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From flat to stepped: active learning frameworks
for investigating local structure at copper–water
interfaces

Johannes Schörghuber, Nina Bučková, Esther Heid and
Georg K. H. Madsen *

Understanding processes at solid–liquid interfaces at the atomic level is important for applications such

as electrocatalysis. Here we explore the effects of different step densities on the structure of interfacial

water at the copper–water interface. Utilizing spatially resolved uncertainties, we develop an active

learning framework and train a machine-learning force field (MLFF) based on dispersion-corrected

density functional theory data. Using molecular dynamics simulations, we investigate structural

properties of water molecules in the contact layer, including density profiles, angular distributions, and

2D pair correlation functions. In accordance with previous studies, we observe the formation of two

sublayers within the contact layer at the Cu(111) surface, whereas the structure on surfaces with a high

step density is dominated by the undercoordinated ridge atoms. By systematically decreasing the step

density, we identify the cross-over to when the behavior observed at the flat surface can be locally

recovered. Using dimensionality reduction, we identify four distinct types of Cu environments at the

interfaces, providing insights into analyzing less idealized surfaces with MLFFs.

1 Introduction

Metal–water interfaces are of large importance in technological
applications, for example in devices used in electrochemical
energy conversion and storage.1,2 In heterogeneous catalysis
not only the composition of the material, but also the surface
morphology has a profound effect on performance and effi-
ciency. In the case of electrochemical CO2 reduction on Cu, just
changing the orientation of a single crystal already has a large
impact on the selectivity toward C2- or C1-products.3–5 Further,
the structure of both the surface and in conjunction also
interfacial water has been shown to be an integral descriptor
for other catalytic processes on Cu surfaces, such as the
hydrogen evolution reaction and CO reduction, using in situ
measurements at the solid–liquid interface.6,7

The applicability of classical force fields for explicit simulations
of metal–water interfaces in molecular dynamics (MD) simulations
is limited by the fundamentally different properties of the solid and
liquid phases. On the other hand, the computational cost of ab
initio calculations meant that early work was focused on clusters
and ultra-thin layers of frozen water.1,8,9 As ab initio molecular
dynamics (AIMD) and machine-learned force fields (MLFFs) have
become available they have enabled progressively more realistic

simulations of the bulk water–metal interface. These studies have
established the presence of a double-peak structure in the inter-
facial water density for the Cu(111) surface,10,11 similar to observa-
tions for Pt(111) surface.11–16 Additionally, the distinct behavior of
interfacial water on stepped surfaces has also been demonstrated
for Cu–H2O and Pt–H2O interfaces.11,14,17 However, while global
descriptors such as Miller indices and edge densities can provide
insights into the bonding properties of corrugated surfaces, they
can obscure the local atomistic details. Bridging the gap between
morphological understanding and detailed atomic-level analysis
remains a key challenge.18 MD simulations have historically been
limited when it comes to achieving the time scales necessary to
generate density profiles and analysis with local resolution. The
recent rapid development of MLFFs has made it possible to obtain
reliable statics for local resolution through higher-dimensional
pair-correlation functions and free energy calculations.16 This can
open up possibilities for bridging the gap between morphological
insights and local atomistic understanding.

The quality of MLFF predictions is highly dependent on the
data it was trained on, as the sampled structures determine the
region of configuration space for which accurate predictions
can be obtained. As even small representative systems for solid–
liquid interfaces contain hundreds of atoms and the ab initio
reference calculations are consequently costly, it is important
to sample new configurations efficiently and only perform as
many calculations as necessary. This makes it a prime task for
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active learning (AL).19 In AL procedures, new configurations are
added to the training database based on the inaccuracy of the
model predictions. The model is then retrained in order to
improve model predictions in the region of the configuration
space in which the newly selected structures lie. This procedure is
iterated until a desired convergence is reached. When studying
interfaces it is clearly desirable that the AL procedure can be built
on preexisting data for the individual constituents,20 and then use
an AL strategy to sample from model-based interface simulations.

