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Microscopic and macroscopic pKa values for 35 compounds
selected by the organizers of euroSAMPL 1 challenge were blindly
predicted with our thermodynamics-informed empirical S + pKa
model (ranked submission 0x4cb7101f). Our results have received
the first overall rank from the challenge organizers. We describe our
methodology and discuss evaluation methods.

EuroSAMPL, the first European blind prediction challenge in
the spirit of established SAMPL challenges ran from February
2024 until it concluded in June of that year." Participants were
asked to predict ionization constants (pK,) of 35 newly synthe-
sized drug-like compounds. The organizers made good effort to
select compounds with only one deprotonation transition in
the range of their experimental techniques (pH = 2-12)."
In addition, the single transition per compound in this pH
range was confirmed by alternative experiments.> Final predic-
tion results are shown in Table 1. The organizers employed a
simple null benchmark where all “predicted” pK, values were
set to 7.0. The benchmark resulted in root mean square error
(RMSE) of 2.444. Another benchmark was the organizers’ EC-
RISM method achieving RMSE = 1.107. Based on these results,
machine learning approaches tend to dominate methods based
on quantum chemistry. In the previous SAMPL6 pK, competi-
tion it was a hybrid method (QM with COSMO-RS approach to
solvation followed by a fit to experimental data, ID = “xvxzd”)
that achieved the best RMSE = 0.68.>* The next two best
methods were empirical. One of them, however, easily beat
the “xvxzd” metric after retraining with more data.’

Prior to discussing ranked results of all the participants, we
must explain “first” and “best” - the two methods of matching
predicted and observed pK,. Even though there was only one
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measured pK, per compound, some compounds were not
monoprotic.

Therefore, methods with automatic detection of ionizable
sites predicted multiple pK, for some compounds (see Table 2).
For example, our S + pK, method>” predicted multiple pK, in
the 2-12 range for seven compounds, albeit marginally. Fig. 1
shows one such example; others can be found in the ESL.{ The
natural question is which of the predicted pK, (i.e., which
macroscopic deprotonation transition) should be matched
against the one observed in the organizer’s experiment? We
have addressed this issue in our reference work:'> The only fair
and objective method of matching a sequence of multiple
predicted vs. a sequence of multiple observed values per
compound is to form a pairing with minimal sum of absolute
deviations while preserving the same order of both sequences.
The latter is dictated by a simple physics of ionization: the
order of pK, is descending as a function of the number of
bound protons. After all, the more protons a compound has it is
energetically more expensive to add another one. Such a
method was employed by the organizers of SAMPL6
competition® and it corresponds to the “best” matching in

Table 1 Results of the EuroSAMPL competition ranked by “first” RMSE.
RMSE = root mean square error, MAE = mean absolute error. "“First” and
"best” refer to different methods of pK, matching explained in text. Lowest
errors are distinguished in bold font. The last two rows show reference
result that did not participate in euroSAMPL

RMSE MAE RMSE MAE

Method* ID “first” “first” “best” ‘“best”
Simulations plus, S + pK,>~’ 0x4cb7101f 0.529 0.379 0.529 0.379
ORCA/DFT/DRACO/MM/ML 0x4a6c0760 0.806 0.632 0.806 0.632
RF/CDK/Jazzy 0xc7960c21 1.207 0.812 1.207 0.812
BIOVIA, COSMO-RS 0x4b7b06e5 1.392 0.705 0.734 0.519
QupKake® 0x216604d8 1.672 0.779 0.513 0.408
Gaussian/DFT/SMD’ 0x421c06f1 1.726 1.410 1.726 1.410
ORCA/DFT/SMD 0x4cb00786 2.123 1.757 2.123 1.757
Gaussian/DFT/IEF-PCM 0x3f2606c6 2.569 2.009 2.569 2.009
Gaussian/uESE"’ 0x541007€2 5.280 3.375 3.422 2.231
reference_EC-RISM™* 1.107 0.935 1.107 0.935
All pK, =7 0xb8320bc2 2.444 2.142 2.444 2.142

Phys. Chem. Chem. Phys., 2025, 27, 8039-8042 | 8039


https://orcid.org/0000-0003-1737-6787
http://crossmark.crossref.org/dialog/?doi=10.1039/d5cp00165j&domain=pdf&date_stamp=2025-03-26
https://doi.org/10.1039/d5cp00165j
https://doi.org/10.1039/d5cp00165j
https://rsc.li/pccp
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cp00165j
https://pubs.rsc.org/en/journals/journal/CP
https://pubs.rsc.org/en/journals/journal/CP?issueid=CP027016

Open Access Article. Published on 08 April 2025. Downloaded on 10/21/2025 5:57:58 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Communication

View Article Online

PCCP

Table 2 S + pK,>~” predictions on the 35 euroSAMPL compounds. The non-default “aliphatic ~OH" and “aliphatic amides” options were turned on.
Predicted pK, outside the 2—-12 range were ignored. We have corrected the dominant tautomer of compound euroSAMPL-14 and subtracted bromide
anion from euroSAMPL-07. “Matched pK," indicates S + pK, predicted pK, presumed to be measured in euroSAMPL experiment range of 2-12. “Other
pK," indicates S + pKj, predicted pKj, in the 2-12 range assumed not to be measured. Bold font indicates “complex” compounds; see text for definition

