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1 Introduction

Accounting for the vibrational contribution to the
configurational entropy in disordered solids with
machine learned forcefields: a case study of
garnet electrolyte Li;LazZr,0,,7

Jack Yang, "2 * Ziqgi Yin and Sean Li

Accounting for lattice vibrations to accurately determine the phase stabilities of site-disordered solids is
a long-standing challenge in computational material designs, due to the high computational cost
associated with sampling the vast configurational space to obtain the converged thermodynamic
quantities. One example is the garnet electrolyte Li;LazZr,O;,, the high-temperature and high-ion-
mobility cubic phase of which is disordered in its Li* site occupations, such that both the vibrational and
configurational entropic contributions to its phase stability cannot be ignored. Understanding the subtle
interplay between vibrational and configurational entropies in this material will therefore play a critical
role in the rational manipulation of dopants and defects to stabilise cubic LisLasZr,O;, at room
temperature for practical applications. Here, by developing machine learned forcefields based on an
equivariant message-passing neural network SO3kraTes, we follow a strict statistical thermodynamic
protocol to quantify the phase stability of cubic Li;LasZr,O1, through structural optimisations, as well as
molecular dynamics simulations at 300 and 1500 K, for a total of 70120 configurations of cubic
Li;LasZr,O1,. Although this only covers a tiny fraction of the configurational space (~7 x 103
configurations in total), we are able to deterministically show that the vibrational contributions to the
total configurational free energy at 1500 K are significant (on the order of 1 eV per atom) in correctly
ordering the stability of the cubic LisLasZr,O1, over its tetragonal counterpart, thanks to the high data
efficiency, accuracy, stability and good transferability of the transformer-based equivariant network
architecture behind SO3kraTes. Therefore, our work opens up new avenues to accelerate the accurate
computational designs of disordered solids, such as solid electrolytes, for technologically important
applications.

material’s thermodynamic stability, thus providing an answer to
the important question of whether the material can exist in the first

Computational modelling is an essential component in driving
modern scientific discoveries and innovations across multiple
fields of physics, chemistry, biology and materials science.
These models provide us with the critical insights into the
atomistic, and often electronic, origins behind the exotic
properties of materials, such as thermal,"* optical,>* catalytic®
properties and many others. Regardless of which model is
employed, fore-mostly, it determines the potential energy of a
material system as a function of the atomic positions E(R) with a
given composition, a key quantity useful for determining a
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place. The capability of these energy models, particularly density
functional theory (DFT), to reach sub-kcal mol " (in chemistry) or
meV per atom (in physics and materials science) accuracies
compared to experimental thermochemical data as demonstrated
by many carefully curated benchmarks®® has brought confidence
in applying these models as the predictive tools to guide experi-
mental material discoveries. A notable example is the application of
organic'™'* and inorganic™** crystal structure predictions, which
sample the potential energy surface (PES) for structures corres-
ponding to the global energy minimum, and/or a set of low energy
local minima, with demonstrated success in materials discoveries
such as highly porous organic solids for gas adsorptions,'® complex
layered inorganic solids,'® and new ternary inorganic nitrides."”
Despite these successes, structure predictions remain one of
the Holy Grails in computational chemistry and materials
science. This is simply because the size of the search space
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Fig. 1 Hierarchical sampling challenge in computational thermodynamics for disordered solids. Using garnet LLZO as an example: (a) the material
possesses two (cubic and tetragonal) phases,®>*° and in each phase (b) there is a variation in the chemical compositions of lithium. At any one
composition, the Li* ions can arrange themselves in a different combination of lattice sites, leading to a range of different atomic configurations of LLZO,
each with its own enthalpy that is represented by the dots on the energy landscape. The line joining the lowest energy points across all the compositions
represents the stability convex hull. More specifically, (c) different configurations of c-LLZO at a given Li content can be categorised based on the relative
ratios of 24d to 96h site occupancies in the lattice. For a given ratio of Li site occupancies, (d) the PES of LLZO can be represented as multiple energy
wells (grey curves), one for each configuration ¢. Typically, most of the current research focuses on computing the 0 K enthalpies, which correspond to
the transformed PES®? that is determined by the energies of the local minima H?” as represented by the solid horizontal lines. More accurate computation
of materials’ stability at finite temperature should also include (e) the vibrational contribution by replacing HY with its corresponding temperature-

dependent Helmholtz free-energy F (7).

grows combinatorially large as the degrees-of-freedoms
increase, making it impossible to conduct an exhaustive search
over the PES, risking important structures being missed'® and/
or difficulty in converging thermodynamic properties through
ensemble averaging."® This challenge is often compounded by
the necessity to include the (vibrational) free energy contribu-
tions for accurate modelling of materials’ thermodynamic
stability at finite temperatures.”2°>2

