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Systematic improvement of redox potential
calculation of Fe(III)/Fe(II) complexes using a three-
layer micro-solvation model†

Hassan Harb and Rajeev Surendran Assary *

Electrochemical transformations of metal ions in aqueous media are challenging to model accurately

due to the dynamic solvation structure surrounding ions at different charge states. Predictive modeling at

the atomistic scale is essential for understanding these solvation architectures but is often computationally

prohibitive. In this contribution, we present a simple, fast, and accurate three-layer micro-solvation model

to evaluate the redox potential of metal ions in aqueous solutions. Our model, developed and validated

for Fe3+/Fe2+ redox potentials, combines the DFT-based geometry optimizations of the octahedral Fe

complex with two layers of explicit water molecules to capture solute–solvent interactions and an implicit

solvation model to account for bulk solvent effects. This approach yields accurate predictions for Fe3+/

Fe2+ redox potentials in water, achieving errors of 0.02 V with oB97X-V, 0.01 V with oB97X-D3, 0.04 V

with oB97M-V, and 0.02 V with B3LYP-D3 functionals. We further demonstrate the generality of our

model by applying it to additional metal complexes, including the challenging Fe(CN)6
3�/4� system, where

our model successfully achieves close agreement with experimental values, with an error of 0.07 V and an

average error of 0.21 V for all five systems. In summary, the presented simple solvation model has broad

applicability and potential for enhancing computational efficiency in redox potential predictions across

various chemical and industrial processes of metal ions.

Introduction

The standard redox potential of iron (Fe) and other transition
metals is a fundamental property dictating their reactivity, providing
essential insights into the likelihood of electron transfer reactions in
corrosion studies,1–3 electrochemical applications,4–6 advanced
industrial processes,7–10 and aqueous chemistry.11–18 In energy
storage science, for example, knowledge of iron’s redox behavior
is crucial for designing efficient and durable iron-based redox flow
batteries and components.19–23 In emerging chemical process
design, the discovery of alternative routes to conventional pathways,
such as electrocatalysis (such as water-splitting24) and electroche-
mical separations (such as electrochemical lithium extraction25 and
heavy metals recovery26),7,8 necessitates accurate and efficient cal-
culations of redox potentials to allow for accelerated in silico
discovery of new environmentally friendly processes.27–29

Solvation models are essential for accurately representing
solute–solvent interactions and can be categorized as either
implicit or explicit.30–32 Implicit models, such as the polarizable

continuum model (PCM),33 conductor-like PCM (C-PCM),34,35

conductor-like screening model (COSMO),36,37 and the solvation
model based on density (SMD),38 treat the solvent as a continuous
polarizable medium surrounding the solute, significantly redu-
cing computational costs.30,31 However, these models lack the
precision needed to capture specific solute–solvent interactions,
which can strongly influence the representation of solvation
structure of chemical reactions in solution.39–41 This limitation
is particularly relevant for metal ions like Fe2+/3+, which coordinate
with water molecules to form stable octahedral complexes, and for
cases where solvents interact directly with ligands, potentially
undergoing ligand substitution reactions.42–44 Explicit solvation
models, in contrast, incorporate individual solvent molecules
into the quantum mechanical framework, enabling a more
accurate description of electrostatic and non-bonded interac-
tions, especially when the solvent participates directly in
chemical or physical processes.40,45,46 Despite their advantages,
explicit models introduce challenges such as increased compu-
tational demand, complex optimization processes due to numer-
ous local minima, and prolonged calculations.47 Hybrid
approaches that combine implicit and explicit solvation, often
referred to as micro-solvation models, also been explored to
balance accuracy and efficiency and have shown success in
modeling solvated organic molecules.48–58
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In modeling the redox potential of iron-based complexes,
several approaches have been previously considered.19,28,59,60 In
one study, Hughes et al. used a database of experimental single-
electron reduction potentials for 95 octahedral fourth-row transi-
tion metal complexes, employing a localized orbital correction
(LOC) scheme for transition metal complexes, known as the
d-block LOC (DBLOC).61 Their twelve-parameter model effectively
predicted the redox potential of Fe(III) at 0.67 V.61 In another study,
Masliy and coworkers adopted a different approach, referred to as
the cluster-continuum method, to calculate the redox potential of
Fe(III).59 They used density functional theory (DFT) to optimize a
structure that included two solvation shells: the first with six water
molecules and the second with twelve water molecules, achieving
a calculated redox potential of 0.786 V, closely matching the
experimental value of 0.77 V.59,62 However, Masliy’s model, while
adding explicit calculations, can be computationally expensive as
the size of ligands increases, adding geometric degrees of freedom
that complicate the geometry optimization process. In a third
study, Rahbani and co-workers developed a DFT-based protocol
for predicting redox potentials of first-row transition metal com-
plexes in aqueous redox-targeting flow batteries.19 Their model
combined solvation models, including the COSMO-RS model for
enhanced accuracy, with linear regression corrections, and pre-
dicted the redox potential of Fe(III) as 0.65 V.19 Both Hughes and