In the present study, we develop a MLFF to systematically
investigate the flat Cu(111) and stepped Cu(n + 1, n, n)–H2O
interfaces (1 r n r 3) and elucidate the effect of different step
densities on the structure of interfacial water. Beginning with
reference datasets for bulk water and Cu, we employ an AL
procedure to efficiently construct a dataset and a transferable
MLFF for the Cu–H2O interfaces. We show how the use of
spatially resolved uncertainties21 allows to finely resolve the
quality of model predictions in the different regions of inter-
face structures. MD simulations are then conducted to obtain
atomically resolved structural properties of the H2O network in
the contact layer at the various Cu–H2O interfaces. A data-
driven classification of the local geometries reveals four distinct
types of Cu atom environments at the interface. Notably, the
Cu(433)–H2O interface can be identified as the cross-over where
the local structure characteristics of the flat Cu(111) surface can
be recovered on a stepped surface.

2 Computational details

DFT calculations for the initial Cu database were carried out
using VASP version 6.2.0,22 with the RPBE functional being
used to model the XC contributions to the total energy.23 The
default PAW setups provided with VASP with a core radius of
2.3 Å for Cu were used. The plane wave energy cutoff was set to
400 eV and the second order Methfessel–Paxton smearing
scheme was employed with a smearing width of 0.05 eV. The
Brillouin zone was sampled with k-point densities corres-
ponding to a 11 � 11 � 11 G-centered mesh for the one-atom
primitive unit cell of fcc-Cu. For surface calculations, only a
single k-point was considered in the surface normal direction.

Calculations for water were run using VASP version 6.4.2.
Due to the short bond lengths in water the hard PAW setups
provided with VASP were used, the core radii being 0.8 Å for
hydrogen and 1.1 Å for oxygen. The energy cutoff was set to 850 eV,
the width for Gaussian smearing to 0.05 Å and only the G-point of
the Brillouin zone was sampled. To account for van-der-Waals
interactions, D3 corrections24 were computed using the zero
damping scheme following previously reported results.25,26

Energies and forces for Cu–H2O interface structures were
calculated using VASP version 6.4.2 with the calculation para-
meters for bulk water as described above, VASP default Cu PAW
setups and the k-point grid being taken corresponding to the
k-point grid for Cu. Only a single k-point was considered in the
surface normal direction. To approximate the screening of D3
interactions by the metal, only the water molecules and the top

Cu layers were included in the evaluation of the D3 contribu-
tions to the total energy.27–29

MD simulations were carried out using MACE version 0.3.530

models to calculate energies and forces and LAMMPS version
2023.3.28 as the simulation engine.31 MACE models were trained
using the package as provided with hyperparameters set as
described in the following. Models were constructed using a
cutoff radius of 5 Å, two layers with rank zero even parity and
rank one odd parity hidden features of size 64 each, and a
maximum radial order of lmax = 2. Radial features were con-
structed using eight Bessel functions and a polynomial cutoff of
order p = 5. Messages were generated using a MLP with three
layers of 64 nodes each and SiLU as the non-linear transfer
function. The readouts were performed using a single-layer MLP
with 16 nodes. Trainings were run using the AMSGrad
optimizer32 with hyperparameters and learning rates as given
by the defaults provided with the MACE package. First, model
parameters were optimized with energy and force weights of 1.0
and 100.0 respectively for a maximum of 1200 epochs with an
early stopping patience of 50 epochs. Subsequently, energy and
force weights were set to 1000.0 and 100.0 respectively and
another maximum of 400 epochs were performed.

The timestep for MD simulations was set to 0.5 fs for all runs,
the temperature set to 300 K using a Nosé–Hoover thermostat for
simulations in the NVT and NPT ensembles and the pressure set
to 1 bar using a Nosé–Hoover barostat for simulations in the
NPT ensemble. The characteristic time scales were set to 50 fs for
the thermostat and 500 fs for the barostat. The barostat was only
coupled to the surface normal direction to not artificially strain
the slabs in the directions parallel to the surface.

MD simulations for structural investigations were run using a
MACE model trained on the dataset obtained after the AL cycles
for Cu–H2O interfaces. Interfaces were set up with an initial target
water film diameter of 40 Å at a density of 1.0 g cm�3. After
performing an energy minimization of the initial system and a
10 ps equilibration run in the NVT ensemble, a 200 ps simulation
in the NPT ensemble was run. The equilibrium density was then
determined from the last 100 ps of the NPT trajectory the same
way as was done during the AL iterations. After setting up a new
initial system at the equilibrium density and a subsequent energy
minimization, 4 ns were simulated in the NVT ensemble. The
Cu(111)–H2O interface was modelled using a 12� 12 Cu(111) slab
and 1104 water molecules. For the Cu(211)–H2O interface, a
12 � 4 Cu(211) slab and 1088 water molecules were used. The
Cu(322)–H2O interface was represented using a 12 � 3 Cu(322)
slab and 1251 water molecules. Finally, a 12 � 2 Cu(433) slab and
1185 water molecules were used to model the Cu(433)–H2O
interface. The step densities are 1.57 nm�1, 0.93 nm�1, and
0.66 nm�1 for the Cu(211), Cu(322) and Cu(433) slabs respectively.

