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Thermodynamics-informed neural networks and
extensive data sets: key factors to accurate blind
predictions of apparent pKa values in the
euroSAMPL challenge†

Robert Fraczkiewicz ‡

Microscopic and macroscopic pKa values for 35 compounds

selected by the organizers of euroSAMPL 1 challenge were blindly

predicted with our thermodynamics-informed empirical S + pKa

model (ranked submission 0x4cb7101f). Our results have received

the first overall rank from the challenge organizers. We describe our

methodology and discuss evaluation methods.

EuroSAMPL, the first European blind prediction challenge in
the spirit of established SAMPL challenges ran from February
2024 until it concluded in June of that year.1 Participants were
asked to predict ionization constants (pKa) of 35 newly synthe-
sized drug-like compounds. The organizers made good effort to
select compounds with only one deprotonation transition in
the range of their experimental techniques (pH = 2–12).1

In addition, the single transition per compound in this pH
range was confirmed by alternative experiments.2 Final predic-
tion results are shown in Table 1. The organizers employed a
simple null benchmark where all ‘‘predicted’’ pKa values were
set to 7.0. The benchmark resulted in root mean square error
(RMSE) of 2.444. Another benchmark was the organizers’ EC-
RISM method achieving RMSE = 1.107. Based on these results,
machine learning approaches tend to dominate methods based
on quantum chemistry. In the previous SAMPL6 pKa competi-
tion it was a hybrid method (QM with COSMO-RS approach to
solvation followed by a fit to experimental data, ID = ‘‘xvxzd’’)
that achieved the best RMSE = 0.68.3,4 The next two best
methods were empirical. One of them, however, easily beat
the ‘‘xvxzd’’ metric after retraining with more data.5

Prior to discussing ranked results of all the participants, we
must explain ‘‘first’’ and ‘‘best’’ – the two methods of matching
predicted and observed pKa. Even though there was only one

measured pKa per compound, some compounds were not
monoprotic.

Therefore, methods with automatic detection of ionizable
sites predicted multiple pKa for some compounds (see Table 2).
For example, our S + pKa method5–7 predicted multiple pKa in
the 2–12 range for seven compounds, albeit marginally. Fig. 1
shows one such example; others can be found in the ESI.† The
natural question is which of the predicted pKa (i.e., which
macroscopic deprotonation transition) should be matched
against the one observed in the organizer’s experiment? We
have addressed this issue in our reference work:12 The only fair
and objective method of matching a sequence of multiple
predicted vs. a sequence of multiple observed values per
compound is to form a pairing with minimal sum of absolute
deviations while preserving the same order of both sequences.
The latter is dictated by a simple physics of ionization: the
order of pKa is descending as a function of the number of
bound protons. After all, the more protons a compound has it is
energetically more expensive to add another one. Such a
method was employed by the organizers of SAMPL6
competition3 and it corresponds to the ‘‘best’’ matching in

Table 1 Results of the EuroSAMPL competition ranked by ‘‘first’’ RMSE.
RMSE = root mean square error, MAE = mean absolute error. ‘‘First’’ and
‘‘best’’ refer to different methods of pKa matching explained in text. Lowest
errors are distinguished in bold font. The last two rows show reference
result that did not participate in euroSAMPL

Method1 ID
RMSE
‘‘first’’

MAE
‘‘first’’

RMSE
‘‘best’’

MAE
‘‘best’’

Simulations plus, S + pKa
5–7 0x4cb7101f 0.529 0.379 0.529 0.379

ORCA/DFT/DRACO/MM/ML 0x4a6c0760 0.806 0.632 0.806 0.632
RF/CDK/Jazzy 0xc7960c21 1.207 0.812 1.207 0.812
BIOVIA, COSMO-RS 0x4b7b06e5 1.392 0.705 0.734 0.519
QupKake8 0x216604d8 1.672 0.779 0.513 0.408
Gaussian/DFT/SMD9 0x421c06f1 1.726 1.410 1.726 1.410
ORCA/DFT/SMD 0x4cb00786 2.123 1.757 2.123 1.757
Gaussian/DFT/IEF-PCM 0x3f2606c6 2.569 2.009 2.569 2.009
Gaussian/uESE10 0x541007e2 5.280 3.375 3.422 2.231
reference_EC-RISM11 1.107 0.935 1.107 0.935
All pKa = 7 0xb8320bc2 2.444 2.142 2.444 2.142
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euroSAMPL. The ‘‘first’’ matching, although one may argue that
best predictive algorithms should handle that part as well, was
in our opinion subjective since each participant had to blindly

guess, relying solely on their chemical intuition, which of
the predicted pKa were measured in euroSAMPL experiments.
Due to our vast experience in ionization chemistry, we have
guessed each pairing correctly, but three participants were not
so lucky. This is why their ‘‘first’’ and ‘‘best’’ results differ. In
particular, developers of the empirical QupKake model8 mis-
matched just two of their guessed predictions resulting in high
‘‘first’’ RMSE while their ‘‘best’’ RMSE was much lower.

