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Reactions of fluid and lattice oxygen mediated
by interstitial atoms at the TiO2(110)–water
interface†
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O2 interacts with TiO2 surfaces in numerous aqueous reactions for clean hydrogen production,

wastewater cleanup, reduction of CO2 and N2, and O2 sensing. In many cases, these reactions involve

reversible exchange of O with the solid, whose participation is usually thought to require oxygen

vacancies (VO). Based on measurements of oxygen isotopic self-diffusion in rutile TiO2 under water, this

work proposes a different perspective centered on O interstitial atoms (Oi). Experiments with varying

concentrations of O2 and mole fractions of 18O show that the (110) surface facilitates O exchange with

both the H2O liquid and its dissolved O2. First-principles calculations indicate that on-top and ‘‘surface

Oi’’ configurations of adsorbed O participate sequentially in the exchange process. Adsorbed OH

appears to provide a single pathway for H2O and O2 to contribute oxygen, although fitting the diffusion

data to simple models indicates that H2O contributes more. Because rutile TiO2 is a prototypical

metal oxide, this picture based on Oi probably generalizes in many cases to other oxides � explaining

important aspects of their thermal, electrochemical, and photochemical reactions with dissolved O2.

1. Introduction

O2 interacts with water-submerged TiO2 surfaces in many
aqueous reactions for production of clean hydrogen,1–5 cleanup
of wastewater,6–11 reduction of N2 to NH3,12–16 reduction of
CO2 to hydrocarbons,17,18 production of H2O2,19 and sensing
of O2.20 For the oxygen evolution reaction (OER) by photo-
catalysis21,22 and electrocatalysis,23 significant attention
focuses on participation of lattice oxygen from TiO2. This
attention extends to other metal oxides24–28 for the OER, the
oxygen reduction reaction29–31 (ORR) and advanced oxidation
processes (AOP).11 Many authors use the term ‘‘lattice oxygen

mechanism’’ (LOM) to describe the chemical pathways for
exchange of atoms between O2 and the solid,21–23,25–27,32,33

although ‘‘Mars–van Krevelen mechanism’’ prevails among
other authors.31,34 Such mechanisms contrast with pathways
involving atoms derived only from the liquid, termed an
‘‘adsorbate evolution mechanism’’ in the OER.10,26,35

Regardless of the oxide or driving force (thermal, electro-
chemical, or photochemical), O vacancies (VO) are usually
thought to mediate participation of lattice oxygen.25,27,33,35

However, this physical picture has been questioned recently,29

partly because O interstitial atoms (Oi) appear to facilitate lattice
O participation in some cases.29,30 This literature struggles to
reconcile the notion of ‘‘active oxygen’’ in the lattice with the
assumed need for surface VO to assist the reaction. Furthermore,
mediation by vacancies contains implicit inconsistencies. For
example, the OER on TiO2 and perovskites often operates under
intensely oxidizing conditions26,35 (strongly alkaline pH, high
applied potential, and high O2 concentration) that are not
hospitable for surface VO, which reflect chemical reduction.
Moreover, increasing the VO concentration in O-deficient per-
ovskites increases the barrier for participation of lattice O.26

In other words, the reaction seems to require vacancies, yet
increasing their concentration diminishes the rate (e.g., in
SrCoO3

36).
As described elsewhere,29,30 an alternate perspective based

on Oi merits consideration in many cases. Under O-rich
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conditions, Oi mediates O exchange between several different
binary oxides and liquid H2O.37,38 Yet no physical picture has
been proposed by which O atoms transfer between the lattice,
diffusing Oi, the surface, and dissolved O2.

The mediating form of adsorbed O remains especially
murky. Adsorbed OH (anion and neutral) and molecular H2O
dominate adsorbate populations on submerged metal oxides,39–42

but reaction mechanisms for O2 atop oxides assume participation
of adsorbed O,35 whose existence has been inferred from experi-
ments and density functional theory (DFT) calculations.43–48

The literature for catalysis and surface science considers O on
rutile TiO2 to sit directly atop a metal cation.49–56 This species
protonates readily. In contrast, DFT calculations for three differ-
ent oxides37,57,58 reveal a ‘‘surface interstitial’’ that converts into
bulk Oi by diffusive hopping. The surface interstitial’s high bond
coordination implies little propensity for protonation.

Interconversion between these forms of adsorbed O provides
the foundation for a self-consistent physical picture to describe
atom exchange between the lattice and dissolved O2. To sup-
port this picture, the present work employs isotopic self-
diffusion measurements in submerged rutile TiO2(110) single
crystals with varying concentrations of 18O isotopic label.
We selected the (110) surface termination because extensive
literature already exists for this orientation, and its nonpolar
structure should minimize surface reconstruction upon immer-
sion.59 These experiments show that O exchanges between the
solid and both dissolved O2 and H2O liquid, mediated within
the solid by Oi. At the surface, DFT calculations suggest that
adsorbed O exists in both on-top and surface interstitial con-
figurations. Adsorbed OH appears to provide a single pathway
for H2O and O2 to contribute oxygen, although fitting the
diffusion data to simple models indicates that H2O contributes
more. Because rutile TiO2 is a prototypical metal oxide,39,60 this
picture based on Oi probably generalizes in many cases to other
oxides � explaining important aspects of their thermal, electro-
chemical, and photochemical reactions with dissolved O2.

