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Magnetically induced current density from
numerical curls of nucleus independent
chemical shifts

Raphael J. F. Berger *a and Maria Dimitrova *b

Instead of computing magnetically induced current densities

(MICD) via the wave function and their quantum mechanical defini-

tion, one can also use the differential form of the Ampère–Maxwell

law to obtain them from curls via spatial derivatives of the induced

magnetic field. In magnetic molecular response calculations, the

latter can be done by taking the numerical derivative of the so-

called ‘‘nucleus-independent chemical shifts’’ (NICS), which are

implemented in many standard quantum chemical programs. The

resulting numerical MICD data is in contrast to any other first-

principles based numerically obtained MICDs computed via the

wave function route, virtually divergence-free.

At the conclusion of the fourth and final paper in Schrödinger’s
seminal series ‘‘Quantisierung als Eigenwertproblem’’,1 he
introduced a vector quantity that is bilinear in the wave function
and its complex conjugate similarly to the density function. He
interpreted this quantity as the current density (Stromdichte)
associated with the probability density (Gewichtsfunktion) in
configuration space. Schrödinger further concluded that this
current density vanishes for nondegenerate energy eigenstates,
leading to his strikingly simple explanation of the radiation-
lessness of atomic ground states.

The current density (CD), denoted by J, has been of central
importance to quantum theory from its earliest days to the
present. For the one-particle case, it is defined as

J := <{c*pc} (1)

where c is the quantum mechanical wave function describing
the state of the particle, and p is the canonical momentum
operator (which itself corresponds to the conjugate of a spatial
degree of freedom of the Lagrangian). Today, the CD plays a
critical role in theoretical chemistry, as it encodes the complete

information on the molecular magnetic response.2–4 All physi-
cal magnetic properties, such as magnetic susceptibilities and
shielding constants, can be derived directly from the CD.

In quantum chemistry, the computation of J has tradition-
ally relied on Schrödinger’s original defining equation, using
the wave function as the starting point within a first-principles
framework based purely on quantum mechanics.† Virtually all
quantum chemical codes and programs to date (except GIMIC7

which is based on the Biot–Savart equation) employ this
approach.3 We propose an alternative strategy inspired by
Hirschfelder’s notion that his so-called ‘‘subobservables’’8 can
be treated analogously to classical quantities.2 This perspective,
in conjunction with the electrodynamic field equations, pro-
vides a fresh framework for deriving J, potentially opening up
new computational and conceptual pathways.

Electrons in a molecule respond to an external magnetic field
Bext by inducing a secondary magnetic field Bind such that in every
point in space r, a total magnetic field Btot = Bext + Bind results. These
fields are related via the so-called ‘‘nuclear magnetic shielding
tensor’’ s(r), describing the magnetic response of the molecule,

Btot(r) = (1 � s(r))�Bext(r) (2)

¼ BextðrÞ�sðrÞ � BextðrÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼BindðrÞ

(3)

The nuclear magnetic shielding tensor can be directly
related to the ‘‘nucleus-independent chemical shift’’ tensor or
NICS9,10 via:

sðrÞ ¼ �

NICSxxðrÞ NICSxyðrÞ NICSxzðrÞ

NICSyxðrÞ NICSyyðrÞ NICSyzðrÞ

NICSzxðrÞ NICSzyðrÞ NICSzzðrÞ

0
BBB@

1
CCCA; (4)

where the first index refers to the response of the molecule in
direction a when the magnetic field points in the b direction
(the second index). In tensor notation, this equals to

sab = �NICSab (5)
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where a and b (and below also g and d) denote the tensor
component indices for x, y, z. As already has been outlined in
ref. 11 the rank-2 current density susceptibility tensor Jab

(CDT) can be expressed via the magnetostatic Ampère–Maxwell
law (in its differential form) and the NICS tensor (see eqn (4)) as

m0Jab(r) = eagdrgNICSdb(r) (6)

where e refers to the Levi-Cita tensor, m0 is the vacuum
susceptibility and summation over repeated Greek indices is
implied. This expression is equivalent to eqn (6) from ref. 11
except that we have replaced s by –NICS (eqn (5)) according to
its definition.9 The computation of the NICS tensor and closely
related derived quantities is implemented in many common
quantum chemical codes, including the efficient mpshift12

module of Turbomole.13–15 It is independent of a prior deter-
mination of the current density (susceptibility).