3 Reference databases

Active learning runs for Cu–H2O interfaces were initiated based
on the combination of three reference databases: one for bulk
Cu and Cu slabs in vacuum, one for bulk water and one
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containing a small number of naively set up Cu(111)–H2O
interfaces. The generation process for each of these databases
is described in this section.

To start the generation of bulk Cu data, the lattice parameter
was determined by relaxing the primitive unit cell of fcc Cu. This
yielded a value of 3.67 Å, which lies above the experimental
lattice parameter of 3.61 Å.33 An overestimation compared to the
experimental lattice parameter of Cu using the RPBE functional
has been reported before.34 Subsequently, rattled structures of a
2 � 2 � 2 bulk supercell were generated following the procedure
reported in ref. 35 and assuming a Debye temperature of 343 K
for Cu. In total, 400 structures were generated, 200 for each
temperature of 500 K and 1000 K. To provide information about
structures with a non-optimized lattice parameter, bulk struc-
tures based on 4 � 4 � 4 supercells with scaled lattice para-
meters were added to the database: Five structures rattled at a
temperature of 500 K were added for each scaling in the range of
{�5.0, �2.5, 2.5, 5.0} % of the optimal lattice parameter.

The addition of Cu surface slabs to the database was
performed in steps based on the maximum Miller index
(MMI) determining the surface orientations. In the first step,
only (111), (110) and (100) slabs were included. Bulk-terminated
slabs for all symmetrically distinct combinations of orienta-
tions were generated based on the relaxed lattice parameter of
bulk Cu using the slab generation algorithm implemented in
pymatgen.36,37 The number of layers were chosen such that a
minimum slab thickness of 10 Å was achieved and a vacuum of
10 Å was added in surface normal direction. Slabs were relaxed
by performing a geometry optimization starting from the bulk-
terminated positions while keeping the unit cell fixed. Both the
bulk-terminated slabs and slabs with relaxed atomic positions
were added to the database. Additionally, as a starting point for
active learning, slabs with MMI one perturbed by random
displacements drawn from a normal distributions with stan-
dard deviations 0.03 Å, 0.05 Å and 0.10 Å respectively were
added. Two sets of ten structures per surface orientation and
standard deviation were generated. In the first set, only the
outer layers were perturbed. In the second set, displacements
were added to all atoms. In total this results in 180 structures
obtained by adding random displacements. Further structures
were added by adopting the active learning approach based on
adversarial loss maximizations.35,38 Ensembles of ten
NeuralIL39 models with a three layer ResNet40 core structure
with widths [128, 64, 32], a cutoff radius of 4.0 Å, nmax = 5 and a
two dimensional embedding for the atom types were used at
each iteration. In a first batch, adversarial loss maximizations
with initial displacements drawn from a Gaussian with zero
mean and standard distribution of 0.1 Å were performed for 50
replicas each of 1 � 1 and 2 � 2 slabs with the orientations
mentioned above. In a second iteration, adversarial loss max-
imizations were performed with initial displacements drawn
with a standard distribution of 0.2 Å. DFT calculations were run
for all structures obtained from the optimization procedures
and the configurations added to the database. The same active
learning procedure described for MMI one surfaces was then
repeated for surfaces with orientations with a MMI of two, these

being (210), (211) and (221). For surfaces with a MMI of three,
adversarial loss maximizations were only performed with initial
displacements drawn with a standard distribution of 0.1 Å.