2. Methods
2.1 Experiments

Many published experiments seeking to measure participation
of lattice O have focused on detecting 18O in the fluid or on the
solid surface.24,32,61 In contrast, the present work focuses on
measuring 18O self-diffusion within the solid. Such measure-
ments offer a complementary perspective more directly attuned
to defect behavior. Our protocols for the 18O self-diffusion
experiments have been detailed previously.37 The experiments
were performed at varying temperatures involving no photo-
chemical perturbations. Undoped single-crystal rutile TiO2(110)
specimens (5 � 5 � 0.5 mm) purchased from MTI Corp. were
de-greased by 10 min of ultrasonic agitation in a succession of
solvents (acetone, isopropanol, ethanol, and methanol) fol-
lowed by wet etching (1 : 2, 30% NH4OH : H2O) at room tem-
perature for 40 min to remove elemental poisons that inhibit Oi

injection. Surface analysis by X-ray photoelectron spectroscopy

(XPS) showed only Ti, O, and C within the detection limit, both
before and after Oi diffusion. Consistent with previous studies,
no variations in surface composition with experimental condi-
tions were observed. Atomic force microscopy (AFM) revealed
a root mean square (rms) roughness of 0.23 � 0.03 nm for
as-received TiO2 and 0.14 � 0.08 nm after wet etching.58

We discovered empirically that, during submersion in water,
application of potential bias in a conventional three-electrode
cell configuration increases the Oi injection rate and thereby
aids the measurement of profile metrics. TiO2 specimens were
immersed for 60 min at constant temperature (70 1C) with a
potential bias applied using a Biologic SP200 potentiostat. The
electrical connection to the TiO2 specimens was a Cu wire
attached with double-stick carbon tape covered with Kapton.
An Ag/AgCl reference electrode and a Pt counter electrode were
employed. The water contained no electrolyte, and the pH
was about 7. Before immersion, 10 min of gas bubbling
through the aqueous solution with simultaneous gas flow
through the headspace established liquid–gas equilibrium.

The solid TiO2 was undoped and assumed to be insulating.
In addition, no electrolyte was employed, so no faradaic elec-
trochemistry occurred during the experiments. Potentiostat
measurements of the current were very small (10–100 nA) and
uncorrelated with any profile metric. The potentiostat itself
typically displayed an overload warning characteristic of an
open circuit. As shown in Fig. S1 of the ESI,† measurements of
pH before and after each self-diffusion experiment revealed
only small changes. The starting pH averaged 6.96 with a
standard deviation of 0.30, and the pH change during diffusion
was most commonly 0.25 or less.

In water submersion without applied bias, injected fluxes of
Oi are sufficiently high to yield isotopic fractionation within
the first few nanometers of the surface.38 In this region, the
concentration of 18O dips below the natural abundance level – a
counterintuitive phenomenon, because the ambient solution is
enriched in 18O. Fractionation originates from high gradients
in Oi concentration combined with the statistics of diffusion by
an interstitialcy mechanism, wherein two O atoms share a
single lattice site and either atom can hop into an adjacent
site in a diffusive event. The existence of fractionation provides
added features in the diffusion profiles for quantifying profile
behavior.

To ascertain the relative contributions of O2 and H2O to
injection and diffusion of Oi, the following combinations of
isotopic labels and water–gas ambient were investigated:
� Case I: 10% 18O-labeled H2O (Sigma-Aldrich), natural

abundance N2 (19 profiles)
� Case II: 10% 18O-labeled H2O, natural abundance O2

(8 profiles)
� Case III: 10% 18O-labeled H2O, natural abundance air

(74 profiles)
� Case IV: natural O-abundance (0.2%) D2O (Sigma-Aldrich),

97% labeled 18O2 (Sigma-Aldrich, 12 profiles)
These four cases contain differing concentrations of 18O

in the liquid and gas phases, allowing inference of the source
of 18O.
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18O concentration profiles were measured ex situ by second-
ary ion mass spectrometry (SIMS) in time-of-flight mode using a
PHI-TRIFT III instrument with a 3 keV Cs ion beam source and
a spot size of 0.5 mm. 18O concentrations were calibrated to the
known natural abundance of 18O (0.2%) in the as-received TiO2

specimens. Profiles were measured at 2–5 different locations on
the surface of each specimen.

2.2 DFT calculations

DFT calculations were performed using the Vienna Ab Initio
Simulation Package (VASP).62,63 The bulk rutile TiO2 structure
was obtained from the Materials Project.64 The structure was
optimized using the Perdew–Burke–Ernzerhof65 (PBE) general-
ized gradient approximation (GGA) exchange–correlation func-
tional, and the projector augmented wave66 (PAW) method was
employed. Details of the optimized structure were previously
published.67 For the slab modeling, the (110) plane in its 2 � 1
in vacuo reconstruction was employed. Some computational
evidence suggests the surface reconstructs to 1 � 1 periodicity
upon submersion,68 but most first principles simulations of
this surface upon submersion continue to employ the 2 � 1
structure.46,56 A plane wave cutoff energy of 520 eV was used,
together with Monkhorst–Pack k-point sampling having a
4 � 4 � 1 mesh size. All atoms were relaxed until the forces
on each atom were smaller than 0.01 eV Å�1. The slab thickness
was set to 15.74 Å and included five trilayers of (O–Ti2O2–O) to
allow for a net charge-neutral stoichiometry.57 A vacuum thick-
ness of 15.0 Å was employed to isolate each slab from its images
originating from periodic boundary conditions.