Garnet Li;LasZr,0,, (LLZO) is an interesting example, and is
the focus of this work, for demonstrating the challenges behind
sampling the PES using computational approaches for compre-
hensively understanding the phase behaviours of disordered
solids at the atomistic level [Fig. 1]. LLZO is a promising solid
electrolyte for all solid-state lithium ion batteries because
of its high Li" ion conductivity”® with negligible electronic
transports,”* wide electrochemical windows,> and chemical
stability.”® It possesses two different phases [Fig. 1(a)]. The
room-temperature tetragonal phase (t-LLZO) with fully
ordered Li-sublattice, leading to a low ion conductivity of
~1S cem ' K ' (ref. 27) in which ion migrations can only be
promoted through phonon vibrations.>® Above ~900 K,>**°
LLZO transforms into its cubic phase (c-LLZO) with a disor-
dered Li-sublattice, in which the presence of Li vacancies
significantly enhances the ion conductivity by four orders-of-
magnitudes.?” The cubic phase with Li-site disorder is the one
that will be investigated in this work. Moving forward
[Fig. 1(b)], the thermodynamic stability of c-LLZO can be
further affected by the contents of Li* (and oxygen stoichiome-
tries associated with maintaining charge balance).*'**

Simply focusing on c¢-LLZO with full Li-stoichiometry, the
disorder in the material originates from the total number (120)
of lattice sites that can be occupied by the Li" ions being much
larger than the maximum number (56) of Li* ions per unit cell
of LLZO, resulting in an extremely large number®* (~7 x 10*%)
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of possible ways to arrange Li" in the unit cell (commonly
referred to as configurations). This means that configurational
entropy could play a significant role in stabilising c-LLZO at
high temperatures, and from a pure statistical thermodynamic
perspective, the enthalpies for all these configurations need to
be computed to obtain the converged configurational entropy’>
for c-LLZO with full Li-stoichiometry, which is computationally
infeasible anyway. Crystallographically, different configura-
tions of ¢-LLZO can be grouped based on the occupancy ratios
of two types of Li-sites, namely the 24d and 96hi [Fig. 1(c)] (also
see Fig. S1 in the ESIf). Importantly, Holland et al>** estab-
lished a methodology to generate symmetrically unique config-
urations of c-LLZO with any site occupancy ratio, particularly in
the range with optimum Li-Li distances to promote fast ion
conduction. This not only provides the computational commu-
nity with an exhaustive list of initial atomistic structures of
¢-LLZO, but also significantly reduces the configurational
space, making it more attemptable to compute the thermody-
namic stability of LLZO with the explicit inclusion of config-
urational entropy.

This is the first motivation behind the current work,
whereby we examine the temperature-dependent thermody-
namic stabilities for a subset of c-LLZO configurations with
the 24d : 96h site occupancy ratios of 12:44 and 11 : 45, contain-
ing 4162 and 65 958 symmetry unique structures,*® respectively.
As in the standard structure prediction workflow, each configu-
ration is first structurally optimised to its corresponding local
energy minimum, which essentially provides us with the infor-
mation of transformed PES at 0 K [Fig. 1(d)]. However, the
thermodynamic quantity that truly dictates the stability of each

i By convention, the letters represent the Wyckoff positions, and the numbers
signify the total number of equivalent Wyckoff positions, in the Ia3d space group
for c-LLZO.
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configuration at finite temperature is its Helmholtz free
energy,””° which takes into account the contribution from
lattice vibrations towards structural stability [Fig. 1(e)]. This
can be computed with either a finite-displacement phonon?® or
molecular dynamics (MD) approach, but the high computa-
tional costs associated with these approaches, particularly
when combined with a DFT energy model, prohibit these
calculations from being individually performed for every
configuration. Alternatively, the Helmholtz free energy of a
representative configuration (typically the lowest energy
one)** may be used as a constant correction factor across the
entire ensemble. The latter assumes Helmholtz free energies
vary insignificantly amongst the configurations,?’ which may or
may not hold.