Rahbani’s approaches are based on data extrapolation and para-
meterized models to correct for limitations in current solvation
models, but this approach may lack generalizability across diverse
chemical systems.63,64

In this study, we developed a three-layer micro-solvation
model designed to enhance the accuracy of implicit solvation
models while simplifying the computational demands of explicit
solvation approaches (Fig. 1). This model involves spherical
additions of water molecules around the Fe2+/Fe3+ core, tailored
to capture crucial solute–solvent interactions. We clarify that our
‘‘first layer’’ consists of the strongly bound octahedral coordina-
tion sphere, [Fe(H2O)6]2+/3+, forming the Fe-aqua cation, which
we still term a solvation layer because its water molecules derive
from the solvent. To distinguish these strongly coordinated
water molecules from loosely bound ones, we use the notation
Fe2+/3+[H2O]6�(12H2O)�(18H2O), where the square brackets
denote the six waters covalently bound to Fe, and the parenth-
eses denote additional solvation shells of 12 and 18 water
molecules, respectively. In this way, our three-layer model cap-
tures three distinct types of solute–solvent interaction: direct
coordination (first layer), immediate solvation shell (second
layer), and extended solvation shell (third layer). For non-
spherical systems, such as Fe complexes with ligands, we
incorporated an additional step of semiempirical optimization

Fig. 1 Schematic representation of the three-layer micro-solvation model used for calculating Fe3+/Fe2+ redox potentials. The model consists of: (a) the
core octahedral Fe2+/3+[H2O]6 complex, optimized using DFT in the gas phase; (b) two layers of explicit water molecules positioned at radii r1 = 4.5 Å and
r2 = 6.5 Å, respectively, which account for specific solute–solvent interactions; and (c) an implicit solvation model (depicted by the blue sphere) that
approximates bulk solvent dielectric effects with a dielectric constant e = 78 for water.
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of the surrounding water molecules while keeping the DFT-
optimized complex frozen. We validated the model by testing it
against five experimental Fe-complexes, demonstrating its relia-
bility, and then applied it to the challenging Fe(CN)6

3�/4� complex
to further assess its robustness (described in Table 5). These
challenges arise from the strong-field cyanide ligands, which
induce significant crystal field splitting, the high charge polariza-
tion, and strong hydrogen bonding between CN� and water.

Computational methods

DFT calculations were performed using Gaussian 16 software.65

The geometry optimizations were carried out on Fe2+/3+[H2O]6

complexes in the gas phase using a limited list of popular DFT
functionals. Results from the best performing functionals
(B3LYP,66,67 BLYP,68–70 and PBE71,72) are discussed later in this
manuscript, namely those that exhibit errors less than 0.25 V
relative to experiment. Detailed results regarding the perfor-
mance of all functionals used, including the redox potentials
and errors in redox potential calculations, are provided in the
ESI.† The 6-31+G(2df,p) Pople-style basis set was used for all
systems.73 Frequency calculations confirmed that all optimized
structures are minima, as indicated by the absence of imagin-
ary frequencies.74 To account for dispersion corrections, Grim-
me’s D3 empirical dispersion (DFT-D3(0)) was used.75 Since the
Fe ions form an octahedral complex, six water molecules
around the Fe center are considered as the first solvation layer.
All semiempirical GFN2-xTB calculations were performed using
xTB version 6.6.1. More details on the convergence criteria,
optimization thresholds, and additional methodological clar-
ifications (including all DFT calculations, discussion on func-
tionals and dispersion corrections, B3LYP implementation, and
spin-entropy considerations) are provided in the ESI† (Table S1
and Text S2).76–90