After discarding non-converged calculations, a database con-
sisting of a total of 2276 structures covering bulk Cu and surfaces
with symmetrically distinct orientations up to a MMI of three was
obtained. As will be discussed below, AL procedures for interfaces
were run using MACE, which often requires significantly less
training data than NeuralIL. In order to efficiently train neural-
network models it is desirable to only use as many data points as
necessary to accurately model the region of interest of the
potential energy hypersurface. To reduce the total amount of data
points in the database, structures were randomly sampled from
each of the individual batches to obtain a smaller dataset: 25
structures each from the randomly displaced 2 � 2 � 2 bulk
supercells (total 50), rattled 4 � 4 � 4 bulk supercells at non-
equilibrium volumes (total 20), bulk-terminated and relaxed slab
structures for all symmetrically distinct surface orientations
(total 26), MMI one slabs with random perturbations with stan-
dard deviation 0.05 Å (total 30), 15 structures for each orientations
from adversarial loss optimizations for surfaces with MMI one
and MMI two and 10 structures from adversarial loss optimiza-
tions for surfaces with MMI three (total 160). After subsampling, a
database containing a total of 286 data points was obtained. Note
that this database was generated using NeuralIL models and
further used to train MACE models, which has been shown to
be justified due to the good correlation of uncertainties based on
NeuralIL and MACE ensembles.41

To make use of the work that has already gone into the
construction of databases for water, we chose the 1593 struc-
tures of 64 water molecules each published by Cheng et al.,
originally computed at the revPBE0-D3 level of theory.42 The set
contains five duplicate structures in the sense of having iden-
tical atomic positions, which were removed. Energies and
forces were then recomputed for the remaining 1588 structures
at the RPBE-D3 level of theory.

In addition to the Cu and water databases, a database of ten
Cu(111)–H2O interface structures was created by packing water
molecules above a 4 � 4 Cu(111) slab at a density of 1.0 g cm�3

using GROMACS version 2024.1.43 The number of inserted
water molecules was chosen such that the density matched
the prescribed value and the height of the water film is as close
as possible to 20 Å. Such generated configurations each contain
263 atoms in total. A gap of 1.4 Å was assumed for the distance
between the outer Cu layer and the region for which the water
density, and thus the exact cell height and number of water
molecules to insert, was calculated.

4 Active learning for copper–water
interfaces

A reference dataset with a total of 1884 structures was
assembled by combining the Cu, bulk water and Cu(111)–
H2O databases. Energies and forces for the Cu database were
recomputed with the VASP setup used for Cu–H2O interfaces to
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avoid systematic errors arising from different DFT calculation
parameters. The reference database served as a starting point
for a MD-based AL cycle. At each iteration the dataset was split
90 : 10 into training and validation sets, and an ensemble of five
MACE models was trained.

The AL cycle started from a 4� 4 bulk-terminated Cu(111) slab
consisting of five layers. Water molecules were added above the
slab such that the bulk water density equaled 1.0 g cm�3 and the
initial water film diameter was 20 Å. This resulted in the addition
of 64 water molecules, yielding structures with 272 atoms in the
unit cell. To find the equilibrium density at a given iteration, a
200 ps NPT run was performed after an energy minimization of
the initial configuration and a 10 ps equilibration run in the NVT
ensemble. The equilibrium volume was then calculated as the
mean volume of every 50th frame in the last 100 ps of the NPT
simulation run. Subsequently, five new initial configurations with
the box volume set to the equilibrium volume were set up. After an
initial energy minimization, NVT simulations were run for 200 ps
for each of the replicas.

To avoid sampling correlated frames each NPT and NVT
trajectory was divided into two 100 ps segments resulting in 12
segments total. One configuration was selected from each
segment by determining the frame featuring the highest locally
aggregated force uncertainty.21 While the use of structure-wide
aggregation is common practice,20,35,44–46 it can fail to identify
sub-regions featuring high-error.41 This has recently been
addressed by aggregating only within a defined cutoff radius
around each atom. Thereby local atomic uncertainties that still
correlate with the actual error are obtained.21 We thus calculate
local uncertainties by aggregating atomic uncertainties in a
neighborhood Ni = { j A N|||ri � rj||2 o ragg} of each atom i with
aggregation cutoff radius ragg (N denotes the set of all atoms).

slocalf ;i ¼
1

jNij
X

j2Ni

1

3

X

k2fx;y;zg
skf ;j ; (1)

where sk
f,j denotes the uncertainty of a single force component as

obtained from the committee and k refers to the Cartesian axis.
For the present study the aggregation cutoff radius was set to 4 Å.
Since both bulk copper and bulk water are already well repre-
sented in the initial dataset, uncertainties, and by proxy errors,
are expected to be highest at the Cu–H2O interface. As visualized
in Fig. 1, this is resolved well by the local uncertainties.