The promising applications of LLZO as a solid electrolyte
have already sparked significant interest in applying classical
forcefields for conducting molecular dynamics investigations
to understand its phase transition and Li-ion diffusion beha-
viours in pristine and aliovalent-doped LLZO, which have led to
some important insights into the subtle interplays between its
structural complexity and ion conductivities.>””*” One of the
key findings amongst these studies is the importance of
increasing configurational entropy as reflected by Li redistribu-
tions in the LLZO lattice upon phase transition from the
tetragonal to cubic phase.*"*? Although both Ga and Al doping
can stabilise LLZO in its high-conductive cubic phase, the Ga-
substituted LLZO yields higher conductivity (10™® S em™)
compared to the Al-substituted one (10~* S ecm™'),*® which
may be attributed to the less repulsive nature of the AI**
dopant that immobilises the nearby Li-vacancy and blocking
the Li-diffusion pathway, as revealed from the forcefield
simulation.?**® Technically, most of these classical forcefields
are based on a Buckingham potential and point charge model.
While this type of forcefield is fast to evaluate, Chen et al.**
pointed out the difficulty in pinpointing the exact Ta concen-
tration and transition temperature to stabilise the cubic LLZO
with Ta doping, due to the inherent limitation of the Bucking-
ham potential. In this regard, Dai et al** compared the
performances of different forcefields for simulating fast ion
conductors, and it is unsurprising to see the polarisable force-
field with an induced dipole model that captures the chemical-
environment-dependent polarisation effects performs the best,
but the development of an accurate polarisable forcefield is
generally more challenging to non-specialists. Moreover, clas-
sical forcefields are typically fitted to the vicinity of local
minimum, while this is beneficial for modelling the phononic
properties, a good description of the long-ranged topological
features of the PES is required for studying Li ion diffusions.
Lastly, the pair potential also imposed limited flexibility to
capture the important many-body atom-atom interactions in a
complex system.*®

During the past decade, we have seen rapid progress in the
development of machine learned forcefields (MLFFs)**™®* with
the emergence of the foundational model,*> which offers
accuracies in par with modern DFT but few orders of magni-
tude increase in the computational speed while overcoming the
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aforementioned limitations in classical forcefields, thus allow-
ing us to bridge the gaps in length and time scales, as well as
the compositional complexities in atomistic modelling. A few
recent studies applied MLFF to further investigate the phase
and ion diffusion behaviours in LLZO,>*®¢°® but critical quan-
titative insights into the role of configurational entropy in
determining the thermodynamic properties of LLZO are still
lacking. This makes it timely for us to harness the advantages
of MLFF to tackle the sampling challenges and determine the
temperature-dependent stabilities of LLZO, with the vibrational
contributions to the configurational entropy accounted
for explicitly, by following the exact statistical mechanics
protocol.?® This is the second motivation for the present study.
More specifically, we will be using the SO3krates®> model to
train our material-specific MLFF. It represents one particular
implementation of the geometric graph neural networks®® that
use the message-passing scheme®”’° to learn the information
about connectivities in chemical structures. The architecture is
made aware of the rotationally equivariant features by incor-
porating geometric priors based on the SO(3) rotational group
-(special orthogonal group in three dimensions),”"**”"7* to
improve the data efficiency, generalisability and stability in
model training and atomistic simulations.”>’* Furthermore,
the network is combined with the self-attention mechanism”?
to bypass the need for full SO(3) tensor convolution in informa-
tion exchange to increase the computational speed.

2 Theory

2.1 Thermodynamics of disordered solids

In this section, we briefly outline the fundamental thermody-
namics of disordered solids. We begin with a set of structural
models for the material of interest, each with symmetrically
unique atomic arrangements. This set of structures are most
commonly referred to as the configurations which will be
collectively denoted as ¢ = {o'V, 6®,.. ., ¢"}. As the standard
practice in (nearly all) atomistic modelling, we relax each
configuration to its local energy minimum, giving us its corres-
ponding enthalpy H? at 0 K [Fig. 1(d)]. If we stop here, then the
system is said to be stabilised by configurational entropy at T
when the temperature-dependent configurational free-energy

Gconf(T) =H— TSconf (1)

is negative, where the configurational entropy follows the
Boltzmann relationship Scont = kg In Zeons. Here kg is the Boltz-
mann constant, and the configurational partition function

Zews =3 exp| Y @)
i=1

with f = 1/kgT.§ Physically, Z..n¢ is a probabilistic measure of
the likelihood that the system will simultaneously take the

§ In the numerical implementation of eqn (2), H”) is measured with respect to the
energy zero point, which, in this case, is set at min{H"}, namely, the global energy
minimum for the set of LLZO under consideration. The same principle also
applies to eqn (4).
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forms of all n distinct configurations at 7. The system is more
likely to remain disordered when Z,, is large, meaning that all
the configurations are energetically highly similar to each
other, thus the system is not preferentially stabilised by a
particular state with very low enthalpy. In this regard, what
will be the enthalpy that goes into eqn (1). A sensible choice
would be to take the temperature average for all configurations
1 n

Zconl';H( exp[ pH' } (3)

H:<H>T:

representing the enthalpy of the most likely configuration the
system will take at a given 7.