To model specific adsorption cases, all potential adsorption
sites were examined. The (110) plane includes Ti5f, O3f and O2f

sites, although only the first two lie in-plane and are of direct
concern here. Adsorbed O atoms adopt an ‘‘on-top’’ geometry at
the Ti5f site. At the O3f site, adsorbed O atoms can adopt a
‘‘dumbbell’’ geometry (neutral charge) containing an O–O bond
or a ‘‘split’’ geometry (�2 charge) that contains bonds only to
surrounding metal cations. For the split, we employed a pre-
vious protocol57 that places an O vacancy on the backside of the
slab to facilitate adsorbate charging while maintaining the
simulation’s Fermi energy (EF) at the top of the valence band.
The adsorption energy was computed as described previously,57

with the oxygen chemical potential computed under standard
conditions (25 1C and 1 atm) for both O-rich (mO = �4.68 eV)
and Ti-rich (mO = �10.11 eV) environments.

3. Results

Fig. 1 illustrates typical 18O SIMS profiles following diffusion.
The general features match those observed previously in the
absence of applied potential bias,37,38 with the most dramatic
being the isotopic fractionation represented by the near-surface
‘‘valley’’ wherein the 18O concentration drops well below nat-
ural abundance (Cnat = 1.29 � 1020 cm�3) as described at length
elsewhere.38 This phenomenon is transient and represents a
manifestation of uphill diffusion69 in the solid state.

All features are stable during long-term storage. Fig. 1a
shows examples of profiles for labeled water with natural
abundance O2 (case II). Details of the profile shapes vary with
position on a given specimen. Such variations have been
discussed at length elsewhere58,70 and arise in large part from
differences in the level of surface contamination, especially
adventitious carbon, which can poison the surface sites that
facilitate injection. Fig. 1b shows typical profiles comparing

Fig. 1 (a) Example 18O profiles at several locations on a single specimen
of case II (H2O with 10 at% 18O) with Vappl = �0.8 V vs. Ag/AgCl, 70 1C,
t = 60 min, illustrating ‘‘valley’’ regions (having 18O concentrations below
natural abundance). The variability is characteristic as discussed in the text.
(b) Example 18O profiles comparing case II (‘‘H2O labeled,’’ 10 at% 18O) and
case IV (‘‘O2 labeled,’’ 97 at% 18O) at 70 1C, t = 60 min. Although Vappl varies,
this condition does not affect the profiles; the variation has the same origin
as in (a). Typical O2-labeled profiles extend much deeper than H2O-
labeled profiles and exhibit deeper and wider valleys near the surface.
(c) Example profile showing definitions of the metrics W and Cmin, F18, l1

and l2. Profile was measured in air (case I) at Vappl = �0.4 V, 70 1C,
t = 60 min. For all profiles here, the water contained no electrolyte, and
was air-equilibrated prior to diffusion by bubbling for 10 min.
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cases II and IV, wherein the gas ambient is pure O2 and either
the water or the gas, respectively, is isotopically labeled. Differ-
ences between the two cases are evident despite the variability;
profiles for case IV extend much deeper than case II and exhibit
deeper and wider valleys near the surface. This latter behavior
seems quite counterintuitive, as greater 18O enrichment in the
gas and no enrichment in the liquid enhances the degree of
fractionation.

Fig. 1c illustrates five metrics that were used to quantify the
profiles:
� F18: net 18Oi injection flux.
� Cmin: near-surface minimum of the 18O concentration in

the ‘‘valley.’’
� W: width of the region for which the 18O concentration is

below its natural abundance.
� l1 and l2: characteristic lengths describing bi-exponential

decay, with l1 { l2.
W and Cmin characterize the extent of isotopic fractionation,

while l1 and l2 describe the penetration of 18O into the solid.
The ESI† details the fitting procedures employed to obtain
these metrics.

As shown in Fig. S2 and Table S2 of the ESI,† the metrics
change regardless of the applied potential’s value. The mechanism
by which the applied potential bias operates remains unknown.
One possibility is that the electrode system unintentionally removes
a contaminant that would normally poison injection sites.
Alternatively, a form of electrostatic electrochemistry71,72 operates,
wherein redox reactions occur on statically charged insulators.
The static charge in published reports is usually created by
mechanical rubbing,73,74 and whether charge transfer involves
ions or electrons is still debated. A third possibility is that an
electric field enhances injection.

Knowledge of the mechanism is not important for the focus
of this work, which seeks to demonstrate the importance of
bulk and surface O interstitials in mediating the exchange of
O atoms between TiO2 and the liquid. Bulk and surface inter-
stitials are already known to serve this purpose for TiO2 in water
without applied bias, both thermally37 and with UV stimulation.70

As the sections below will show, applying potential bias does not
change this picture. Applying bias simply accentuates the profile
metrics compared to water without bias, thereby making measure-
ment easier. For example, applying potential bias increases the
net injection fluxes by over an order of magnitude, which steepens
the gradient for fractionation and greatly extends the penetration
of interstitials up to roughly 10 mm into the solid. Accordingly, the
18O-depleted region’s width increases from an average of 2.8 nm

to as high as 90 nm. Isotopic depletion increases from an average
factor of 1.4 below natural abundance to as high as 3.