Our S + pKa method stands out as the best one in all ‘‘first’’
(MAE) categories outpacing the nearest participant by 0.3 log
units. In the ‘‘best’’ category S + pKa’s RMSE is higher than
QupKake’s RMSEs by 0.016 log units while its mean absolute
error (MAE) is lower by 0.029 log units – this could be con-
sidered a tie. The observed vs. predicted plot for S + pKa is
shown in Fig. 2 generated by the euroSAMPL organizers.

Full details of the S + pKa method have been described
elsewhere,5,6 but let us provide a short summary below. It
belongs to a category of empirical, thermodynamics-informed
machine learning methods. Its strength is in the exact, micro-
scopic description of protic ionization. In fact, S + pKa predict
all N � 2N�1 microconstants for a compound with N protona-
tion sites, up to N = 20. The microconstants are calculated for
each of the 2N microstates. For the calculation of each

Table 2 S + pKa
5–7 predictions on the 35 euroSAMPL compounds. The non-default ‘‘aliphatic –OH’’ and ‘‘aliphatic amides’’ options were turned on.

Predicted pKa outside the 2–12 range were ignored. We have corrected the dominant tautomer of compound euroSAMPL-14 and subtracted bromide
anion from euroSAMPL-07. ‘‘Matched pKa’’ indicates S + pKa predicted pKa presumed to be measured in euroSAMPL experiment range of 2–12. ‘‘Other
pKa’’ indicates S + pKa predicted pKa in the 2–12 range assumed not to be measured. Bold font indicates ‘‘complex’’ compounds; see text for definition

SMILES Name Matched pKa Other pKa

o1cccc1-c1n(nc(c1)C(O)QO)C euroSAMPL-01 3.5
OQC1N(CQC(CQC1)c1ccccc1)CC(O)QO euroSAMPL-02 3.49
O(C)c1ccc(cc1)-c1ncccc1 euroSAMPL-03 5.13
n1cnc(N)cc1C(C)(C)C euroSAMPL-04 6.54
OQC(N)c1ccc(cc1)CN euroSAMPL-05 8.97
OQC1N(c2c(C1)cc(cc2)C(O)QO)C euroSAMPL-06 3.91
s1cc(nc1N)-c1ccc(cc1)C euroSAMPL-07 4.68
Oc1ccc(cc1)C(QO)NCc1ccccc1 euroSAMPL-08 8.91 11.65
OC(QO)c1ccc(N2CCN(CC2)C(QO)C(C)(C)C)cc1 euroSAMPL-09 4.41 2.62
Clc1cc(C(O)QO)c(OC)cc1N euroSAMPL-10 4.84
OC(QO)c1nc2ncccc2cc1 euroSAMPL-11 3.45
OC(QO)c1cc(ncc1)NC(QO)C euroSAMPL-12 3.59 11.96, 2.03
o1cnnc1-c1ccc(O)cc1 euroSAMPL-13 8.25
OQC1C(Br)QC(NQCN1)C euroSAMPL-14 7.96
s1c2c(cccc2)c(O)c1C(QO)C euroSAMPL-15 6.2
Oc1cc(NC(QO)CC(C)C)ccc1 euroSAMPL-16 9.4
OC(QO)c1cc(-n2cccc2)ccc1 euroSAMPL-17 3.83
s1c2NQCNC(QO)c2cc1CC euroSAMPL-18 9.46
OCc1n2c(nc1C)CQCCQC2 euroSAMPL-19 7.57
OQC1N(c2c(cc(cc2)C(O)QO)C1(C)C)C euroSAMPL-20 4.1
OC(QO)CQ1n2nc(cc2NQC(CQ1)C1CC1)C(C)(C)C euroSAMPL-21 3.02
Oc1ccccc1C(QO)N(C)C euroSAMPL-22 9.37
OC(QO)c1cnc(nc1C)CC euroSAMPL-23 3.49
O1CCN(CC1)c1cc(nc2c1cccc2)C euroSAMPL-24 9.31
OQC(N)CCn1c2cc(C)c(cc2nc1)C euroSAMPL-25 4.9 11.85
Fc1cc2c(NQCNC2QO)cc1 euroSAMPL-26 9.51
OQC(N)c1ccc(cc1)-c1ncccc1 euroSAMPL-27 3.91 11.88
n1ccn(C)c1-c1cccnc1 euroSAMPL-28 6.1 2.16
OC(QO)c1nnn(c1C1CC1)-c1ccc(cc1)C euroSAMPL-29 3.63
Oc1cc2c(cc1C(QO)NCCO)cccc2 euroSAMPL-30 9.06 11.68
O1CC(QO)N(c2c1cccc2)CC(O)QO euroSAMPL-31 3.35
o1nc(cc1-c1ccccc1)C(QO)N1CCN(CC1)C euroSAMPL-32 7.27
s1cccc1-c1n2CCCc2nc1 euroSAMPL-33 6.39
S(Cc1ccc(cc1)C(O)QO)C euroSAMPL-34 4.02
n1cc(ccc1N)-c1ccccc1 euroSAMPL-35 6.31