To further account for the vibrational contribution to the
thermodynamic stability of each configuration under finite
temperature [Fig. 1(e)],*° H” in eqn (1) needs to be replaced
by the corresponding vibrational (Helmholtz) free-energy

v,b(T) HY — 159 in which HY includes the internal energies
at 0 K and those associated with thermal motion.”® Here, we
take HY) = (U")(£))vp, which is the time-averaging of the internal
energy over an MD trajectory. With this, the configurational
partition function becomes

Zeontsvi fzexp{ PER(T)), @)

and finally, the configurational free-energy

Gconf+vib(T) = Fvib(T) — TSconttviby (5)

in which Sconfrvib = kg 1N Zeongwin. Physically, eqn (4) is equiva-
lent of re-normalising the 0 K PES to its corresponding Helm-
holtz free-energy surface at a finite temperature.

Practically, there exist a multitude of approaches to compute
Fyip.”® The most common approach® is to first perform a frozen
phonon calculation to determine the spectrum of phonon
eigenfrequencies {0} (where 1 = (g,n) with g being the
wavevector and n the band index), by diagonalising the Hessian
matrix for the i-th configuration. Within the harmonic approxi-
mation, the vibrational free energy (ignoring H(T’)) takes the
following discrete sum:

(i) _ hwfﬁ[) 1 Inl1 Hioot)
FO(T) = Z: S+g n[1-exp(prol )] b (6
Alternatively, one could take the integral form of the above
expression and compute the vibrational free energy from the
corresponding phonon density-of-states (PDOS) g(w) as”®7®

_ [)’LNJ ¢ (@) In {2 sinh <ﬁ%“’)} do, (7)
0

where N is the number of atoms in the simulation cell. In this
work, we extract the PDOS from the Fourier transformation of
the velocity autocorrelation function (VACF) that is computed
from MLFF-MD simulation at the target temperature T as

FO(T) = HY

¢ (w) = Zj (O (1)) d1, (8)

0
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(4a(0)9(£)) = Tim Jrv,,(t’)vn(t/ +0)de’.

T—00 0

There exist some notable disadvantages of computing F,;,
via VACF from MD simulations, which include: (a) MD should
be performed at different temperatures 7T to extract the corres-
ponding g(w,T), if one is interested in the temperature-
dependent Helmholtz free energies F,(7), for example, to
determine the phase-transition temperature. (b) Large super-
cells, typically with ~10® atoms or more, need to be used and
perform MD runs in sufficiently long times in principle, to
obtain fully converged PDOS.”® Both (a) and (b) translate to
extremely high computational costs that are only achievable
with forcefields, such as the MLFF adopted in this work.
Finally, (c) the usage of eqn (7), which was established based
on the harmonic approximation may not hold for strongly
anharmonic systems. Nevertheless, it offers the advantage of
accounting for the variations in PDOS that originate from the
multiphonon interactions. Practically, running MD simulations
with MLFF takes the advantage from the MD engines in the API
(application programming interfaces) of many latest MLFF
packages for atomistic simulations, that is either individually
implemented or using other well-established APIs such as the
atomic simulation environment (ASE),”® as running long-time
MD simulations is one of the key driving forces behind
these MLFFs.

2.2 The SO3krates architecture

A neural network learns the contributions from individual
atoms (E;) towards the total energy of a structure with N atoms

(as % E;) by exchanging the chemical and structural informa-
i=1

tion amongst the constituent atoms through multiple inter-
connected hidden layers. Different neural networks vary in
terms of how such information is exchanged while preserving
the important symmetries in the chemical system. More speci-
fically, this information exchange in SO3KRATES (see Fig. S2
ESIT for a detailed illustration) is achieved through T layers of
Euclidean transformer blocks, which implements both the
message-passing®”’° and self-attention’> mechanisms to itera-
tively update the per-atom feature as

f(t+l Z m;, (9)

JEN(i)

from which the total energy of the system is learned using a
multi-layered perceptron (MLP) with the aggregated atomic
features F7 = [AD, £D,. .., 7] as the input, i.e. E = MLP [F7].
Here, the message m; holds the information about the j-th
atom from all A(i) neighbours of i that is identified by
a pre-defined cut-off radius r.,. Before the first iteration, the
feature vector is initialised purely with the chemical infor-
mation (in this case, the atomic number z;) of each atom
through an embedding function as £” = funp(z;) that maps
z; into a F-dimensional vector in the feature space, ie.

This journal is © the Owner Societies 2025
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Jfemb:NT — RE. As such, fencodes the invariant information of

the system.