Eqn (6) thus offers a new route for the computation of
current densities. Analytical positional derivatives of NICS are
not implemented in any quantum chemical codes to the best of
our knowledge. However, we found that numerical derivation is
a feasible alternative to obtain MICDs. One can formalize a
numerical approximation drg to the differentiation operator rg

by defining an operator for the finite difference quotient
between a forward difference of a vector field component va(r)
at position r and a finite numerical increment d 4 0

drgvaðrÞ ¼
va rþ deg
� �

� vaðrÞ
d

; (7)

with eg being the unit vector along the g component. Note that
this operator depends explicitly on the increment size d and
that (under suitable conditions on the operand) limd-0

drg =rg

holds. Thus, the main result of this work can be expressed as

Jab � ~Jab ¼ m�10 eagddrgNICSdb; (8)

where ~J is a numerical approximation to the CDT. For the limit
case of d approximating 0, eqn (6) is exactly recovered from
eqn (8).

An intriguing property of the current density fields ~J

derived from the contraction of the approximate CDT with
the external magnetic field,

~Ja ¼ ~JabB
ext
b ; (9)

or

~J ¼ ~J � Bext; (10)

lies in its ability to maintain the analytical and defining
property of J—namely that it is divergence-free

r�J = 0 (11)

for any stationary eigenstate of the system, provided that the
numerical representation of the NICS field is sufficiently smooth.
This behaviour contrasts with other numerical approximations
~~J
� �

to J obtained from standard quantum chemical software,3

which are essentially based on expression eqn (1). Substantial
deviations from zero-divergence arise in calculations based on

incomplete basis sets and for example perturbative expansions
(vide infra). This is particularly noteworthy because non-zero
divergences can pose significant challenges for topological ana-
lyses, highlighting the importance of careful numerical treatment.
This situation is opposed to by quantum mechanical systems
which can be solved analytically or purely theoretical considera-
tions which are independent of numerical data.

At this point, it becomes apparent that J̃ is not equal to the

CD obtained from numerical approximations ~~J of the magne-
tically perturbed wave function and the original definition
(eqn (1)) by Schrödinger. Monaco, Summa, Zanasi and RB have
elaborated on this subject in ref. 11. In short, unlike J̃, approx-

imations of type ~~J contain a spurious contamination which can
be described as the gradient of the Poisson potential of the
spurious non-zero divergence,

jspurious ¼ �
1

4p

ðr0 � ~~Jðr0Þ
jr� r0j

ð
d3r0: (12)

Subtraction of the term then yields J̃,11

~J ¼ ~~J�rjspurious (13)

where now r�J̃ = 0. A handful of exemplary calculations of J̃ are
reported and discussed in detail in ref. 11, so we will show only
one example calculation on the benzene molecule performed
using Turbomole 7.813–15 for the magnetic response and NICS
calculations as follows.

The calculations were performed at the DFT level with the
BP8616,17 functional and the def2-TZVP basis set. The ‘numer-
ical curl’ of the nucleus-independent chemical shieldings was
computed on a grid in the molecular plane according to eqn (8)
and generated using a Python script.‡ A plot of the obtained J̃

vectors is shown in Fig. 1, along with a plot (Fig. 2) of ~~J

obtained with GIMIC,7,18 which we denote as JGIMIC in the
following. The differences of the currents from the two meth-
ods (J̃–JGIMIC are shown in Fig. 3), and the divergence of the
current density obtained from GIMIC at the same level of theory
(r�J) is shown in Fig. 4.

Fig. 1 J̃ computed via eqn (8) in the molecular plane of a benzene
molecule on a square grid in steps of 0.6 bohr.
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Prima vista the differences between J̃ (Fig. 1) and JGIMIC

(Fig. 2) seem only minor; however, upon subtraction (and
upscaling), the differences become more apparent (Fig. 3). As
expected, larger deviations appear close to the nuclei. The
reason for that is the strong correlation of the differences
(explicitly given by eqn (12) and (13)) with the divergence of
JGIMIC. These divergences (i.e., breaking of charge conservation)
accumulate close to the nuclei where basis set incompleteness
is more pronounced,7 which is confirmed by the distribution of
r�JGIMIC shown in Fig. 4.

In summary, we have devised a new scheme to obtain
numerical approximations to the quantum mechanical current
density that, unlike previously described methods, does not
directly arise from the (perturbed) wave functions but rather
from the chemical shift tensor and its spatial derivatives. This
approximate CD is virtually divergence-free and can be very
simply implemented in any program that can compute chemical
shieldings, even interfacing output-data processing scripts.
Ongoing work by our groups and collaborators is developing a
numerically both efficient and reliable implementation of the

scheme proposed here. One key subject thereof will be the choice
of the step size of d for the numerical differentiation. We are also
currently investigating an approach to decompose J into compo-
nents for simplified analyses based on the proposed method.
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