An AL procedure for a given interface was considered con-
verged if the maximum local force uncertainty observed for all
atoms and all timesteps in a 200 ps NPT trajectory was smaller
than 0.02 eV Å�1. According to this criterion, four AL iterations
were performed at a temperature of 300 K, Fig. 2, resulting in 48
Cu(111)–H2O interface structures being added to the database.
After the AL iterations for the Cu(111)–H2O interface were
completed, the same procedure as detailed above was repeated
for the Cu(211)–H2O interface. This interface was modelled
using a 4 � 2 Cu(211) slab and 86 water molecules. Again, four
AL cycles were needed to reach the convergence criterion,
resulting in 48 Cu(211)–H2O structures that were added to the
database. The Cu(322)–H2O interface was represented using a

4 � 1 Cu(322) slab and 72 water molecules. A 4 � 1 Cu(433) slab
and 92 water molecules were used to model the Cu(433)–H2O
interface for AL. As will be discussed below, the observed uncer-
tainties for the Cu(322)–H2O and Cu(433)–H2O systems were
already low in the first AL iteration, suggesting that adding addi-
tional reference data for these structures can be omitted. However,
in the present study we added twelve data points from the first AL
cycle for the Cu(322)–H2O interface after completing the Cu(211)–
H2O cycles. Similarly, twelve Cu(433)–H2O structures obtained from
one AL cycle were added after finishing the procedure for the
Cu(322)–H2O interface. In total this yielded 120 interface structures
that were added to the database over ten subsequent AL cycles.
Training a MACE model on this database yields an RMSE of
0.76 meV atom�1 for the energies and 20.42 meV Å�1 for the forces
when evaluating errors on the whole training set.

Fig. 1 Spatially resolved uncertainties for a Cu(111)–H2O (left) and a
Cu(211)–H2O interface structure (right) selected from NVT trajectories in
iterations 3 and 6. A color gradient from dark blue to yellow indicates the
lowest and highest local uncertainties respectively. Separate color scales
are used for the individual structures.

Fig. 2 Maximum local force uncertainties observed for the NPT trajec-
tories at each active learning iteration. The solid curves represent the
maximum over all atoms, including the water molecules. The dashed
curves show the maximum local uncertainty of the Cu atoms resolved
layer-wise (inner layer index 3, sublayers indices 2 and 4, interfacial layers
indices 1 and 5).
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In all iterations the highest uncertainties are observed directly
at the interface, while both in the bulk Cu and bulk H2O regions,
uncertainties are low, see Fig. 1. The difference in uncertainties
for the interface and bulk regions is further apparent in Fig. 2.
At all AL iterations the atomic uncertainties are highest for an
outer layer Cu atom or an atom in a water molecule in the contact
layer. Since the initial database contains no structures sampled
from MD trajectories, high maximum local uncertainties are
observed when starting the AL process. After converging for the
Cu(111)–H2O interface, a jump is observed when moving on to the
Cu(211) surface, as no data for stepped interfaces is yet present
in the database. However, even for the first Cu(211) iteration,
uncertainties for Cu atoms in the bulk layer are already low and
no systematic reduction is observed in further AL iterations. The
databases used to train the models used in the AL iterations for
Cu(322)–H2O and Cu(433)–H2O interfaces did not contain any
training structures of the respective interfaces they were applied
on. Still, uncertainties already satisfy the specified cutoff criterion
in the first iteration on the respective surfaces. A small increase
local force uncertainty is observed for the Cu(322)–H2O interface
after adding data, but was not investigated further and no
additional AL cycles were run.

5 Structure at the interface

Water density profiles were obtained from the 4 ns MD simula-
tions of Cu–H2O interfaces using the MACE model trained on
the final dataset. They are shown in Fig. 3, along with snap-
shots of representative structures of the water contact layer. The
Cu(111)–H2O interface exhibits a distinct double-peak structure
with maxima of 3.62 g cm�3 and 1.75 g cm�3 around 2.99 Å and
2.41 Å above the outermost Cu layer, in agreement with
previous studies.10,11 A similar ordering is also found for e.g.
Pt(111)11–16 but not for the more noble Au(111).11,15,16 The
tendency towards ordering of interfacial water molecules
within the water contact layer indicates chemisorbed water.
This is illustrated in the snapshot in Fig. 3 where a water
molecule at approximately 2.4 Å with the oxygen atom oriented
towards the Cu slab.