Fig. 1 Multiple predicted pKa for compound euroSAMPL-12 with full resolution
of ionization microstates (S + pKa method). The ‘‘0.0%’’ labels mean ‘‘o0.1%’’.
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microconstant an artificial neural network ensemble (ANNE) is
employed. Each of the component neural networks (ANN) is of
the Multilayer Perceptron type with a single sigmoid hidden
layer. Individual ANNs were obtained by training against
different random splits of modelling data into actual training
and verification subsets. An external test set was not used in
this process.13 The ANNE uses atomic descriptors calculated for
each ionization site and for each protonation state of other
sites. Microequilibria theory12 is then used to calculate ioniza-
tion macroconstants (a.k.a. apparent pKa) that can be matched
against pKa obtained with standard experimental methods. S +
pKa uses 10 ANNE trained for 10 types of ionizable groups
(hydroxyacids, acidic amides, aromatic NH acids, thioacids,
carboacids, amines, aromatic N bases, N-oxides, thiones, car-
bobases). In its latest incarnation S + pKa was trained against
70 810 measured apparent pKa obtained from public sources
and industrial partnerships.5

It is interesting to ask to what degree the 35 challenge
compounds represent the modern pharmaceutical chemistry
space. In collaboration with our industrial partners, we have had
a privilege to examine large sets of proprietary pharmaceutical and

agrochemical compounds and their ionization patterns.5,6 Unequi-
vocally, most of these compounds contains multiple ionizable
groups. Moreover, a large portion of these multiprotic compounds
exhibit complex ionization patterns in the following sense: Please
refer to figures in the ESI† to convince yourself that microscopic
deprotonation transitions of 31 challenge compounds are ‘‘simple’’,
i.e., dominated by a single microstate, taking 90% contribution
as a cutoff value. In the same sense, deprotonations of
the remaining 4 compounds (euroSAMPL-11, euroSAMPL-12,
euroSAMPL-21, and euroSAMPL-23, indicated by a bold font in
Table 2) have non-negligible contributions from other micro-
states, i.e., are ‘‘complex’’. Fig. 1 illustrates that for euroSAMPL-
12 the macroscopic pKa = 3.59 transition is dominated by two
microstates contributing 63.8% and 38.2%, respectively. Our
point is that predictive methods that do not take the micro-
scopic thermodynamics of ionization into account and rely on
single microstates will likely do better on ‘‘simple’’ cases. Fig. 3
illustrates this point: Neglect of the second dominant micro-
state in euroSAMPL-12 would present the 3.40 microconstant in
lieu of the apparent pKa of 3.59.

In turn, methods with exact treatment of the ionization
thermodynamics should perform well on both the ‘‘simple’’
and ‘‘complex’’ cases. Blind predictions on large sets of pro-
prietary pharmaceutical and agrochemical compounds, men-
tioned above and conducted by our industrial partners prove
this point for our S + pKa model.5,6 Unfortunately, euroSAMPL
organizers have not revealed experimental pKa values for the 35
challenge compounds1 and we cannot present quantitative
assessment of ‘‘complex’’ compound predictions across all
participating methods. I hope the organizers will address this
issue in their upcoming report. The good news is that five
methods either included or probably included microstate ana-
lysis in their calculations (Table 3).

Conclusions

Empirical and hybrid (quantum chemical + empirical post
training) methods continue leading the pack of predictive
accuracy of ionization constants. The pure ab initio approaches
require massive computational resources seem to be less
accurate, mainly due to significant difficulties in estimating
solvation energies and entropies. On the other hand, the

Fig. 2 Observed vs. predicted plot for the S + pKa predictions. Dashed line =
identity line, solid line = trendline.

Fig. 3 Predicted microconstants for the 3.59 transition in euroSAMPL-12
positioned next to the respective ionizable groups, acidic in red, basic in blue.

Table 3 A breakdown of whether participating methods considered
multiple ionization microstates or not. Data for the last column was pulled
out of the ‘‘metadata’’ reports1

Method1 ID Microstates?

Simulations plus, S + pKa
5–7 0x4cb7101f Yes

ORCA/DFT/DRACO/MM/ML 0x4a6c0760 Probably
RF/CDK/Jazzy 0xc7960c21 Unknown
BIOVIA, COSMO-RS 0x4b7b06e5 Yes
QupKake8 0x216604d8 Yes
Gaussian/DFT/SMD9 0x421c06f1 Unknown
ORCA/DFT/SMD 0x4cb00786 Unknown
Gaussian/DFT/IEF-PCM 0x3f2606c6 Yes
Gaussian/uESE10 0x541007e2 Unknown
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drawback of empirical methods is their reliance on massive
amounts of experimental data.

Future pKa competitions should use optimal matching
algorithms instead of subjective guessing since it is only the
former that evaluates the method in question, while the latter
evaluates both the method and its developer or user. To make
the competitions more meaningful at representing pharmaceu-
tical chemistry their organizers should choose a sizable percen-
tage of ‘‘complex’’ compounds.

Data availability

The S + pKa results are available in the accompanying ESI.†
ADMET Predictors is available at no charge to academic users.7

To reproduce results quoted in this communication turn on the
detection of aliphatic –OH and aliphatic amides – these options
are turned off by default to save processing time.
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