In addition, it is crucial for the SO3krates network to learn
the geometric information of the chemical structure, that also
contributes towards E; and transforms equivariantly with
respect to 3D rotations and translations. Here, the spherical
harmonic coordinates (SPHC), the basis for the SO(3) rotational
group, is used as an inductive basis to preserve the equivar-
iance throughout the network. This is implemented, firstly by
embedding the Cartesian vector r;; = r; — r; for j € N(i) into its
corresponding Euclidean variable (EV) as a multipolar expan-

i = [y:00, 7 ) Imax+1)% (i
sion y; = [){i007)fil‘—l7"’7[1'[muxlmﬂx] € Rt with

1 .
Tim = TRy > bewlll ri DY)

JEN (i)

(10)

In the above equation, (N) is the average number of atomic
neighbours over the whole training data. ¢..(||r;||) is a cosine
cutoff function (eqn (17) in Frank et al.”*). #; = ryl||ry|| is the
unit vector, and Y7* denotes the spherical harmonic function of
degree / € Z with m € [-I, -l + 1,..., I — 1, []. Within each
Euclidean transformer block, this SPHC is also updated per-
degree-wise, similar to the feature vector as:

(t+1) _ (1)
Lim = Xigm + Z Mij im -
JEN (i)

(11)

The messages [eqn (9) and (11)] are constructed using the
multihead self-attention approach” (with the number of heads
h being a network hyperparameter), to avoid the necessity of
performing full SO(3) convolutions repetitively for L times
along the feature vector dimension to exchange the invariant
and equivariant information,”* bringing down the computa-

tional costs from O(/8,,.) to O(72,,.). More specifically, we write
m; = heul | |7yl )ty (12)
for the feature message and
Mijim = beul ||yl )oY (7), (13)

for the EV. Here, the self-attention coefficient is calculated as

;= ki (w; O q)), (14)

in which the query and key vectors are computed as g; = Q f; and
k; = Kf; with Q and K being learnable matrices of type R"*F. The
weight matrix w is also learnable as the sum of the outcomes
from two MLPs as
Wi = ¢r(rfl') + ¢s <@51%(X{'/}1H0>7 (15)

in which 69?1“0‘ %ij—o contracts each degree in ¢; to the zeroth
degree (eqn (14) in Frank et al.”*). This completes the Euclidean
attention block in the Euclidean transformer. The outputs from
the attention block (£ and ") are subsequently passed into
the interaction block, which provides the network with addi-
tional degree-of-freedoms to exchange the invariant and equiv-
ariant information. The outcomes are the refinement df; and
dy;, which are to be combined with the initial inputs to
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generate the final outputs for a given Euclidean transformer
block:

ﬁﬁl) :ﬁz) + dﬁ,
and

Y= + dyse

Finally, autodifferentiation is employed to calculate the
atomic forces to ensure energy conservation.’®

3 Results

3.1 Accuracy of the model for structural optimisation

Using the equivariant features as an inductive basis in the
neural network has demonstrated its advantages in achieving
outstanding model performance and data efficiency.®>”" When
training the SO3krates model on the structural optimisation
trajectories using the 12_44_opt set (see Section 5.2 for details),
it is found from the learning curves (Fig. S3, ESI{) that using as
little as 2000 data points (corresponding to just 2% of the
database) is sufficient for the model to reach the meV-level of
accuracy in predicting the energies and forces. Beyond that, the
model performances only improve slightly with further increase
in the size of the training set, and in the subsequent discus-
sions, the model that is applied for structural optimisations is
trained with 4000 data points. The accuracy of this particular
MLFF is further demonstrated in Fig. 2 which shows both the
energies and atomic forces predicted by the MLFF correlate very
well with those calculated from DFT, reaching an error level of
7.48 meV and 4.87 meV per (A atom) in MAE (mean-absolute-
error) with 9.62 meV and 6.72 meV per (A atom) in RMSE
(root-mean-squared-error) for energy and force predictions,
respectively.

To gain some insights into how the performance of the
MLFF is affected by the model flexibility, we trained extra
versions of MLFFs by changing the dimensionality of the EV
y: through varying the degrees of spherical harmonics I. The
resulting model performances, which are compared in Table 1,
show that compared to the atomic forces, the accuracy in
predicting energy is more sensitive to the degrees of multipolar
expansions used for constructing the EVs. This can be due to
the fact that the models are trained using a loss function that is
strongly biased towards accurate force predictions. The largest
improvement in the model accuracy can be seen when the
dipole moment (I = 1) is incorporated in additional to the
monopole moment (I = 0), signifying the importance of learning
the orientational information in the chemical environments.
Nevertheless, the relative contributions from higher order
multipoles reduce as they are progressively introduced into
the model. Interestingly, EVs that are expanded to the hexade-
capoles while ignoring the monopole contribution shows the
best accuracy in energy prediction, with only a small deteriora-
tion in forces (compared to the case where the monopole is
included). We speculate that this may be because the structural
framework of LLZO is made of multiple LiO,, LiOgs, LaOs and
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http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cp00138b

