
strain. It is worth noting that the mean strain in an RVE is
generally small due to the low concentration of Frenkel defects
even though local strains associated with individual interstitial
cations may be large. For electrode materials with large
diffusion-induced strains, such as silicon and tin, finite defor-
mation theory needs to be used.

The equilibrium equation at the static state is

=�r � r=j = 0, (17)

in which the second term on the left side represents the electric
force on the solid electrolyte. Letting C = (Ca � CV) and using
eqn (15)–(17), we obtain

r2uþ 1

1� 2n
=ð= � uÞ ¼ 2ð1þ nÞO

3ð1� 2nÞ=C þ 2ð1þ nÞ
E

r=j: (18)

For a detailed derivation, see Appendix. According to eqn (10)–
(12) and (18) can be rewritten as

r2uþ 1

1�2n
=ð= �uÞ ¼ �4ð1þnÞO

3ð1�2nÞC0=sinh
1

RT
z=jþsOð Þ

� �

�8z=C0ð1þnÞ
E

sinh
1

RT
z=jþsOð Þ

� �
=j:

(19)

Eqn (13) and (19) together with the corresponding boundary
conditions form the basis to determine the spatial distributions
of electric potential and electrolyte ions as well as the stress
field at the equilibrium state. It is evident that there exists
coupling between the electric field and stress field. Note that
the resultant hydrostatic stress, s, is equal to Tr(r)/3.

Under the conditions of low surface potential and small
stress, eqn (19) is simplified to

r2uþ 1

1� 2n
=ð= � uÞ ¼ � 4ð1þ nÞO

3ð1� 2nÞ
C0

RT
= z=jþ sOð Þ

� 8z=C0ð1þ nÞ
E

1

RT
z=jþ sOð Þ=j;

(20)

which is a set of nonlinear partial differential equations.

One-dimensional problem

To understand the characteristics of the space charge zone
around electrode, we consider a one-dimensional problem.
A symmetrical binary solid electrolyte is sandwiched between
two planar electrodes with an electric potential difference of j0.
The contact between the solid electrolyte and the electrodes is
frictionless. The distance between the electrodes is L. For
simplification, the analysis is limited to the linearized form
of eqn (13). Using eqn (14) and (20), the first order of j becomes

d2j
dx2
¼ k2 jþ sO

z=

� �
; (21)

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
A

pr
il 

20
25

. D
ow

nl
oa

de
d 

on
 6

/2
/2

02
5 

6:
16

:2
6 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cp00467e


10702 |  Phys. Chem. Chem. Phys., 2025, 27, 10698–10707 This journal is © the Owner Societies 2025

d2u

dx2
þ 1

1� 2n
d2u

dx2
¼ �4ð1þ nÞO

3ð1� 2nÞ
C0

RT

d

dx
z=jþ sOð Þ; (22)

with u as the displacement in the x-direction. Here, the para-
meter of k is defined as

k2 ¼ 2z2=2C0

ere0

1

RT
: (23)

The resultant hydrostatic stress, s, is equal to sx/3 with sx as the
normal stress in the x-direction. The boundary conditions are

j|x=0 = j0 and j|x=L = 0, (24)

u|x=0 = u|x=L = 0. (25)

The general solutions of eqn (21) and (22) are

u ¼ A1 þ
ð1þ nÞð1� 2nÞ

Eð1� nÞ B1x

� 2ð1þ nÞ
3ð1� nÞ

z=C0

RT

A2

k
ekx � B2

k
e�kx

� �
; (26)

j ¼ � O
3z=B1 þ A2e

kx þ B2e
�kx; (27)

with A1, A2, B1 and B2 being constants determined by the
boundary conditions of 24 and 25. The analytical formulations
of A1, A2, B1 and B2 are given in Appendix. Using eqn (26) and
(27) and the analytical formulations of A1, A2, B1 and B2,
we obtain

Ca

C0
¼ 1� z=

RT
A2e

kx þ B2e
�kxð Þ; (28)

CV

C0
¼ 1þ z=

RT
A2e

kx þ B2e
�kxð Þ; (29)

r ¼ �ere0k2 A2e
kx þ B2e

�kxð Þ; (30)

sx ¼ �
2z=C0f0

RT

1� ekLð ÞE
3kLð1� 2vÞð1þ ekLÞ þ 4C0O 1� ekLð ÞE=3RT :

(31)

It is interesting to note that the uniaxial stress uniformly
distributes in the solid electrolyte. No stress gradient is present
provided that the contribution of electric force is negligible and
the contact between the solid electrolyte and the electrodes is
frictionless.