3.1 Statistical tests for isotope and O2 concentration effects

Table 1 shows the mean and standard deviation for each of
the five metrics (F18, W, Cmin, l1, l2) for the four ambient
conditions studied. The results in Table 1 appear as bar graphs
in Fig. 2. The variability among profiles induces large standard
deviations for each metric. Hence, statistical tests were
employed to determine whether changes in the experimental
conditions between cases lead to a significant change in the
mean. Such tests yield a probability (‘‘p-value’’) that quantifies
the likelihood of the null hypothesis being true. The null
hypothesis is that a difference in the mean between two cases
arises from random chance.

Histograms of the metric distributions for the largest data
set (case III) exhibit considerable deviations from normality
even after logarithmic transformation (Fig. S3 and S4 in the
ESI†). The classical ‘‘parametric’’ Student’s t-test for comparing
means exhibits considerable robustness to deviations from
a normal distribution.75,76 Nevertheless, we also employed a
common ‘‘non-parametric’’ Mann–Whitney U-test that does not
presuppose normality. There is no reason to believe cases I–IV
have differently shaped distributions.

In such situations, a non-parametric test compares medians77

rather than means. However, this difference in data aggregation
affects the statistical power of t and Mann–Whitney tests (i.e., the
likelihood of detecting a statistically significant effect). The values
for most of the metrics in Table 1 vary over 1.5 to 2 orders of
magnitude (e.g., 0.6 to 94 nm for W). The means typically exceed
the medians by a factor of 1.3 to 1.6. Thus, closely spaced small
values are weighted more heavily than widely spaced large ones in
a statistical test that compares medians instead of means. This
property decreases the vulnerability of Mann–Whitney tests to
type I errors that reject the null hypothesis when it is true but
increases their vulnerability to type II errors that fail to reject the
null hypothesis when it is false.

Table 2 shows the p-values for each metric obtained from
t-tests and Mann–Whitney U-tests for all pairwise permutations
of ambient conditions. The comparison of cases II–IV has
particular importance because no change occurs in the chemical
composition of either gas (pure O2) or liquid. Only the isotopic
composition changes. Both tests yield p o 0.02 for all profile
metrics. In other words, the likelihood is very high that changing
only the 18O mole fractions in the gas and liquid (at constant
partial pressure of O2) suffices to influence all aspects of the

Table 1 Means and standard deviations (in parentheses) of profile metrics

Case I Case II Case III Case IV

%F18 (cm�2 s�1) 1.6(1.0) � 1011 1.2(0.6) � 1011 3.0(2.9) � 1011 5.1(4.5) � 1011

%W (nm) 8.3(5.3) 6.1(3.0) 13.6(14.4) 27.5(16.1)
%Cmin (cm�3) 7.5(1.8) � 1019 8.3(1.4) � 1019 8.3(2.0) � 1019 4.2(1.0) � 1019

Cnat– %Cmin (cm�3) 5.4(1.8) � 1019 4.6(1.4) � 1019 4.6(2.0) � 1019 8.6(1.0) � 1019

�l1 (nm) 21(14) 17(10) 45(45) 80(79)
�l2 (nm) 390(270) 240(140) 420(350) 1160(850)
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18O profiles. This result shows that O2 gas supplies some of the
injected oxygen. Furthermore, the effects extend at least as deep
as the largest individual value of l2, i.e., 41 mm.

Cases I, II and III entail no change in isotopic composition
of either gas or liquid; only the chemical concentration of
O2 varies in the gas phase. The t-test p-values are rather large
for I–II but are quite small for many metrics involving I–III and
II–III. The corresponding Mann–Whitney p-values are notice-
ably larger for these latter two comparisons. However, the

p-values for l1 in I–III are quite small at 0.038 and are also
rather small for F18 and W in II–III at 0.087 and 0.092,
respectively. In combination, the two tests therefore agree that
O2 concentration affects some metrics of the profiles.

3.2 DFT simulations

Fig. S5 (ESI†) shows surface geometries of both pristine and
bridging hydroxylated TiO2(110) surfaces. For the bridging
hydroxylated surface, two hydrogen atoms occupy bridging

Fig. 2 Bar graphs showing means and standard deviations for profile metrics in each of the four cases: (a) F18 (b) l1 (c) W (d) Cmin (e) l2. For all metrics,
conditions are 70 1C, t = 60 min.