To evaluate modern functionals and dispersion corrections
not available in Gaussian, we performed single-point energy
calculations in ORCA 6.0 using geometries optimized at the
B3LYP/6-31+G(2df,p) level. This ensured consistent structural
input while isolating electronic energy differences. The tested
combinations include B3LYP-D3BJ, B3LYP-D4, oB97X-D3,
oB97X-D3BJ, oB97X-D4, oB97X-V, oB97M-D3BJ, oB97M-D4, and
oB97M-V.67,91–100 In these calculations, D3BJ75,93 and D496,97 dis-
persion corrections were applied. For functionals incorporating
the VV10101 kernel (oB97X-V84 and oB97M-V82), the nonlocal
correlation component was included self-consistently as part of
the functional. Single-point energies were calculated with the
CPCM implicit solvation model (water as the solvent) and the
6-31+G(2df,2p) basis set.

To model the second solvation layer, additional solvation
shells were added to the gas-phase optimized octahedral com-
plexes using an in-house code (more details in Text S1 in
ESI†).102 The radius r for each shell was approximated at
4.5 Å for the first shell and 6.5 Å for the second shell. The
choice of 4.5 Å as the radius for the first shell was guided by the
Fe-outer water distance in Masliy et al.,59 which is in the range

of 4.0–4.3 Å. Setting it to 4.5 Å provided an upper limit to ensure
that the interaction between the inner and outer water molecules
would not become covalent. We used the 12 water molecules
consistent with Masliy et al.59 and estimated this count by using
3� the rounded-down value of r: 3� (round down of 4.5 to 4) = 12.

To further simulate bulk solvation, we added a second shell
at a radius of 6.5 Å, providing an additional 2 Å distance from
the first shell to account for extended solvation effects. Using
the same estimation method, we rounded down 6.5 to 6, and
applied 3 � 6 = 18, resulting in 18 water molecules in the
second shell. Altogether, this approach yielded a model with 36
water molecules surrounding the Fe complex. To ensure uni-
form distribution, spherical coordinates were used to position
the oxygen atoms equidistantly on the surface of each solvation
sphere. These solvation layers were generated programmati-
cally using Hydration_shell_radius.py for shell placement and
run_multiple_xtb.py for xTB-based optimization. Both scripts
are available at https://github.com/HassanHarb92/solvation_
shells/tree/main/paper_materials/web_app/xyz_files.

The third solvation layer consists of accounting for implicit
solvation effects. This was done by performing single point
energy calculations using the conductor-like polarizable con-
tinuum model (C-PCM)36 on the Fe2+/3+[H2O]6�(12H2O)�(18H2O)
clusters. These calculations provided the electronic energies
needed for redox potential estimation.

For Fe2+/3+ complexes with multiple ligands, where the solute–
solvent interaction is not uniformly spherical, we employ a slightly
modified approach. First, we optimize the Fe complex using
density functional theory (DFT) at the B3LYP/6-31+G(2df,p) level
in the gas phase. Following this, we add a layer of explicit water
molecules surrounding the complex in a manner similar to the
approach used for solvated Fe ions. However, in this case, we re-
optimize the water molecules using the tight binding semiempi-
rical GFN2-xTB method,103 freezing the coordinates of the Fe
complex itself to maintain its optimized structure. This procedure
is repeated with second and third solvation layers, each time re-
optimizing only the added water molecules. This approach allows
us to account for solute–solvent interactions while preserving the
geometry of the Fe complex. A summary of the steps, actions
denoted as action, and description involved in this approach is
given in Table 1 and a pictorial overview is given in Scheme 1.

The difference in free energies (DG) is estimated as the
difference between the single point energy (SPE) calculations
of the Fe(III) and Fe(II) clusters:

DG B SPEIII � SPEII

where SPEIII and SPEII are the single point calculations of Fe(III)
and Fe(II), respectively.