Results and discussion

There are various solid electrolytes available for lithium-ion
batteries, including oxide electrolytes, sulfide electrolytes, bor-
ohydrides. Among them, niobium pentoxide (Nb2O5) exhibited
great potential as an anode material with its fast rate and good
cyclability.42 The following numerical values are focused on a
solid electrolyte of LixNb2O5 of 0.1 mm in thickness, which is
sandwiched between two planar electrodes. The potential differ-
ence between the two electrodes is 0.01 V. The mobile species are
interstitial Li+ ions and associated excess ‘‘vacancies’’, with z = 1,
C0 = 10 mol m�3, O = 5� 10�6 m3 mol�1, v = 0.3, K = 50 GPa, and

ere0 ¼ 10�10 F m�1 according to the work by Chen et al.24 in the
analysis of the space charge zone in a bent-sandwiched beam
from interstitial Li+ ions in LixNb2O5 at T = 300 K. Note that
there is only a 3% increase in the c-axis lattice constant for the
lithiation of T-Nb2O5 in the voltage range of 1.2–3.0 V vs. Li/Li+.43

Thus, the theory of linear elasticity prevails.
Fig. 2 depicts the spatial distribution of interstitial Li+ ions

and associated ‘‘vacancies’’ in the solid electrolyte. At the elec-
trode with a higher electric potential (x = 0), there is a depletion of
Li ions; on the other side (x = L), there is a depletion of the
associated ‘‘vacancies’’. Such behavior can be attributed to the
interaction between the electric field and electric charge. With the
electrode at x = 0 having a higher potential and the electrode at
x = L having a lower potential, the direction of the electric field
points to the x-direction, which causes the accumulation of
interstitial Li+ ions near the electrode at x = L and the associated
‘‘vacancies’’ near the electrode at x = 0. The thickness of the
depletion (accumulation) zones of interstitial Li+ ions (associated
‘‘vacancies’’) is B18 nm for the solid electrolyte with a 100 nm
thickness. Between the depletion (accumulation) zones, both the
interstitial Li+ ions and the associated ‘‘vacancies’’ exhibit nearly
uniform distribution, which is almost the same as the one without
the action of electric and stress fields.

For comparison, the results without the stress effect (E = 0)
are also included in the Figure. Similar to the case with the
stress effect, there exists a depletion of Li+ ions and an
accumulation of the associated ‘‘vacancies’’ near x = 0. How-
ever, the stress effect reduces the extent of the depletion of Li+

ions and increases the accumulation of the associated ‘‘vacan-
cies’’. Near x = L, there is nearly no accumulation of Li+ ions.
Such behavior can be attributed to the dependence of A2 and B2

on Young’s modulus of the solid electrolyte. Without the stress
effect, B2/A2 = �e2kL. For the geometrical configuration of L =
0.1 mm, there is |B2| c |A2|. Thus, the solid electrolyte can be
approximated as semi-infinite.

Fig. 2 Spatial distribution of interstitial Li+ ions and associated ‘‘vacancies’’
in the solid electrolyte.
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Fig. 3 depicts the spatial distribution of the net charge
density in the solid electrolyte. Near the electrode at x = 0,
the net charge is negative; near the electrode at x = L, the net
charge is positive. Away from the depletion (accumulation)
zones, the net charge is nearly null. The effects of both the
electric field and stress field are mainly limited to the regimes
near the electrodes. Thus, the depletion (accumulation) zones
represent the space-charge zone. It should be pointed out that
both A2 and B2 are proportional to the potential difference,
indicating that the net charge density in the depletion (accu-
mulation) zones is proportional to the potential difference.
However, such a proportionality is based on the condition of
low surface potential and small stress. Otherwise, no closed-
form solutions are available, and numerical methods are
needed to determine the net charge density in the depletion
(accumulation) zone.

Fig. 4 shows the spatial distribution of electric potential in
the solid electrolyte. It is interesting to note that the electric

potential exhibits similar distribution to that of the charge
density, except that the electric potential decreases with the
increase of x, reaches a ‘‘plateau’’ of j = 0.5j0, and then
decreases with the further increase of x. Such behavior is
consistent with the potential difference between two electrodes
with the electrode at x = 0 having a higher potential than the
one at x = L. The potential ‘‘plateau’’ corresponds to the region
with nearly null net charge density, as shown in Fig. 3. No
electric field is presented in the ‘‘plateau’’ region. The local
electric field only occurs near the electrodes, in accord with the
presence of the space charge zone.