Table 2 Pairwise statistical analyses of five metrics

Ambient pair

F18 (cm�2 s�1) Cmin (cm�3) W (nm) l1 (nm) l2 (nm)

pt-test pMW pt-test pMW pt-test pMW pt-test pMW pt-test pMW

Cases I–II 0.19 0.44 0.24 0.33 0.18 0.37 0.47 0.94 0.075 0.19
Cases I–III 8 � 10�4 0.15 0.12 0.45 0.018 0.20 1 � 10�4 0.038 0.73 0.83
Cases I–IV 0.022 7 � 10�4 9 � 10�7 8 � 10�5 1 � 10�3 2 � 10�4 0.027 6 � 10�4 0.010 6 � 10�4

Cases II–III 4 � 10�5 0.087 0.85 0.65 4 � 10�4 0.092 4 � 10�5 0.13 0.011 0.18
Cases II–IV 0.012 8 � 10�4 1 � 10�5 2 � 10�4 4 � 10�4 4 � 10�4 0.019 0.0014 0.0056 5 � 10�4

Cases III–IV 0.14 0.041 1 � 10�9 4 � 10�4 0.011 1 � 10�3 0.17 0.078 0.012 7 � 10�5
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O2f sites to represent the fragments of liquid water dissociation.
Fig. 3 displays the metastable surface geometries of O atoms
adsorbed on pristine TiO2(110), which include dumbbell, split
and on-top structures. The dumbbell and split configurations
both associate two O atoms with a surface O3f site originally
occupied by a single O atom. The two atoms represent distorted
versions of corresponding Oi configurations in the bulk
reported previously, and thus act like ‘‘surface interstitials.’’57

The structures remain minimally changed upon hydroxylation
of the surface, as shown in Fig. 4. Table 3 summarizes the
calculated adsorption energies and Bader charges in the limit of
maximally O-rich conditions investigated here. Adsorption energies

appear for values of EF at the valence band maximum (VBM,
EF = 0 eV) and conduction band minimum (CBM, EF = 3.1 eV).
For completeness, Table S3 (ESI†) shows parallel results for
maximally Ti-rich conditions.

Bader charge analysis of the dumbbell surface interstitial
structure on the pristine surface shows �0.43e� on the topmost
atom and �0.69e� on its nearest neighbor just below, for a sum
of �1.12e�. Previous analysis57 has demonstrated this species
to be neutral. By contrast, the split structure is known to be
charged �2. The topmost atom has a Bader charge of �1.11e�,
and �0.94 resides on the underlying nearest-neighbor O just

Fig. 3 Geometry of metastable adsorbed O configurations on pristine
TiO2(110) terraces, including (a) and (b) dumbbell (Odum), (c) and (d) split
(Osp) and (e) and (f) on-top (Otop). Panels (a), (c) and (e) show top views and
(b), (d) and (f) show side views. Shading colors respectively represent blue
for Ti and red for O.

Fig. 4 Geometry of metastable adsorbed O configurations with co-
adsorbed bridging hydroxyls on TiO2(110) terraces, including (a) and (b)
dumbbell (Odum), (c) and (d) split (Osp) and (e) and (f) on-top (Otop). Panels
(a), (c) and (e) show top views and (b), (d) and (f) show side views. Shading
colors respectively represent blue for Ti, red for O, and white for H.
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below for a total of �2.05e�. For the on-top geometry, the
adsorbed O has a Bader charge of �0.61e�. The symmetry of
this structure does not associate this O with any particular in-
plane atom, but each of the four equivalent O3f nearest-
neighbor atoms in the surface plane have a Bader charge of
�1.09e�. Thus, a sum comparable to those of the dumbbell
and split configurations is �1.70e�, which lies intermediate
between the values for the dumbbell and the split. The calcula-
tions therefore suggest an on-top charge state of �1, consistent
with previously published DFT results for isolated O.49 For the
hydroxylated surface, the Bader charges all become slightly
more electron-rich, but the ordering does not change. Thus,
we infer no change in charge state induced by hydroxylation.

For nearly all values of EF, the adsorption energies on the
pristine surface in Table 3 show that the split geometry is most
stable (most negative). The dumbbell becomes most stable by a
small margin when EF is near the VBM. On the hydroxylated
surface, the on-top geometry is most stable for EF near the VBM,
while the split is most stable for EF near the CBM. In contrast
with the surface interstitial structures, for the on-top configu-
ration the adsorbed O atom pulls the underlying Ti atom
significantly above the surface plane. Fig. 4e and f show that
hydroxylation stabilizes the resulting bond stretching by pull-
ing the adsorbed O laterally toward a nearby H atom. Much less
stabilization is possible for the surface interstitial structures.

4. Discussion
4.1 Contributions of injected O from H2O and O2

The 18O profiles provide strong evidence that both H2O and
dissolved O2 contribute O that diffuses into submerged TiO2.
Do O2 and H2O contribute independently or employ the same
pathway? Adsorbate populations on submerged TiO2 are domi-
nated by OH (either anion or neutral) and molecular H2O.39–42

Adsorbed OH is not very acidic,78 yet experiments with deuter-
ated water have shown37 that oxygen injects as Oi, not OH.
Similar experiments performed here with applied bias yield the
same results. This apparent paradox can be reconciled by the
capacity for hydrogen bonding79 and acid–base chemistry80

afforded by the liquid phase. These solvation effects stabilize
intermediates such as adsorbed O,35 as evidenced by electron
spin resonance81 and photoluminescence.45 Submersion can
reduce the activation energy for O2 dissociation82 and increase
the acidity of OH83 by reducing the barrier for deprotonation.84

The temperature dependence of Oi injection in submersion is
much less than that of elementary-step injection of adsorbed O,
which suggests the rate-limiting step is kinetically upstream.37

Thus, there is ample reason to believe that deprotonation of
OH to O limits the overall rate of Oi creation, meaning that
adsorbed OH serves as a single kinetic conduit for movement of
O between the solid and fluid.