Open Access Article. Published on 02 April 2025. Downloaded on 8/25/2025 11:14:53 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper
—1503.0 1
~— —1503.5 1
>
L
+ —1504.0 -
[ —1504.5 -
2 _
—1505.0 A e =i0iRan0
MAE = 7.48 meV
— RMSE = 9.62 meV
—1505.5 - . < s
—1505 —1504 —1503
Efurgf/ (eV)
— 0.50 1
5
4{“’ 0.25 1
<L
= 0.00 4
>
2,
. —0.25
Lf\ —0.50 A R? =0.9730
MAE = 4.87 meV/(A - atom)
—0.75 A RMSE = 6.72 meV/(A - atom)

—-0.5 0.0 0.5

Frurger [eV/(A-atom)]

Fig. 2 Accuracy of the MLFF trained from structure optimisation trajec-
tories. Comparison of the MLFF-predicted and the target DFT (left)
energies and (right) atomic forces across 700 randomly selected config-
urations from the 12_44_opt set. The model is trained with 4000 data.

Table 1 Effect of varying the degrees of spherical harmonics [ applied for
constructing the EVs on the performances of the MLFF models, which are
tested on 700 randomly selected data from the 12_44_opt set

Energy [meV] Force [meV per (A atom)]

l MAE RMSE MAE RMSE
{0} 25.0 31.1 8.68 12.3

{0,1} 15.0 19.0 6.36 8.70
{0,1,2} 11.7 14.9 4.92 6.72
{0,1,2,3} 10.3 14.2 4.45 6.14
{1,2,3}“ 7.48 9.62 4.87 6.72

“ This corresponds to the model shown in Fig. 2.

ZrOg polyhedra, which involve many chemical bondings that
are strongly directional. In this case, including the monopole
term, which is isotropic in nature, is not beneficial to capture
the directional bonding characteristics, causing the model to
become overfit resulting in worse performance. As such, this
choice of [ is used throughout the rest of this study.

3.2 Accuracy of the model for molecular dynamics simulations

Unfortunately, the MLFF trained on the structural optimisation
trajectories is not sufficiently extrapolative to produce stable
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MD runs,”” because the latter can sample a much wider config-
urational space with broader distributions in energies and
atomic forces that are far beyond the training data covered in
the optimisation trajectories. Hence a separate MLFF is trained
on a single AIMD (ab initio molecular dynamics) trajectory
which heats up a ¢-LLZO structure from 10 to 2100 K.** The
lattice constants of ¢-LLZO were kept fixed during the simula-
tion as the examination of phase transition behaviours in LLZO
is not the main goal of the current study.*® Similar to the
training of MLFF for structural optimisations discussed in
Section 3.1, the top row of Fig. 3 again shows the model is
capable of reaching an meV-level of accuracy with a small
number of 1000 training data.

Apart from the model being accurate, the transferability of
the MLFF is also critical, if we would like to use this particular
MLFF to determine the vibrational contributions to the config-
urational entropies from all other configurations in the set. For
this, at the bottom row of Fig. 3, we show that the model is
capable of reproducing the DFT energies and forces from the
300 K AIMD trajectories of another 50 configurations that are
randomly selected from the 12_44 opt set. Note that the pre-
diction errors for this set are seemingly lower than those
computed on the AIMD trajectory for model training, because
the latter covers much wider ranges in energies and forces. In
addition to the equivariant architecture of the SO3krates net-
work, the excellent transferability of the trained MLFF could
also be attributed to the fact that, despite the configurational
space for c-LLZO being very large, the short-ranged chemical
environments,”® which are expected to play a dominant con-
tribution to the cohesive energy of a crystal, are much less
diverse across configurations.

We also tested the stabilities and performances of using the
as-trained MLFF in molecular dynamics simulations across the
temperature range (300-1500 K) that we are interested in.
Because the key quantity that is needed for computing F;, is
the PDOS [eqn (7)], in Fig. 4, we compare the temperature-
dependent PDOS for one configuration of c-LLZO that is
computed from AIMD and MLFF-MD via the VACF, respectively.
From Fig. 4, it can be seen that the overall shapes of the PDOS
from AIMD are well reproduced by the MLFF-MD, particularly
the highest PDOS peak that is centred at ~40 meV. In the
phonon energy range of 50-70 meV, MLFF tends to give slightly
lower (higher) PDOS values at the lower (higher) temperatures,
compared to the ones computed from AIMD. Recent investiga-
tion in Li;YCl¢*® shows the appearance of low-frequency boson-
like peaks®! in its PDOS as a signature of strong vibrational
anharmonicity and coupled vibration between Li and the rest of
the crystal framework plays a key role towards the emergence of
the superionic state in this material. However, we did observe
similar behaviour from the PDOS of LLZO. Finally, no signifi-
cant shift in the PDOS peak(s) is observed in both PDOS spectra
across the temperature range investigated, suggesting that
thermally induced phonon renormalisation in c¢-LLZO is not
expected to be significant. Nevertheless, more investigations of
the phononic properties of c-LLZO are subject to future
studies.®”** In Table 2, we further compare the key vibrational
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Fig. 3 Accuracy of the MLFF trained for molecular dynamics simulations. Correlations for energies (a, ¢) and atomic forces (b, d) between those
predicted from the MLFF and the respective target values from DFT. The top row (a, b) demonstrates the model accuracy using all 5200 data from the
AIMD trajectory used for training the model, whereas the bottom row (c, d) demonstrates the model transferability with data from 50 AIMD trajectories