To examine if the size of the space charge zone is dependent
on the thickness of solid electrolyte, we performed numerical
calculations of the net charge density for the thickness of solid
electrolyte within the range of 10 nm to 1 mm. Fig. 5 shows the
spatial distribution of net charge density in the solid electro-
lytes of different thicknesses. Note that the abscissa in Fig. 5 is
normalized by the corresponding thickness. In general, the size
of the space charge zone is a function of the thickness of solid
electrolyte. For a solid electrolyte of 10 nm, the space charge
zone nearly spans over the entire solid electrolyte, as revealed in
Fig. 5. Increasing the thickness of solid electrolyte leads to the
presence of a region with nearly null net charge density, whose
size increases with the greater thickness of solid electrolyte.

Let x0 be the size of the space charge zone, which is
determined by the solution of r(x) = 0. Fig. 6 shows the variation
in the size of space charge zone, x0, with the thickness of solid
electrolyte. The size of the space charge zone increases linearly
with increasing the thickness of solid electrolyte. Using linear
regression to fit the data in Fig. 6, we obtain a slope of 0.5. This
result indicates that the space charge zone actually spans over
the whole solid electrolyte in a way similar to the case with L =
10 nm, as shown in Fig. 5. However, this is significantly different
from the intuitive results presented in Fig. 5.

To be consistent with the visual observation from Fig. 5, we
let xs be the nominal size of the space charge zone. The
condition for the determination of xs is

Fig. 3 Spatial distribution of charge density in the solid electrolyte.

Fig. 4 Spatial distribution of electric potential in the solid electrolyte.
Fig. 5 Spatial distribution of net charge density in the solid electrolytes of
different thicknesses.
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A2ekx + B2e�kx = 10�5. (32)

Fig. 7 shows the variation of the nominal size of the space
charge zone, which is determined by eqn (32), with the thick-
ness of the solid electrolyte. In contrast with the results shown
in Fig. 6, the nominal size of the space charge zone is a
nonlinear function of the thickness of the solid electrolyte.
The ratio of the nominal size of the space charge zone to the
thickness of the solid electrolyte is a decreasing function of the
thickness of the solid electrolyte. Increasing the thickness of
the solid electrolyte eventually leads to the separation of the
space charge zones.

According to the above results, it is expected that there is
accumulation/adsorption of a layer of charges (interstitial
cations) at the electrode. Such behavior is similar to the Stern

layer for liquid electrolyte. This allows for the storage of energy
in a capacitive form, similar to the electric double layer.26 The
charge density of the layer of charges adsorbed to the electrode
is calculated as

rj@V¼ �e0er
dj
dn

����
@V

¼ �e0er
dj
dx

����
x¼0

; (33)

where qV represents the surface of the electrode. From eqn (33),
the total charge stored in the adsorption layer, Q, is
calculated as

Q ¼ �
ð
@V

e0er
dj
dn

����
@V

dS: (34)

Using eqn (27) and (34), the integral capacitance of the adsorp-
tion layer per unit area is found as

CIL ¼
Q

Aj0

¼ �e0erk
j0

A2 � B2ð Þ

¼
e0erk 3kLð1� 2vÞ 1þ e2kL

	 

þ 2C0O 1� e2kL

	 

E
�
3RT

� �
ekL � 1ð Þ 3kLð1� 2vÞ 1þ ekLð Þ þ 4C0O 1� ekLð ÞE=3RT½ �:

(35)

It is evident that the integral capacitance is dependent on the
concentration of interstitial cations at the equilibrium state as
well as the elastic constant of solid electrolyte.

For kL { 1, there are (1 + e2kL) E 2, (1 � e2kL) E �2kL, and
(1 � ekL) E �kL. Thus, eqn (35) is simplified as

CIL ¼
e0er
L
; (36)

which is the same as the capacitance of a parallel capacitor.
Space charge zones are thought to allow a third (additional)

mode of charge storage, i.e., interfacial storage of Li+ ions in
LIBs, in addition to the well-known bulk storage of Li+ ions (Li
intercalation and Li reaction (Li alloying) mechanisms).17–19 In
the extreme case, a composite of two phases can store Li+ ions,
although none of the constituent phases can store Li.17 LiNbO3

is of particular interest.14 From the class of perovskites, LiNbO3

is one of the most technologically important materials in
science and technology due to its favorable combination of
pyroelectric, piezoelectric, electrocaloric, acousto-optic, giant-
photovoltaic, ferroelectric, electrooptic, photorefractive, and
nonlinear optical properties, and not least due to its energy
conversion properties combined with a simple fabrication
technique and low fabrication cost.14 In addition, the Li mobi-
lity in LiNbO3 generally plays a critical role in the successful
implementation of LiNbO3’s versatile properties in the perfor-
mance of LiNbO3-based devices.14