Note that solvation effects limit the mechanistic insights
afforded by the large literature for in vacuo adsorption of H2O
and O2 on TiO2. As with submerged TiO2, those studies show
that H2O can dissociate on TiO2 and other common metal
oxides. On TiO2, surface VO aids dissociation by providing
adjacent cation and anion sites that bond readily to H2O and
the products OH and H.40 However, OH appears as the only
oxygenated product39,61,85 because no solvation is possible to
stabilize adsorbed O. Without doping or photoexcitation, mole-
cular O2 chemisorption in vacuo requires electron donation
from VO or other surface defects.40 Dissociation of O2 to O is
favored by conditions that increase the electronegativity of the
surface,40,86 including the presence of electron donors such as
surface VO.40,50 However, gaseous O2 does not adsorb and
dissociate fast enough on TiO2(110) to inject Oi unless tem-
peratures exceed about 600 1C.87 In submersion, solvation
effects enable dissociation and injection of Oi even at 70 1C.

The aftereffects of ion sputtering for surface cleaning also
limit the direct translation of in vacuo mechanistic findings to
TiO2 submersion. Sputtering preferentially removes O from the
solid, which chemically reduces some of the Ti and forms VO.40

Reduction of the surface layer is irreversible in vacuo below
400 K40,88 unless the ion fluence is low.40,89,90 With low fluence,
submersion quickly removes surface VO with dissolved
O2

40,91,92 or H2O itself.93–95 However, submersion reverses VO

formation in the near subsurface (2–3 nm) slowly and only
partially.96 This failure to reverse subsurface reduction reflects
the suppression of Ti interstitials, which are central to in vacuo
reversal of chemical reduction above 400 K.88 Ti interstitials
play no role at submersion temperatures because there is no
generation mechanism, and their high mobility ensures their
sequestration in bulk traps or at the surface.97

Two mathematical models were formulated and compared
to test the hypothesis that OH serves as a single kinetic conduit
for O. Model derivations appear in the ESI.† One model is
agnostic about the injection mechanism (thereby not aligning
with the hypothesis) and assumes that H2O and O2 contribute
Oi and isotopic labels in linear proportion to their respective

Table 3 Adsorption energy and Bader charge of adsorbed O on TiO2(110): O-rich conditions

TiO2(110) surface conditions Adsorption configuration

Adsorption energy (eV) Bader charge (e�)

Charge stateEF = 0 eV EF = 3.1 eV Adsorbed O atom Neighboring O atom

Pristine Dumbbell 0.80 0.80 �0.43 �0.69 0
Split 0.95 �5.11 �1.11 �0.94 �2
On-top 2.63 �0.40 �0.61 �1.09 �1

Bridging hydroxylated Dumbbell 0.48 0.48 �0.54 �0.71 0
Split �0.30 �6.36 �1.12 �1.03 �2
On-top �2.21 �5.23 �0.87 �1.13 �1
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total concentrations in the fluid. The net injection flux F18 of
18O (time-averaged) is then given by:

F18 = Y18,WxFW + Y18,O2
XO2

(1 � x)FW, (1)

where Y18,W and Y18,O2
respectively denote the mole fraction of

18O in water and O2, XO2
denotes the chemical mole fraction of

O2 (all isotopes) in the gas, x denotes the fraction of injected O
originating from H2O, and FW is the net injection flux of O if
only water supplies the oxygen.

The second model aligns with the hypothesis by presuppos-
ing a Langmuir-style dual pathway mechanism wherein both O2

and H2O inject through the same adsorbed OH intermediate
whose surface coverage does not vary. This differs slightly from
‘‘competitive adsorption,’’ wherein O2 and H2O compete for the
same surface sites but have different coverages. For simplicity,
first order kinetics are assumed for dissociative adsorption and
desorption of H2O and O2 to form adsorbed O. First order
kinetics are also assumed for conversion of OH to injected O.
The rate constant kinj for injection is a composite quantity that
implicitly contains the rate constants for deprotonation of OH
and injection of O, and the concentration of adsorbed O. The
resulting expression for F18 is:

F18 ¼ kinjyOH;18 ¼ kinj
Y18;Wxþ Y18;O2

XO2
ð1� xÞ

xþ XO2
ð1� xÞ

� �
: (2)

In the asymptotic limit of x = 1, eqn (1) from the linear
proportion model represents a limiting case of eqn (2) from the
dual pathway model with FW = kinj. The dual pathway model has
the same number of fitting parameters (two) as the linear
proportion model but allows for possible ‘‘saturation’’ of
adsorbed OH with gas-derived O as the O2 concentration rises.
Thus, fitting eqn (1) and (2) to the means values from experi-
ments offers a direct comparison with the same number of
fitting parameters of two different models: one that allows for
saturation and one that does not.

Linear regression using the linear proportion model yields
x = 0.78, FW = 2.5 � 1012 cm�2 s�1, and a total residual variance
of 1.9 � 1022 cm�4 s�2. Nonlinear regression using the dual
pathway model yields x = 0.76, kinj = 2.2 � 1012 cm�2 s�1, and a
total residual variance of 1.5 � 1022 cm�4 s�2. The factor of 1022

in the variances can be removed by choosing different units or
scaling. The point of comparison centers on the multiplying
factors 1.5 vs. 1.9. The difference is modest, but the lower
residual fitting error for the dual pathway model is consistent
with the hypothesis that adsorbed OH provides the single
conduit by which O exchanges between fluid and solid.