SMILES Name Matched pK, Other pK,
olccecl-c1n(ne(c1)C(O)—0)C euroSAMPL-01 3.5
O—C1N(C—C(C=C1)clccccc1)CC(0O)—=0 euroSAMPL-02 3.49

O(C)clcec(ecl)-clnececl euroSAMPL-03 5.13

nicnc(N)ecl1C(C)(C)C euroSAMPL-04 6.54

O=C(N)clccc(ccl)CN euroSAMPL-05 8.97
O=—C1N(c2¢(C1)ce(ce2)C(0)=0)C euroSAMPL-06 3.91

slce(nciN)-cleec(cel)C euroSAMPL-07 4.68

Oc1lcee(ccl)C(=O0O)NCeleceecl euroSAMPL-08 8.91 11.65
0C(=0)c1ccc(N2CCN(CC2)C(=0)C(C)(C)C)ecl euroSAMPL-09 4.41 2.62
Clelce(C(0)=0)c(OC)cclN euroSAMPL-10 4.84

OC(=O0)c1nc2neccec2ecl euroSAMPL-11 3.45

OC(—O0)clce(necl1)NC(—O0)C euroSAMPL-12 3.59 11.96, 2.03
olcnnel-cleee(O)ecl euroSAMPL-13 8.25

0=—C1C(Br)=C(N=CN1)C euroSAMPL-14 7.96

s1c2c(ccec2)c(0)e1C(—0)C euroSAMPL-15 6.2

Oc1ce(NC(=O0)CC(C)C)ccel euroSAMPL-16 9.4

OC(=0)clce(-n2ccec2)ecel euroSAMPL-17 3.83

$1c2N—CNC(=0)c2cc1CC euroSAMPL-18 9.46

0OCc1n2¢(nc1C)C=CC=C2 euroSAMPL-19 7.57
O—C1N(c2c¢(cc(ec2)C(0)—0)C1(C)C)C euroSAMPL-20 4.1
0OC(=—0)C—1n2nc¢(cc2N—C(C—1)C1CC1)C(C)(C)C euroSAMPL-21 3.02

Oclceecc1C(=O)N(C)C euroSAMPL-22 9.37

OC(—0)clene(nc1C)CC euroSAMPL-23 3.49

01CCN(CC1)clce(ne2elccec2)C euroSAMPL-24 9.31
O=—=C(N)CCn1c2cc(C)c(ec2nel)C euroSAMPL-25 4.9 11.85
Felcee2e(N—CNC2=—=O0)ccl euroSAMPL-26 9.51

O—C(N)clcec(cel)-clncecel euroSAMPL-27 3.91 11.88
nlcen(C)cl-clceencl euroSAMPL-28 6.1 2.16
OC(=O0)c1nnn(c1C1CC1)-clcce(ccl)C euroSAMPL-29 3.63

Oc1cc2c(cc1C(=O0)NCCO)ccec2 euroSAMPL-30 9.06 11.68
01CC(=0)N(c2c1cece2)CC(0)—0 euroSAMPL-31 3.35
olnc(cel-clcececl)C(—O)N1CCN(CC1)C euroSAMPL-32 7.27

slcceel-c1n2CCCe2ncl euroSAMPL-33 6.39

S(Ce1cec(cc1)C(0)—0)C euroSAMPL-34 4.02

nilcc(ccclN)-cleceeel euroSAMPL-35 6.31

euroSAMPL. The “first” matching, although one may argue that
best predictive algorithms should handle that part as well, was
in our opinion subjective since each participant had to blindly
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Fig. 1 Multiple predicted pK, for compound euroSAMPL-12 with full resolution
of ionization microstates (S + pK, method). The “0.0%" labels mean "< 0.1%".
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guess, relying solely on their chemical intuition, which of
the predicted pK, were measured in euroSAMPL experiments.
Due to our vast experience in ionization chemistry, we have
guessed each pairing correctly, but three participants were not
so lucky. This is why their “first” and “best” results differ. In
particular, developers of the empirical QupKake model® mis-
matched just two of their guessed predictions resulting in high
“first” RMSE while their “best” RMSE was much lower.

Our S + pK, method stands out as the best one in all “first”
(MAE) categories outpacing the nearest participant by 0.3 log
units. In the “best” category S + pK,’s RMSE is higher than
QupKake’s RMSEs by 0.016 log units while its mean absolute
error (MAE) is lower by 0.029 log units - this could be con-
sidered a tie. The observed vs. predicted plot for S + pK, is
shown in Fig. 2 generated by the euroSAMPL organizers.