The reduction potential, Ered is then calculated using the
following equation:

EredðVÞ ¼ �
DG
nF
� 4:3

where n = 1 (the number of electrons) and F is the Faraday
constant. The factor �4.3 is used to convert the reduction
potential to the standard hydrogen electrode (SHE).104 This
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value of 4.3 V, known as the Trasatti potential, is widely
accepted and has an uncertainty of �0.02 V, as discussed in
various ref. 59 and 104–106.

Results and discussion
Benchmarking DFT functionals

Table 2 provides a comparison of calculated redox potentials of
Fe3+ using selected DFT functionals (B3LYP, BLYP, and PBE)
with various solvation environments, alongside the experi-
mental value of 0.77 V62 and theoretical values from the

literature.19,59,61 The results show that calculated redox poten-
tials improve as additional water layers are introduced to the
solvation model. For example, using B3LYP with only the
octahedral Fe2+/3+[H2O]6 complex yields a redox potential of
2.79 V, which deviates significantly from the experimental
value. With the inclusion of additional water shells, the calcu-
lated values approach experimental results, reaching 0.86 V
with 18 waters and 0.75 V with 36 water molecules, aligning
closely with the experimental reference (0.77 V).62 Similar
trends are observed with the other functionals, though the
absolute values vary. The micro-solvation model with 36 waters
(Table 2, E = 0.75 V) achieves similar agreement with

Table 1 Description of solvation architectures used in redox potential calculations for iron complexes. Each step progressively incorporates additional
explicit solvation layers and optimizations to better model solute–solvent interactions. In this context, spheres refer to layers of explicit H2O molecules
arranged around the Fe complex to mimic solvation effects. Acronyms: DFT: density functional theory, SPE: single-point energy calculation, CPCM:
conductor-like polarizable continuum model (implicit solvation), H2O: explicit water molecules, Fe: iron complex, xTB: semiempirical tight-binding
method used for optimizing solvent molecules

Step Action Description

1 Gas-phase OPT +
CPCM

Gas-phase DFT optimization followed by an SPE calculation using CPCM.

2 1-Sphere SPE One sphere of H2O molecules added around the DFT-optimized geometry, followed by an SPE with CPCM.
3 1-Sphere OPT Based on step 2, with the Fe complex frozen. H2O molecules are optimized using xTB followed by an SPE with CPCM.
4 2-Sphere SPE A second sphere of H2O molecules is added, followed by an SPE with CPCM.
5 2-Sphere OPT Based on step 4, with the Fe complex frozen. H2O molecules are optimized using xTB, followed by an SPE with CPCM.
6 3-Sphere SPE A third sphere of H2O molecules is added, followed by an SPE with CPCM.
7 3-Sphere OPT Based on step 6, with the Fe complex frozen. H2O molecules are optimized using xTB, followed by an SPE with CPCM.

Scheme 1 Schematic overview of the three-layer micro-solvation model. Each step corresponds to the solvation procedure described in Table 1, where
successive layers of explicit water molecules are added around the Fe complex. Optimization (OPT) and single-point energy (SPE) calculations are
performed at each stage (1,2,3) to refine solute–solvent interactions.
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experimental values as other models that require explicit DFT-
level solvation such as the approach by Masliy et al., or rely on
parameterized methods, such as the d-block localized orbital
correction model by Hughes et al. or COSMO-RS with regres-
sion correction by Rahbani et al. This demonstrates the effec-
tiveness of our approach in balancing computational efficiency
and accuracy in redox potential predictions.

Additionally, calculations performed with only implicit sol-
vent effects (i.e., Fe ions without added water layers) show very
high error values ranging from 4.15 V (HSE06) to 4.72 V (BLYP)
(Table 2, entries 1–4: 0H2O, implicit). The significant reduction
in error observed with the inclusion of explicit water layers
highlights the importance of accounting for solvation effects in
accurately modeling redox potentials. Specifically, the inclusion
of three solvation layers generally yields the most accurate

results, as evidenced by the lower absolute errors across all
tested functionals. This outcome emphasizes that the explicit
treatment of solvent molecules is crucial for achieving experi-
mentally consistent redox potential predictions in transition
metal complexes.