The two models yield nearly identical values for x. This
factor almost certainly varies with temperature, pH and other
experimental variables. Although H2O provides most of the
injected O in the present experiments, O2 also contributes
significantly. Notably, the concentration of dissolved O2 at
70 1C is only 0.83 � 10�3 mole l�1, while the concentration of
H2O is 6.5 � 104 times higher at 54.2 mole l�1. Therefore,
the reaction rate constant to form injectable O via adsorbed
OH must be considerably lower for H2O than for O2, which is

consistent with chemical intuition that H2O is much less
reactive than O2.

4.2 Role of bulk Oi in lattice O participation

As discussed elsewhere,37 the diffusive penetration of 18O to
hundreds of nanometers at 70 1C is very strong evidence that
the diffusing species is Oi. At this temperature, VO does not
diffuse quickly enough to penetrate that far. The dominance of
Oi implies that VO has been eliminated by Oi annihilation, both
at the surface and within the bulk.37

The prevalence of Oi to depths of hundreds of nanometers
indicates that lattice O from these depths exchanges with O
from both H2O and dissolved O2. This can be seen as follows.
In TiO2,67,87,98 Oi comprises two atoms symmetrically arranged
around a single O lattice site. The atoms assume either a
neutral ‘‘dumbbell’’ geometry with an O–O bond, or a charged
‘‘split’’ geometry with bonds only to surrounding metal cations.
Diffusion of Oi occurs by an interstitialcy mechanism, in which
each constituent atom has a 50% chance of hopping – leaving
its partner behind in the lattice. Although the net flow of Oi is
toward the deep bulk, numerous random hopping and lattice
exchange events enable some O atoms from the deep bulk to
reach the surface for transfer to the fluid.

Several factors drive Oi creation at the surface. Some driving
forces are energetic, impelled by defect reactions. An example is
annihilation of VO by Oi, which oxidizes the solid. Other
examples include addition of Oi to extended defects99 and com-
bination with adventitious hydrogen to form Oi–Hi

� (ref. 37)
or other small clusters.57 Another driving force is entropic.
At 70 1C, the solid initially contains virtually no Oi because this
species has sufficient mobility to disappear at trap sites or the
surface. The fluid maintains a continuous supply of adsorbed
O, which converts into Oi with a modest barrier near 0.8 eV29

and spreads entropically into the solid.
The rate of Oi generation observed here may be compared to

the rate of a typical reaction involving O2 on TiO2 � the OER in
photostimulated water splitting, which several groups have
investigated on electrically conductive rutile TiO2(110).45,100–103

Photocurrents range from 0.54 to 2.2 mA-cm�2 under UV irradia-
tion in the range from 0.2 to 7 mW-cm�2. These photocurrents
correspond to O2 molecular fluxes in the range 1–3� 1015 cm�2 s�1.
Here, FW or kinj set the rough magnitude the Oi injection fluxes �
roughly three orders of magnitude lower. None of the photocurrent
studies estimated their current efficiency, so competing reactions
could have contributed to the measured current. However, Oi

injection seems to constitute only a minor side reaction.

4.3 Role of a ‘‘surface interstitial’’ in lattice O participation

Adsorbed O on TiO2(110) is usually depicted as sitting directly
atop an underlying Ti5c atom based on in vacuo scanning probe
experiments49–55 and first principles simulations49,50,52–55

including in submersion.46,56 The charge state can be toggled
between �1 and �2 with a scanning probe tip,53–55 and
this species has been represented in DFT simulations as both
�156 and �2.46 The present DFT calculations make plau-
sible the hypothesis that both on-top and surface interstitial
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(neutral dumbbell and charged split) configurations are meta-
stable. The dominant form depends upon the value of EF, the
presence of liquid water, the energy barriers for interconver-
sion, and other factors.

The on-top configuration is readily protonated. Protonation
of the surface interstitial was not investigated here, but its high
bond coordination implies little propensity for this reaction.
Under some conditions the on-top and surface interstitial
forms could coexist in comparable concentrations. Thus, there
is good reason to believe that O moves from the fluid into the
solid by a pathway in which H2O or O2 form OH. O atoms
produced by O2 dissociation convert rapidly to OH before
injecting; in other words, equilibrium between OH and O
greatly favors OH. However, that equilibrium involves the on-
top form of O. Some of that form converts into the surface
interstitial, which then injects as Oi. Diffusion of Oi into the
solid ensues, followed by exchange into the lattice. Movement
of O from the lattice into the fluid occurs through the reverse of
these steps as depicted in Fig. 5.

This mechanistic picture can only be considered plausible,
not proven. The present calculations simulate neither free
water molecules nor the possibilities for hydrogen bonding

and protonation. Water molecules in the liquid probably screen
hydrogen bonding interactions across rows, which seem espe-
cially effective at stabilizing the on-top structure. Moreover,
liquid water changes relative stability in other ways, such as
affecting the value of EF at the surface via pH or dissolved ions
that adsorb.