under the NVT ensemble that have not been used for model training.

thermodynamic quantities that are extracted from AIMD and
MLFF-MD simulations. Statistically, compared with DFT over
the entire temperature range investigated, the ML potential is
found to be slightly more attractive by 121.5 meV per atom (as
measured by the time-averaged internal energy (U(t)),), which
may be attributed to the higher PDOS at the higher energy
range produced from MLFF-MD as shown in Fig. 4. At the same
time, the vibrational entropy S,i, computed from MLFF-MD is
slightly larger by 18.6 meV per (atom K) compared to the DFT
value. It is also shown in Table 2 that, at around 1500 K where
¢-LLZO is the more stable phase, the vibrational contribution
(TSyip) to the free energy, albeit smaller, is on the same order of
magnitude as the internal energy (U(t)),, signifying the impor-
tance of accounting for the vibrational contribution in the
accurate determination of the material stability.

With the demonstrated accuracy of the trained MLFF, we
are able to further examine the effect of supercell size on the
PDOS. In Fig. S4 of the ESIf we show that the changes
in the computed PDOS using the supercell with up to
3840 atoms are again minimal, particularly with no sign of
soft phonon modes emerging from the PDOS simulated with a
larger supercell, thus suggesting that using a single unit cell of

This journal is © the Owner Societies 2025

c-LLZO is sufficient to converge the PDOS calculations
via VACF.

Although this is not the primary focus of the current study,
in Section S2 of the ESIf we also compared the Li ion diffusivity
and the corresponding activation energies that are further
compared to those values extracted from previous experimental
and theoretical results, which also showed good agreement
between our MLFF-MD results and previously published data.

Finally, we highlight the computational efficiency delivered
by MLFF. With AIMD, simulating a 4-ps-long trajectory using a
single unit cell of ¢-LLZO on 56 CPUs over two Broadwell nodes
takes ~ 34 hours walltime. In contrast, using MLFF executed on
a single V100 GPU, we are able to sample a 10-ps-long trajectory
in ~7 minutes, making the comprehensive thermodynamic
sampling of disorder solids, such as LLZO, within the reachable
computational capabilities.

3.3 Convergence of configurational free energy without the
vibrational contribution

Before the trained MLFF can be applied to compute the con-
figurational free energy of c-LLZO, its capability to repro-
duce the DFT local minima [¢f Fig. 1(d)] from structural
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Fig. 4 Performance of the MLFF in computing the vibrational properties of
LLZO. Comparison of phonon DOS computed for one configuration in the
12_44_opt set at different temperatures from (a) AIMD and (b) MLFF-MD.

optimisations needs to be further verified. Since our primary
interest is the configurational free energy, instead of comparing
the structural similarities between the DFT- and MLFF-optimised
crystal structures of every c-LLZO configuration, we focus on the
differences in energies of the local minima that are sampled by
these two different energy models. More specifically, we compare
the similarity in the distributions of the energies p(H), as the
partition function [eqn (2)] can be re-written in the following
integral form for a continuous energy spectrum:

Zeonf = JP(H) exp(_,BH)de
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Distributions of energies p(E) for all the local minima on the PES for the
12_44_opt set. These distributions are shown as the Gaussian Kernel
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other similar data throughout the rest of this paper. (Dashed lines) Evolu-
tions of the configurational entropic contribution to the free energy
(—TSconf) at 300 K as more configurations are included (in the order of
increasing energy) in the summation [cf. egn (2)].

and the result is shown in Fig. 5. Here, all the starting structures
from the 12_44_opt have been re-optimised with MLFF to generate
a new set of local minima on the MLFF-PES.