Full details of the S + pK, method have been described
elsewhere,™® but let us provide a short summary below. It
belongs to a category of empirical, thermodynamics-informed
machine learning methods. Its strength is in the exact, micro-
scopic description of protic ionization. In fact, S + pK, predict
all N x 2V~" microconstants for a compound with N protona-
tion sites, up to N = 20. The microconstants are calculated for
each of the 2V microstates. For the calculation of each

This journal is © the Owner Societies 2025
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Fig. 2 Observed vs. predicted plot for the S + pKj, predictions. Dashed line =
identity line, solid line = trendline.

microconstant an artificial neural network ensemble (ANNE) is
employed. Each of the component neural networks (ANN) is of
the Multilayer Perceptron type with a single sigmoid hidden
layer. Individual ANNs were obtained by training against
different random splits of modelling data into actual training
and verification subsets. An external test set was not used in
this process.'® The ANNE uses atomic descriptors calculated for
each ionization site and for each protonation state of other
sites. Microequilibria theory'” is then used to calculate ioniza-
tion macroconstants (a.k.a. apparent pkK,) that can be matched
against pK, obtained with standard experimental methods. S +
pK. uses 10 ANNE trained for 10 types of ionizable groups
(hydroxyacids, acidic amides, aromatic NH acids, thioacids,
carboacids, amines, aromatic N bases, N-oxides, thiones, car-
bobases). In its latest incarnation S + pK, was trained against
70810 measured apparent pK, obtained from public sources
and industrial partnerships.’

It is interesting to ask to what degree the 35 challenge
compounds represent the modern pharmaceutical chemistry
space. In collaboration with our industrial partners, we have had
a privilege to examine large sets of proprietary pharmaceutical and
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Fig. 3 Predicted microconstants for the 3.59 transition in euroSAMPL-12
positioned next to the respective ionizable groups, acidic in red, basic in blue.
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Table 3 A breakdown of whether participating methods considered
multiple ionization microstates or not. Data for the last column was pulled

out of the “metadata” reports®

Method* ID Microstates?
Simulations plus, S + pK,”>”’ 0x4cb7101f Yes
ORCA/DFT/DRACO/MM/ML 0x4a6¢0760 Probably
RF/CDK/Jazzy 0xc7960c21 Unknown
BIOVIA, COSMO-RS 0x4b7b06e5 Yes
QupK,ke® 0x216604d8 Yes
Gaussian/DFT/SMD’ 0x421c06f1 Unknown
ORCA/DFT/SMD 0x4cb00786 Unknown
Gaussian/DFT/IEF-PCM 0x3f2606¢6 Yes
Gaussian/uESE" 0x541007€2 Unknown

agrochemical compounds and their ionization patterns.>® Unequi-
vocally, most of these compounds contains multiple ionizable
groups. Moreover, a large portion of these multiprotic compounds
exhibit complex ionization patterns in the following sense: Please
refer to figures in the ESIf to convince yourself that microscopic
deprotonation transitions of 31 challenge compounds are “simple”,
i.e., dominated by a single microstate, taking 90% contribution
as a cutoff value. In the same sense, deprotonations of
the remaining 4 compounds (euroSAMPL-11, euroSAMPL-12,
euroSAMPL-21, and euroSAMPL-23, indicated by a bold font in
Table 2) have non-negligible contributions from other micro-
states, i.e., are ‘“‘complex”. Fig. 1 illustrates that for euroSAMPL-
12 the macroscopic pK, = 3.59 transition is dominated by two
microstates contributing 63.8% and 38.2%, respectively. Our
point is that predictive methods that do not take the micro-
scopic thermodynamics of ionization into account and rely on
single microstates will likely do better on “simple” cases. Fig. 3
illustrates this point: Neglect of the second dominant micro-
state in euroSAMPL-12 would present the 3.40 microconstant in
lieu of the apparent pK, of 3.59.

In turn, methods with exact treatment of the ionization
thermodynamics should perform well on both the “simple”
and “complex” cases. Blind predictions on large sets of pro-
prietary pharmaceutical and agrochemical compounds, men-
tioned above and conducted by our industrial partners prove
this point for our S + pK, model.>® Unfortunately, euroSAMPL
organizers have not revealed experimental pK, values for the 35
challenge compounds' and we cannot present quantitative
assessment of ‘“complex” compound predictions across all
participating methods. I hope the organizers will address this
issue in their upcoming report. The good news is that five
methods either included or probably included microstate ana-
lysis in their calculations (Table 3).

Conclusions

Empirical and hybrid (quantum chemical + empirical post
training) methods continue leading the pack of predictive
accuracy of ionization constants. The pure ab initio approaches
require massive computational resources seem to be less
accurate, mainly due to significant difficulties in estimating
solvation energies and entropies. On the other hand, the

Phys. Chem. Chem. Phys., 2025, 27, 8039-8042 | 8041
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drawback of empirical methods is their reliance on massive
amounts of experimental data.

Future pK, competitions should use optimal matching
algorithms instead of subjective guessing since it is only the
former that evaluates the method in question, while the latter
evaluates both the method and its developer or user. To make
the competitions more meaningful at representing pharmaceu-
tical chemistry their organizers should choose a sizable percen-
tage of “‘complex” compounds.

Data availability

The S + pK, results are available in the accompanying ESL{
ADMET Predictor® is available at no charge to academic users.”
To reproduce results quoted in this communication turn on the
detection of aliphatic -OH and aliphatic amides - these options

are turned off by default to save processing time.
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