Fig. 2 shows the absolute error associated with the calcula-
tion of the reduction potential of Fe(III) across the four density
functionals and different solvation models. The column labeled
‘‘6H2O’’ refers to the Fe2+/3+[H2O]6 complex, while ‘‘18H2O’’ and
‘‘36H2O’’ correspond to Fe2+/3+[H2O]6�(12H2O) and Fe2+/

3+[H2O]6�(12H2O)�(18H2O), respectively. The histogram demon-
strates that redox potential predictions improve significantly
with the addition of the second solvation layer and further
improve with the third layer. The absolute error decreases from
a range of 1.53–2.02 V with only 6H2O to 0.09–0.62 V with

Table 2 Calculated redox potentials (E) of Fe3+/Fe2+ (in V, vs. SHE) using selected DFT functionals (B3LYP, BLYP, PBE) and the 6-31+G(2df,p) basis set
with various solvation models (implicit and explicit water layers). Experimental values and theoretical values from the literature are included for
comparison along with brief descriptions of methods from previous studies

Entry DFT functionals

E (V/SHE) water models

Experiment (V/SHE)0H2O implicit 6H2O 18H2O 36H2O

1 B3LYP 5.28 2.79 0.86 0.75 0.77 V62

2 BLYP 5.49 2.33 1.39 0.74
3 PBE 5.38 2.30 1.26 0.64

Theory values from literature

Method E (V) Method description

5 Rahbani19 0.65 COSMO-RS with regression correction
6 Masliy59 0.79 Cluster-continuum with solvation shells
7 Hughes61 0.67 d-Block LOC correction model

Fig. 2 Absolute errors (V) in redox potential calculations of Fe(III) complexes using B3LYP, BLYP, and PBE functionals compared with experimental values
(0.77 V).62 The orange bars show values for Fe2+/3+[H2O]6 structures optimized in gas phase with corrected single point calculations in implicit water
continuum. Blue (18H20) and green bars (36H2O) show results from our model with the inclusion of additional 12 waters (Fe2+/3+[H2O]6�(12H2O)), and 30
water molecules (Fe2+/3+[H2O]6�(12H2O)�(18H2O)), respectively.
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18H2O and further to 0.02–0.13 V with 36H2O. Among the
functionals, B3LYP exhibits the lowest error (0.02 V) when
using three solvation layers.

We further evaluated the performance of modern functionals
by benchmarking the oB97X and oB97M families paired with
advanced dispersion corrections, D3BJ, D4, and nonlocal ‘‘–V’’,
within our three-layer solvation framework (Fig. 1). As shown in
Fig. 3, the computed redox potential errors reduced as solvation
increased: from 42.0 V with 6 waters, to o0.3 V with 36 waters.
Among all tested combinations, oB97M-V and oB97X-V yielded
the lowest final errors (0.01–0.02 V), with other variants such as
oB97M-D3BJ and oB97X-D4 also achieving errors below 0.13 V.
These results highlight the effectiveness of range-separated
hybrid functionals with robust dispersion corrections for captur-
ing redox energetics in Fe(II)/Fe(III) complexes. By comparison,
B3LYP-D3BJ and B3LYP-D4 improved modestly with added
solvent shells but consistently exhibited higher errors (B0.29–
0.31 V), indicating limitations in B3LYP’s exchange–correlation
treatment for high-spin d-electron systems. Results from the two
sets of benchmarking demonstrate two key insights: (1) incor-
porating multiple explicit solvation layers is essential to reduce
redox errors; and (2) modern dispersion-corrected functionals,
particularly the oB97X/M family, perform exceptionally well
within our solvation framework. These approaches offer a pro-
mising balance between computational efficiency and predictive
reliability for transition metal redox modeling.

The comparison of Fe–O bond lengths calculated using DFT
models with experimental values and those reported by Masliy
et al. demonstrates consistency across different functionals
(Table 3). For Fe2+, the average bond lengths from our models
deviate by no more than 0.03 Å, with a standard deviation of
0.02 Å, from the experimental value of 2.12 Å. For Fe3+, the
deviation remains within 0.07 Å, with a standard deviation of
0.00 Å, from the experimental value of 2.00 Å. The results from

Masliy et al. also show close agreement,59 with a slightly larger
deviation, overestimating the Fe2+–O bond length by 0.07 Å and
the Fe3+–O bond length by 0.06 Å.