Superlattices combining amorphous nano-sized LiNbO3

layers with nano-sized Si spacer layers, which are the next
generation of high-capacity LIB active materials,44 have been
found to increase the ability to transport Li by up to five orders
of magnitude.45,46 Recent unpublished measurements of Li
transport show that the huge transport capability of Li+ ions
depends not only on the thickness of the Si spacer layer, but
also on the thickness of the LiNbO3 spacer layers. Multilayers
combining amorphous LiNbO3 layers with spacers other than Si

Fig. 6 Variation in the size of the space charge zone, which is determined
by the solution of r(x) = 0, with the thickness of the solid electrolyte.

Fig. 7 Variation in the nominal size of the space charge zone, which is
determined by the solution of A2ekx + B2e�kx = 10�5, with the thickness of
the solid electrolyte.
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have also been reported.47 It was calculated that the space
charge layers extend over the whole Li–Nb–O film thickness
depending on the thickness of the Li–Nb–O based film. This
result may be the origin of the strongly enhanced Li transport
measured experimentally in the LiNbO3/Si superlattice.

It should be noted that an electric field can occur if the
superlattices contain layers of piezoelectric material (e.g.,
LiNbO3). When these layers are under stress, a piezoelectric
electric field can appear over the spacer layer, which can
promote or suppress Li+ ion transport. This is important for
self-charging LIBs, which hybridize mechanical energy harvest-
ing and ion storage into one process.14 The electric field can
also affect the electronic structure of the spacer layer and
change the property in the superlattice.

Summary

We have incorporated the contributions of strain energy and
electric energy to the Gibbs free energy for a solid electrolyte
consisting of interstitial cations and associated ‘‘vacancies’’ in the
framework of linear elasticity. Using the change of the Gibbs free
energy and the equilibrium conditions in stress and electric fields,
the dependences of the concentrations of interstitial cations
and associated ‘‘vacancies’’ on the stress and electric fields were
formulated analytically. Combining Gauss’s law, elastic constitu-
tive relationships, and mechanical equilibrium equations yields a
nonlinear and coupling system for the determination of the
spatial distributions of interstitial cations, associated ‘‘vacancies’’,
and stress and electric fields. Under small stress and electric
fields, the nonlinear and coupling system can be reduced to a
linear and coupling system.

For a solid electrolyte sandwiched between two parallel
electrodes in a way similar to a parallel capacitor, analytical
solutions of the charge density, stress and electric fields have
been obtained for the linear and coupling system with friction-
less contact between the solid electrolyte and the electrodes.
The solid electrolyte is subjected to constant stress. The numer-
ical results reveal that there is a layer of charges (interstitial
cations or charged ‘‘vacancies’’) in the associated electrode
corresponding to the space charge zone surrounding the elec-
trode. The space charge zone can span over the whole solid
electrolyte if the condition of null net charge density is used.
Using a non-null (a very small) net charge density in the
determination of the size of the space charge zone, which is in
accord with the visual observation of the distribution of net
charge density, the size of the space charge zone is determined
numerically. The ratio of the nominal size of the space charge
zone to the thickness of the solid electrolyte is a decreasing
function of the thickness of the solid electrolyte. The presence of
the space charge zone allows for the storage of energy in a
capacitive form, similar to the Stern layer for liquid electrolytes,
and the integral capacitance is dependent on the concentration
of interstitial cations at the equilibrium state as well as elastic
constants of the solid electrolyte.

This work has developed a new nonlinear and coupling
system to analyze the interface behavior of heterogeneous
structures, including the interface between solid electrolyte
and electrode. It provides the basis for analyzing the effects
of the space charge zone on the energy storage of multilayer
structures to be used in metal-ion systems. The approach
presented in this work can be extended to study the multi-
field coupling problems in solid oxide fuel cells, mixed halide
quantum dots, and transducers.
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Appendix

Using the Lamé parameters, l and m, eqn (16) can be written in
an index form as follows:

sij ¼ l uk;k � CO
	 


dij þ m ui;j þ uj;i �
2CO
3

dij

� �
; (A1)

with dij as the Kronecker delta. The equilibrium eqn (17) in an
index form can be written as follows:

@sij
@xj
� r

@j
@xi
¼ 0: (A2)

Substituting eqn (A1) in eqn (A2) yields the following equation:

mui;kk þ ðlþ mÞuk;ki � ð3lþ 2mÞO
3

@C

@xi
� r

@j
@xi
¼ 0; (A3)

which can be rewritten in a vector form:

mr2uþ ðlþ mÞ=ð= � uÞ ¼ ð3lþ 2mÞO
3

=C þ r=j: (A4)

Using the correlations between (l, m) and (E, v), we can reduce
eqn (A4) to (18). Note that there are

C ¼ �2C0 sinh
1

RT
z=jþ sOð Þ

� �
and

r ¼ �2z=C0 sinh
1

RT
z=jþ sOð Þ

� �
: (A5)

Substituting eqn (A5) in eqn (A4) yields eqn (19).
The analytical formulations of A1, A2, B1 and B2 are

given below.