Separating the density profiles for the individual atom types,
as shown in Fig. 4, also points towards the first density
maximum representing chemisorbed water, as only a single
peak is observed for the hydrogen atoms. This peak represents
both chemisorbed water molecules, with hydrogen atoms
pointing away from the surface, and water molecules oriented
with the hydrogen atoms towards the surface, which are
mapped to the global maximum of the density curve for water,
Fig. 3. This is additionally evident from the density profiles
weighted with cosf, the cosine of the angle between the dipole
vector and the surface normal, as visualized in Fig. 5. A positive
first peak shows the water molecules closest to the slab to be
oriented primarily with the oxygen towards the surface, while
the negative peak at 2.99 Å indicates the opposite orientation
for the corresponding water molecules. This is also similar to

the Pt(111)–H2O interface, for which a compensation of the
dipoles of chemisorbed water by the outer layer is reported.14

A double peak structure is not observed for the Cu(211)–H2O
interface, where only a strong single peak is present at a distance
of 2.86 Å from the surface. Qualitatively, this is understood as a
consequence of the step edge combined with a short plateau,
since water molecules primarily adsorb on the ridge atoms due
to their lower coordination. As illustrated by the Cu(211)–H2O
interface snapshot in Fig. 3, water primarily adsorbing at the
ridge sites induces a strict H-down orientation of water mole-
cules at the adjacent crevice to facilitate hydrogen bonding to the

Fig. 3 Water density profiles as a function of the distance h from the
topmost surface layer for Cu–H2O interfaces with different Cu surface
orientations. The density profiles were obtained by averaging the distances
of the centers of mass of the water molecules from the surface over the
trajectory after discarding the first 10 ps. The position h = 0 Å of the topmost
surface layer in surface normal direction was computed as the mean z-
position of all Cu atoms in the top layer at each timestep. Visualized frames
were obtained from the trajectories by selecting the snapshot featuring the
lowest instantaneous hydrogen distance from the surface.

Fig. 4 Density profiles of oxygen (solid blue) and hydrogen (dashed
orange) as a function of the distance h from the topmost surface layer
for Cu–H2O interfaces with different Cu surface orientations. The curves
were normalized with respect to their global maximum. Dash-dotted lines
indicate the covalent radius of Cu.
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molecules adsorbed at the ridge sites. This is reflected in the
density profile for hydrogen (Fig. 4), which now features two
peaks in contrast to the Cu(111)–H2O interface. The first of these
maxima corresponds to water molecules at the step crevices. For
all stepped interfaces, hydrogen densities are non-zero in the
region bounded by the covalent radius of Cu, which is a
consequence of both the definition of the reference height as
the instantaneous mean of the heights of the Cu atoms in the
top layer in surface normal direction and the aforementioned
arrangement around the step. The local structure at the steps
furthermore explains the negative first peak in the angular
weighted density profiles for all stepped interfaces (Fig. 5).
In contrast to results reported for the Pt(211)–H2O interface,14

the Cu(211)–H2O interface exhibits a small positive peak, attrib-
uted to the water molecules at the ridge sites.

Decreasing the step density leads to the formation of a
second peak in the contact layer, Fig. 3. Specifically, a weak
shoulder at the Cu(322)–H2O interface and a distinct second
peak at the Cu(433)–H2O interface are observed. However, the
origin of the two peaks is different than for the flat Cu(111)
surface, since the structure is still strongly influenced by the

undercoordinated ridge sites. The depth of the first minimum
in the cosine-weighted density curves, Fig. 5, is lowered with
increasing step density. As can be seen in the snapshot of the
Cu(433)–H2O interface in Fig. 3 and will be discussed in more
detail below, a sufficiently long plateau allows for water mole-
cules to orient with the oxygen towards the surface, similar as at
the Cu(111)–H2O interface.