Although Fe[H2O]6
2+ (a high-spin d6 complex) can, in principle,

undergo a small Jahn–Teller distortion, experimental results
report nearly octahedral geometries with minimal splitting
between axial and equatorial bond lengths.107 Fe-aqua complexes
are known to be octahedral, with experimental Fe–O bond lengths
of 2.12 Å for Fe2+ and average bond length of 2.00 Å for Fe3+.
To identify potential structural distortions in the DFT calcula-
tions, we evaluated the standard deviation (s) of the six Fe–O
bond lengths. In a perfect octahedral arrangement, all bond
lengths should be equal, resulting in a s of zero. Our models
consistently show lower s values compared to those reported by
Masliy et al., indicating fewer distortions in the calculated
structures. For instance, with the B3LYP functional, s
for Fe[H2O]6

3+ is 0.02 Å, reflecting a minimal Jahn–Teller
distortion, whereas s for Fe[H2O]6

2+ is 0.00 Å, corresponding
to a perfectly octahedral geometry. This suggests that the DFT
methods we used can achieve accurate structures even without
additional solvation shells. This suggests that the DFT-
optimized geometries of the iron complexes provide a reliable
starting point by accurately capturing the coordination environ-
ment. The addition of explicit water molecules then refines the
local solvation effects, while implicit solvation further accounts
for bulk solvent interactions, ultimately enabling a computa-
tionally efficient yet comprehensive description of the solvated
structures.

The higher s values reported by Masliy et al. may indicate
artificial distortions in their optimized structures, potentially
due to the absence of a third solvation shell. The lack of this
additional solvation shell could lead to increased interactions
between water molecules in the first and second shells, affect-
ing the Fe–O bond lengths, while on the other hand, adding a

Fig. 3 Absolute errors in redox potential calculations of Fe(III) using different combinations of exchange–correlation functionals and dispersion methods
as implemented in Orca 6.0. We note here that these are single-point calculations performed starting from Fe2+/3+[H2O]6 optimized geometry in
Gaussian 16 (B3LYP/6-31+G(2df,p)).
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third solvation shell will increase the geometric degrees of
freedom which further complicates the optimization process.

Redox potentials of Fe-complexes

As shown in Table 4, the redox potentials for Fe–L3 complexes
reveal notable sensitivity to the solvation model applied. In gas-
phase optimized calculations followed by CPCM implicit solva-
tion, the computed redox potentials are not accurate, showing
significant deviation (error 4 0.85 V) from experimental values,
particularly for ligands such as maltolate (error = 0.85 V) and
catecholate (error = 1.98 V). These deviations underscore the
limitations of relying solely on implicit solvation models, as
they fail to capture the complex solute–solvent interactions.

Adding explicit water molecules in successive solvation
layers improves the calculated redox potentials, bringing them
closer to experimental values. For example, the redox potential
for catecholate shows a substantial shift from �2.80 V in the
gas-phase CPCM calculation to �0.99 V after incorporating
three optimized solvation layers, aligning closely with the
experimental value of �0.83 V. Notably, some ligands, such
as kojate and salicylate, exhibit smaller shifts with additional
solvation layers, suggesting that a single- or two-layer solvation
model may suffice for these systems. However, the overall trend
across most ligands indicates that optimized three-layer
models are more reliable for capturing explicit complex solva-
tion environments in multivalent ions. This trend highlights
the importance of including explicit solvation layers, as it
allows for accurate simulation of electrochemical properties
by accounting for critical solute–solvent interactions.

In all cases, the 1-sphere SPE model (step 2, Table 1) displays
higher errors than the 1-sphere OPT (step 3, Table 1) model,
indicating that the interactions between water molecules and
the complexes are not purely electrostatic. These interactions
extend to noncovalent interactions, particularly hydrogen
bonding between water and hydrogen donor/acceptor sites on
the ligands and were captured by performing semiempirical

geometry optimizations of water molecules around a frozen
complex. This is evident from the fact that all ligands (see
Fig. 4) contain oxygen and/or nitrogen atoms, which can act as
hydrogen bond acceptors or donors, thereby enhancing the
solvation environment through hydrogen bonding.