A1¼
2z=C0j0

RT

ð1þ vÞ 3kLð1�2vÞ 1þ e2kL
	 


þ2C0O 1� e2kL
	 


E
�
3RT

� �
3kð1� vÞ 1� ekLð Þ 3kLð1�2vÞ 1þ ekLð Þþ4C0O 1� ekLð ÞE=3RT½ �;

(A6)
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A2¼
j0 3kLð1�2vÞþ2C0O 1� ekLð ÞE

�
3RT

� �
1� ekLð Þ 3kLð1�2vÞ 1þ ekLð Þþ4C0O 1� ekLð ÞE=3RT½ �;

(A7)

B1¼�
2z=C0j0

RT

1� ekLð ÞE
3kLð1�2vÞ 1þ ekLð Þþ4C0O 1� ekLð ÞE=3RT ;

(A8)

B2¼�
j0e

kL 3kLð1�2vÞekLþ2C0O 1� ekLð ÞE
�
3RT

� �
1� ekLð Þ 3kLð1�2vÞ 1þ ekLð Þþ4C0O 1� ekLð ÞE=3RT½ �:

(A9)

Acknowledgements

The authors thank the National Science Foundation (NSF) for the
support (award number (FAIN): CBET-2438033) and the German
Science Foundation (DFG) for the support under contract HU 2170/
3-1 (project number 540944754), as part of the NSF-DFG Lead
Agency Activity in Measurements of Interfacial Systems at Scale
with in situ and Operando Analysis (NSF-DFG MISSION initiative).

References

1 N. J. de Klerk and M. Wagemaker, ACS Appl. Energy Mater.,
2018, 1, 5609–5618.

2 C. Yu, S. Ganapathy, E. R. V. Eck, H. Wang, S. Basak, Z. Li
and M. Wagemaker, Nat. Commun., 2017, 8, 1086.

3 G. Bucci, B. Talamini, A. Renuka Balakrishna, Y.-M. Chiang
and W. C. Carter, Phys. Rev. Mater., 2018, 2, 105407.

4 E. L. Molel, J. A. Lewis, S. E. Sandoval, D. L. Nelson,
M. T. McDowell and T. F. Fuller, J. Electrochem. Soc., 2024,
171, 103504.

5 S. Wang, H. Xu, W. Li, A. Dolocan and A. Manthiram, J. Am.
Chem. Soc., 2018, 140, 250–257.

6 S. Lou, Q. Liu, F. Zhang, Q. Liu, Z. Yu, T. Mu, Y. Zhao,
J. Borovilas, Y. Chen and M. Ge, Nat. Commun., 2020, 11, 5700.

7 L. Wang, R. Xie, B. Chen, X. Yu, J. Ma, C. Li, Z. Hu, X. Sun,
C. Xu and S. Dong, Nat. Commun., 2020, 11, 5889.

8 S.-H. Chen and C.-C. Chen, Phys. Chem. Chem. Phys., 2024,
26, 24689–24698.

9 K. Yamamoto, Y. Iriyama, T. Asaka, T. Hirayama, H. Fujita,
C. A. Fisher, K. Nonaka, Y. Sugita and Z. Ogumi, Angew.
Chem., Int. Ed., 2010, 49, 4414–4417.

10 K. Yamamoto, R. Yoshida, T. Sato, H. Matsumoto,
H. Kurobe, T. Hamanaka, T. Kato, Y. Iriyama and
T. Hirayama, J. Power Sources, 2014, 266, 414–421.

11 Y. Aizawa, K. Yamamoto, T. Sato, H. Murata, R. Yoshida,
C. A. Fisher, T. Kato, Y. Iriyama and T. Hirayama, Ultra-
microscopy, 2017, 178, 20–26.

12 Y. Nomura, K. Yamamoto, T. Hirayama, S. Ouchi, E. Igaki
and K. Saitoh, Angew. Chem., 2019, 131, 5346–5350.

13 H. Masuda, N. Ishida, Y. Ogata, D. Ito and D. Fujita,
Nanoscale, 2017, 9, 893–898.
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