Density curves such as those shown in Fig. 3–5 can also be
obtained by AIMD.11,15 The comparatively longer time-scales
that become accessible through MLFF-backed MD make it
possible to obtain reliable statics for local resolution. Here we
investigate interfacial water structure in the surface parallel
directions by calculating the oxygen–oxygen 2D pair correlation
functions (2D PCF) as given by16,47

gOOðDrÞ ¼
1

nt

X

t

1

radsðtÞ jNadsðtÞj � 1ð Þ

�
XNadsðtÞ

iaj

dðDr� DrijðtÞÞ;
(2)

where Drij is a two-dimensional vector that denotes the pairwise
distance in the directions parallel to the surface, rads(t) the
surface number density of oxygen atoms in the contact layer
at time t, Nads(t) the set of oxygen atoms in the contact layer at
time t and nt the total number of timesteps. The 2D PCFs for
both bulk water and the different interfaces are visualized in
Fig. 6. On the flat Cu(111) surface, a similar structure as for the
Pt(111) surface is found.16 A ring of large gOO(Dr) values
indicating the first solvation shell is observed, followed by
weaker peaks arising from the second and third solvation
shells. The 2D PCF does however not converge to a constant
value of 1.0 with increasing distance, as is the asymptotic limit
for of bulk water, but exhibits peaks induced by the underlying
Cu atoms. Notably, the third solvation shell matches the
distance of 6.86 Å of the fourth nearest in-plane neighbor of a
Cu atom in the top layer and therefore shows pronounced
peaks at these locations. As evident from Panel Q of Fig. 1 in
ref. 16, this is in contrast to Pt, for which such a lattice
parameter match is not observed. The introduction of a step

Fig. 5 Dipole orientation distribution profiles as a function of the distance
h from the topmost surface layer for Cu–H2O interfaces with different Cu
surface orientations. Cosf is the cosine of the angle between the dipole
vector, calculated as the bisector of the water molecule orientated from
the oxygen to the mid point of the two hydrogen atoms, and the surface
normal (see insert). Dash-dotted lines indicate the covalent radius of Cu.

Fig. 6 2D oxygen–oxygen pair correlation functions for bulk water or water in the contact layers of the interfaces respectively. The maximum distance h
defining the contact layer was chosen as the local minimum of the density profiles (Fig. 3) following the the global maximum. The 2D-PCF for bulk water
is computed based on a slab with thickness 5 Å in z-direction.
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on the surface leads to pronounced changes in the shapes of the
2D PCFs. On the Cu(211) surface, which features the highest step
density of all investigated surfaces, a highly anisotropic profile is
observed. The 2D PCF is mainly dominated by the steps, even in
the short-range regime, with also the first solvation shell being
distorted. Strong peaks are observed at the ridge Cu atoms even
at longer distances indicating the steps as the preferred adsorp-
tion sites. Anisotropic profiles are also observed for the Cu(322)–
H2O and Cu(433)–H2O interfaces, but the effects are less pro-
nounced due to the decreasing step densities. The 2D oxygen–
oxygen PCF for the water molecules in the contact layer on the
Cu(433) surface already shows that the pattern observed on the
flat Cu(111) surface is partially recovered due the longer (111)-
like plateau of the Cu(433) surface.

To illustrate how decreasing the step density recovers
structural features observed for the flat Cu(111)–H2O interface
we investigate the local environments of the atoms in the
contact layer sampled during the MD simulations. Using sphe-
rical Bessel descriptors39,48 to represent the local environments
of Cu atoms in the top layer, we encode the local environment
in a rotationally invariant manner. Snapshots were taken at 1 ps
intervals from the simulations for each interface. The com-
bined set of descriptors is visualied using the dimensionality
reduction technique UMAP49 in Fig. 7.

At the Cu(111)–H2O interface, two distinct types of local Cu
environments are observed, corresponding to the two types of
water orientations producing the opposite peaks observed in
Fig. 5. The smaller patch in Fig. 7 corresponds to chemisorbed
water with hydrogen atoms oriented away from the surface
(positive cosf) and shorter Cu–O distances. The larger patch
corresponds to environments where the hydrogen atoms are
oriented towards the surface. Environments in the latter region
are also observed at the Cu(211)–H2O interface. On Cu(211),
chemisorption primarily takes place at the undercoordinated
ridge sites, while water molecules in the crevice of the step are
almost exclusively oriented with the hydrogen atoms oriented

towards the surface (Fig. 3), forming distinct UMAP patches,
Fig. 7. The high step density of the Cu(211) surface geometri-
cally restricts interfacial water molecules from orienting in a
(111)-like chemisorption geometry. This results in the absence
of the corresponding UMAP patch, in agreement with the
behavior observed in Fig. 3–5. Reducing the step density
exposes longer plateaus, thereby alleviating these restrictions
and making Cu(111)-like chemisorption geometries possible,
as seen for the Cu(322) and Cu(433) panels of Fig. 7. The
Cu(322) surface, featuring a shorter plateau than Cu(433),
exhibits a sparser population of the Cu(111)-like chemisorption
patch. The Cu(433) surface clearly shows this, consistent with
the oxygen atoms oriented towards the surface in the corres-
ponding snapshot Fig. 3.