We note here that, while the initial placement of water
molecules follows a spherical distribution, these solvent mole-
cules undergo a semiempirical optimization step while keeping
the core complex frozen. This refinement process ensures that the
water molecules are not arbitrarily positioned but instead adopt
configurations that better capture solute–solvent interactions. By
optimizing only the solvent positions, our approach reduces the
randomness in solvation shell placement while maintaining
computational efficiency. This step is particularly important for
achieving a balance between accurate representation of hydrogen
bonding interactions and minimizing computational overhead.

Resolving the challenging redox potential of Fe(CN)6
3�/4�

The redox potential of the Fe(CN)6
3�/4� complex has posed sig-

nificant challenges in computational chemistry, leading to discre-
pancies between experimental and calculated values reported by
various research groups.19,61,108–110 Cyanide, recognized as a strong
field ligand, generates a high crystal field splitting energy, favoring
a low-spin configuration where the t2g orbitals are filled before the
eg orbitals.19 This stabilization, coupled with the complex’s high
negative charge, contributes to the difficulties in accurate model-
ing. Liang et al. noted that while incorporating diffuse functions
could reduce computational errors, larger basis sets did not yield
significant improvements for the Fe(CN)6 complex compared to
other systems.19,108 Liang et al. also highlighted the limitations of
B3LYP in capturing the substantial crystal field stabilization energy
associated with cyanide ligands, suggesting that p-back bonding
between iron and the cyanide ligand might further complicate the
electron configuration of the complex.108 The experimental redox
potential is reported at +0.37 V,110 while computational results
have varied widely, with Rahbani et al. calculating �0.56 V,19

Liang et al. �0.34 V,108 Hughes et al. �0.33 V,61 and Baik et al.
�0.172 V,109 illustrating the ongoing challenges in accurately
modeling this system.

Table 5 shows previously reported redox potentials of for
Fe(CN)6

3�/4� alongside computed values using various model
introduced in this study (Table 2 and Scheme 1). This demon-
strates that the model introduced in this work (entry 11 of
Table 5) is able to predict the redox potential of Fe(CN)6

3�/4�

(0.30 V) in a good agreement with the experimental value (0.37 V).
This high level of accuracy highlights the importance of including

Table 3 Comparison of calculated bond lengths. Averages and standard
deviations of the six Fe–OH2 are reported as %x and s, respectively. Experi-
mental values are from ref. 107. All bond lengths are given in angstroms

Expt.

Our model Masliy et al.60

B3LYP BLYP PBE PBE/TZVP

%x s %x s %x s %x s

Fe2+ 2.12 2.14 0.02 2.15 0.02 2.14 0.02 2.19 0.08
Fe3+ 2.00 2.04 0.00 2.07 0.00 2.06 0.00 2.06 0.05

Table 4 Calculated redox potentials (V/SHE) of Fe–L3 complexes (see Fig. 4 for the structures of ligand, L). Experimental data (V) were retrieved from
literature.19 The bold values in the table reflect the values closest to the experimental values and are used to calculate errors relative to experimental
redox potentials. g.s.: gas phase, L: ligands, S: sphere

Entry L g.s. OPT + CPCM 1-S SPE 1-S OPT 2-S SPE 2-S OPT 3-S SPE 3-S OPT Expt. Error

1 Maltolate �1.08 �0.71 �0.57 �0.57 �0.57 �0.57 �0.57 �0.23 0.34
2 Deferiprone �1.59 �0.86 �0.76 �0.76 �0.76 �0.76 �0.76 �0.58 0.18
3 Kojate �1.02 �0.53 �0.52 �0.52 �0.27 �0.27 �0.28 �0.13 0.14
4 Catecholate �2.80 �2.80 �1.39 �1.39 �1.23 �1.24 �0.99 �0.83 0.16
5 Salicylate �1.98 �1.32 �1.09 �1.09 �0.84 �0.84 �0.84 �0.66 0.18
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direct water–ligand interactions to properly model the redox
potential of iron complexes.

By optimizing the metal–solvent complexes in explicit solvent
molecules, our model ensures the inclusion of hydrogen bonding
at the terminal nitrogen atoms significantly enhances the accuracy
of redox potential predictions. These hydrogen bonds cause the
polarization of electron density away from the iron center, causing
nitrogen atoms to share a portion of their cyanide electron density
with the hydrogen atoms of water, slightly destabilizing the
Fe(CN)6 complex with the effect being more pronounced for
Fe(CN)6

4� than Fe(CN)6
3�, leading to an increased redox potential.