The foregoing discussion highlights a conceptual discon-
nect between computational simulations of adsorbed O
focused on catalysis, photocatalysis and electrochemistry vs.
those focused on defect reaction and diffusion in the solid. The
former simulations typically emphasize mechanisms involving
VO, with little explicit consideration of EF in the solid. The latter
simulations emphasize Oi but treat liquid solvation and pH
simplistically if at all. Both approaches yield useful insights,
but further progress must account for contributions to the
surface thermodynamics and kinetics from both the liquid
and solid.

4.4 Surface sites active for Oi production

What kinds of surface sites other than VO promote dissociation
of H2O and O2 in submersion? Clues come from fully amor-
phous metal oxides, which enhance activity for the OER
through a wide variety of surface site geometries and their
structural flexibility. Such sites are unfortunately difficult to
characterize,104 which is scientifically unsatisfying.61 However,
the design of ‘‘high-entropy’’ oxides embraces such complexity
by adding five or more dopant metals to tune the behavior of
active sites.23 With rms surface roughness of 0.14 � 0.08 nm,
the etched TiO2 employed here also supports ill-defined sites
having a wide range of effectiveness for injecting Oi.

58

What accounts for the susceptibility of TiO2 to poisoning
of Oi creation? The most reactive sites on catalytic surfaces
are often most vulnerable to deactivation by poisoning.105

An example afflicts TiO2 photocatalysts used for the ORR to
degrade aqueous pollutants,8,106,107 wherein the poisons derive
from dissolved organic matter. Deprotonation of OH and sub-
sequent injection of Oi entails a form of heterogeneous cata-
lysis, and a similar correlation between injection activity and
poisoning susceptibility appears to hold for injection of Oi from
oxide surfaces.58

4.5 Implications for other oxides and reaction conditions

Because rutile TiO2 is a prototypical metal oxide, this picture
based on Oi probably generalizes in many cases to other oxides �
explaining important aspects of their thermal, electrochemical, and
photochemical reactions with dissolved O2. Examples include
oxides fabricated to be hyperstoichiometric, including
spinel ferrites,108–111 perovskites,112 and Ruddlesden–Popper
oxides.29,30,113–115 Hyperstoichiometric oxides permanently
contain mobile Oi, and often exhibit enhanced catalysis and
photocatalysis rates.29,30

In stoichiometric oxides, Oi adopts dumbbell or split con-
figurations like those within TiO2 in wurtzite ZnO,116–121 cor-
undum Al2O3,122–124 fluorite CeO2,125 corundum Cr2O3,126 hema-
tite Fe2O3,127,128 perovskite SrTiO3,129–131 fluorite ThO2,125,132

fluorite UO2,133,134 tetragonal135 and cubic ZrO2,136,137 and

Fig. 5 Schematic comparison of O atom exchange between rutile
TiO2(110) and H2O or dissolved O2 in the fluid – mediated by (a) O
vacancies in the conventional picture and (b) O interstitials in the proposed
picture. Diagrams do not attempt to represent exact geometric config-
urations or certain details of reaction stoichiometry, e.g., the fate of H or
exchange of O between mobile species and the lattice. Balls depict atoms
of Ti (purple) H (pink) and O originating primarily from the fluid (black) or
solid lattice (grey). In reality, atoms originating from the fluid and solid are
represented to some degree in all reaction and diffusion pathways.
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Ruddlesden–Popper oxides.138 Following the behavior of TiO2,
the formation energy for Oi in these oxides is typically lower
than for VO in O-rich environments,87,117,130,139,140 as is the Oi

hopping barrier.37,141 To existing barrier compilations, low
barriers for Oi hopping (0.13–0.47 eV) may be added for
corundum Cr2O3,126 hematite Fe2O3,128 perovskite SrTiO3,129

fluorite ThO2,125 and fluorite UO2.142

Counterintuitively, Oi may mediate aqueous reactions of O
even in reduced oxides. The high diffusional mobility of Oi

would make its dominance temporary and difficult to detect.
Thus, Oi may dominate near the surface of vacancy-rich per-
ovskites during reaction and then be replaced by VO from the
bulk after the reaction ends. Such behavior would accord with
the malleability and rapid reversibility of perovskite surface
composition and structure observed in other contexts.32

5. Conclusions

Isotopic self-diffusion measurements in submerged rutile TiO2

single crystals with varying concentrations of 18O isotopic label
show that O exchange occurs between rutile TiO2(110) and
dissolved O2 as well as the H2O liquid. Diffusion in the TiO2

is mediated by oxygen interstitials (Oi). First-principles calcula-
tions strongly suggest that adsorbed O in on-top and ‘‘surface
interstitial’’ configurations mediate the surface reaction rather
than VO. Adsorbed OH appears to provide a single pathway for
H2O and O2 to contribute injectable oxygen, although fitting
the diffusion data to simple models indicates that H2O con-
tributes more. The most active sites on the surface for OH
deprotonation and Oi injection are probably ill-defined and
vulnerable to deactivation by poisoning. Compared to the rate
of a typical reaction between O2 and TiO2 such as photostimu-
lated OER, the rate of Oi injection is small. Because rutile TiO2

is a prototypical metal oxide, this physical picture helps
to explain many aspects of thermal, electrochemical, and
photochemical reactions between dissolved O2 and a variety
of oxides.
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