Interestingly, no new regions of configuration space are visited
during the simulations of the Cu(322)–H2O and Cu(433)–H2O
interfaces compared to Cu(111)–H2O and Cu(211)–H2O. This is in
accordance with the already low uncertainties in the first AL cycles
on the higher-index surfaces, Fig. 2. We therefore also expect
interfaces to less idealized surfaces, which can be conceptualized
as being composed of individual elements present in simpler
model systems, to be predicted well by an MLFF trained only on
the these model interfaces.

A more fine-grained analysis of the environments is
achieved by separating the data according to rows parallel to
the step edge, as shown for the Cu(433)–H2O interface are in
Fig. 8. The environments of the crevice and ridge Cu atoms are
visualized in panels a and g respectively and form two separate
clusters of environment types as discussed above. Due to the
geometric restriction of the water molecules in the direct
vicinity of the step, where the ridge atoms are the preferred
sites for chemisorption, no environments indicating (111)-like
chemisorption geometries are found for Cu atoms in the rows
adjacent to the crevice and ridge rows (panels b and f respec-
tively). As discussed in the context of Fig. 6, the interfacial
structure of water approaches that of the Cu(111)–H2O interface

Fig. 7 Two-dimensional density histograms of the UMAP representations of the spherical Bessel descriptors of the top layer Cu environments. A single
UMAP has been computed using 40 neighbors, a minimum distance of 0.2 and the Euclidean distance metric for the whole set of data and was
subsequently split into subsets representing the individual interfaces, for which individual histograms were calculated. Representative environments taken
from snapshots illustrate the types of substructures constituting the individual clusters.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
A

pr
il 

20
25

. D
ow

nl
oa

de
d 

on
 6

/3
/2

02
5 

2:
12

:2
2 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cp00396b


9176 |  Phys. Chem. Chem. Phys., 2025, 27, 9169–9177 This journal is © the Owner Societies 2025

for high-index Cu(n + 1, n, n) surfaces. This is further supported
by the environments of the top layer Cu atoms located in rows
further from the step being clustered similarly to those of the
Cu(111)–H2O interface, as evident in panels c–e in Fig. 8.

Characterizing the local structure of water is a long-standing
challenge, with different local order parameters often giving
ambiguous results.50,51 The UMAP analysis highlights how a data-
driven approach based on local invariant descriptors, enables a
clear classification of the 32 million geometries sampled during the
MD simulations without relying on, potentially biased, a-priori
intuition of which geometric features to probe.

Conclusions

In the present study we have demonstrated that high step
densities lead to a fundamentally different structuring of inter-
facial water compared to the ideal, flat surface and that lowering
the step density gradually recovers behavior similar to the inter-
face to the flat surface. We recover previously reported results for
the Cu(111)–H2O interface, such as the double peak structure in
the density and the Cu ontop sites being preferred. On all stepped
surfaces, we observe chemisorption taking place mainly on the
step sites, as opposed to the terrace sites. Further, we connect
observed results and a data-driven approach to identify common
types of atomic environments across the differently oriented
surfaces. In order to obtain these results we both make use of
existing databases and also developed a locally sensitive active
learning workflow for Cu–H2O interfaces that makes use of the
high data efficiency of equivariant MLFFs. This minimizes the
amount of computationally demanding reference calculations, in
this case even removing the need for AIMD trajectories entirely.
The workflow allows for systematic extension of the database to
investigate a wider range of systems. By identifying the relevant
local environments and training on according model systems, we
conceive this approach to be suitable for modelling interfaces to
less idealized surfaces. In order to achieve more realistic models,
some aspects remain to be addressed. For the present system in
particular, including different oxidization states of copper is
essential to move towards a more realistic system.52,53 Further-
more, no water dissociation is observed in the present study and
no dissociated species are considered. These aspects can already
be tackled with currently available MLFFs,54 but may require
the use of enhanced sampling techniques to be simulated
efficiently.55 Additionally, the treatment of long-range interactions

and the inclusion of electric fields in MLFFs is still an open
research question and obviously of vital importance for modelling
electrochemical interfaces.
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