This example illustrates the impact of hydrogen bonding on redox
potentials in transition metal complexes, emphasizing the need to
carefully consider specific solute–solvent interactions. Moving
forward, such interactions, especially hydrogen bonding, should
be routinely considered in modeling, as they are easier to handle
and simulate than other complex interactions, like oxo-complex
formation and metal–ligand interactions.

Conclusion

We present computationally efficient and accurate methods to
calculate the redox potential of Fe3+, consistent with

experiments, achieving minimal errors with density func-
tionals; 0.01 V with oB97X-D3, 0.02 V with both oB97X-V and
B3LYP/D3, and 0.04 V with oB97M-V. Based on the simulations,
the best performing computational model is a three-solvent
layer micro-solvation architecture. In this model, we perform
DFT optimization of an octahedral Fe2+/3+[H2O]6 complex in the
gas phase, followed by the addition of two layers of explicit
water molecules (12 in layer 1 and 18 in layer 2) to capture
critical electronic effects. An implicit solvation model is also
incorporated, and single-point calculations are carried out to
determine the reduction potentials.

We validated this model on five different Fe–L3 ligand systems,
demonstrating that the inclusion of explicit solvent layers not only
reduces error but also provides insights into the specific interac-
tions between water molecules and the ligand. These explicit
solute–solvent interactions polarize the electron density of the
ligand, significantly influencing the redox potential. Additionally,
our model successfully resolves the long-standing issue of accu-
rately modeling the Fe(CN)6

3�/4� redox potential, achieving close
agreement with experimental values—unlike previous approaches
that exhibited substantial deviation.

Our findings demonstrate that it is possible to capture
explicit solvent–solute interactions effectively with a cost-
efficient approach, using semiempirical methods to optimize
outer water layers while retaining the DFT-optimized geometry of
the inner solvation shell. This approach enables the calculation
of redox potentials across a wide range of Fe–ligand complexes
with computational efficiency, making it suitable for exploring
large chemical spaces of organometallic complexes.

This model reveals three critical ways in which the solvent
can interact with the complex: (a) direct coordination, as in the
formation of Fe–[H2O]6, (b) hydrogen bonding, particularly with
electronegative atoms on ligands, and (c) electrostatic interac-
tions, which are captured by combining explicit water mole-
cules with implicit solvation models. This framework opens
avenues for extending the model to a broader range of chemical
environments and further enhancing the accuracy and effi-
ciency of redox potential predictions in complex systems.

Data availability

The density functional theory (DFT) results from selected
functionals, Cartesian coordinates of all structures, and all
scripts used in this study are available on the GitHub repository:

Fig. 4 Schematic structures of the five ligands (L) considered in this study. Red color on atoms (predominantly on oxygen atoms) indicates the sites of
coordination with the metal ion.

Table 5 Comparison of calculated redox potentials (Ered) in V, vs. SHE and
absolute errors relative to the experimental value (0.37 V) for Fe(CN)6

3�/4�.
Previous studies report significant discrepancies in computing redox
potentials, with errors between 0.542 V and 0.93 V.19,61,108,109 Our model,
using up to three explicit solvation layers, reduces this error progressively,
achieving the closest match (0.30 V, error of 0.07 V) with the three spheres
– optimized CPCM approach

Entry Method Ered (V) Error (V)

Previous work
1 Rahbani19 �0.56 0.93
2 Liang108 �0.34 0.71
3 Hughes61 �0.33 0.7
4 Baik109 �0.172 0.542

This work
5 Gas-phase OPT + CPCM �0.60 0.97
6 1-Sphere SPE �1.19 1.56
7 1-Sphere OPT 0.21 0.16
8 2-Sphere SPE 0.21 0.16
9 2-Sphere OPT 0.28 0.09

10 3-Sphere SPE 0.28 0.09
11 3-Sphere OPT 0.30 0.07

Experiment110 0.37
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https://github.com/HassanHarb92/solvation_shells/paper_mater
ials. A web application featuring interactive 3D structures from
this work, built using the POPPY platform,111,112 is available at
https://solvationshells-fe.streamlit.app/.
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