It can be seen from Fig. 5 that, firstly, the overall shapes of
p™FF(H) and p°FT(H) match well with each other, which again
demonstrates the trained MLFF for structural optimisation is
very accurate. Because structural optimisation essentially traces
the shape of the PES near every local minimum, it means this
topological feature has been well reproduced by the MLFF, even
though it is trained with only 4% of the available data.
Secondly, the energies of the local minima tend to be slightly
underestimated by MLFF. This could be due to a different
structural optimiser and looser convergence criteria that were
used in the structural optimisation with MLFF. Nevertheless, as
shown by the dashed lines in Fig. 5, the configurational
entropies computed from DFT and MLFF converge to the same
value as soon as the highest peak in p(E) is passed, and Table 3

Table 2 Comparison of the internal energies ((U(t)),), vibrational entropies (S,i,) and free energies (TS;,) computed from the MD trajectories at different

temperatures using DFT and the trained MLFF for one c-LLZO configuration

<U(t)>?FT (u(®) i\/ILFF S\]]){gT S%[I;FF TS\]?iET TS%&FF
Temp. [K] [eV per atom] [eV per atom] [meV per (atom K)] [meV per (atom K)] [meV per atom] [meV per atom]
300 —7.802 —7.820 0.912 0.928 273.65 278.46

500 —7.748 —7.808 0.905 0.935 452.58 476.61

700 —7.709 —7.795 0.893 0.934 625.45 653.90

900 —7.672 —7.782 0.896 0.918 806.52 852.91

1000 —7.656 —7.776 0.902 0.912 902.36 911.69

1100 —7.636 —7.769 0.887 0.910 975.64 1001.3

1200 —7.625 —7.763 0.901 0.904 1081.6 1084.9

1300 —7.594 —7.756 0.884 0.902 1149.1 1173.1

1400 —7.567 —7.750 0.886 0.897 1240.3 1256.1

1500 —7.538 —7.743 0.876 0.888 1312.4 1331.3
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Table 3 Comparison of the configurational entropies and free energies computed for all c-LLZO configurations in the 12_44_ opt set using DFT and

MLFF at 300 and 1500 K

Temp. [K] (H)r [eV per atom] Sconf [MeV per (atom K)] —TScont [€V per atom] Geont [€V per atom]
300 DFT —7.839 0.7112 —0.2134 —8.052

MLFF —7.839 0.7118 —0.2135 —8.053
1500 DFT —7.839 0.7167 —-1.075 —8.914

MLFF —7.839 0.7168 —1.075 —8.914

further shows that all thermodynamic quantities computed
from MLFF are essentially identical to those from DFT.

For comparison, we trained a separate MLFF for t-LLZO and
computed its vibrational free energies (see Table S3 of the ESIL, T
and because this structure is not disordered, no configurational
contribution needs to be included). It can be seen from Table 3
that, at 1500 K, although disorder has contributed an addi-
tional 1 eV per atom to the stability of c-LLZO leading to a
configurational free energy of —8.914 eV per atom, it is still
larger than the vibrational free energy of —9.147 eV per atom
for t-LLZO.

3.4 Vibrational contribution to the configurational entropy

Now, we are in the position to examine how thermal vibrations
renormalise the PES into the corresponding temperature-
dependent free energy surfaces, and subsequently affect the
configurational contribution to the thermodynamic stability of
site-disordered c-LLZO. We begin with a brief look on how
PDOS varies across the configurational space, and in Fig. 6 we
have plotted the temperature-dependent configurational-
averaged PDOS®* for the 12_44_opt set, which are computed as

in which p) (T) = 0)(T)/ 32 (T) with §(T) = exp(— (U(0)
i=1

kgT). It can be seen from Fig. 6 that, at a given temperature, the
variation in the PDOS as measured by g[g{w)] is substantial and
does not change significantly across the entire phonon energy
range, meaning the vibrational behaviour of the LLZO crystal
lattice is very sensitive to how the Li ions are arranged in the
crystal. This supports the necessity to compute the vibrational
free energy per configuration individually as opposed to
approximating it with the value of a single configuration for
very accurate results. Nevertheless, g[g(w)] are larger at 300 K
compared to those at 1500 K, possibly because the latter is the
temperature at which LLZO is stable at the cubic phase. Fig. 6
also clearly indicates the increase of PDOS in the energy range
above 50 meV from 300 to 1500 K, reflecting the excitation of
high energy phonons at the elevated temperatures.

With these, Fig. 7 further demonstrates the distributions of
vibrational free energies computed for all configurations in the

This journal is © the Owner Societies 2025
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two figures are arranged from left to right in the order of increasing Fyip.
The dashed line shows the convergence of the entropic (vibrational and
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12_44 opt set. Compared with the distributions of 0 K-
enthalpies Fig. 5, it shows that as the temperature increases,
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Table 4 Configurational entropies and free energies, with vibrational
contributions taken into account, for all c-LLZO configurations with
an Li site occupancy of 12:44. The expectation value of the configura-
tional averaged free energy at a given temperature, (Fyip)7, IS
calculated using egn(3) by replacing the enthalpy H™ with the vibrational
free energy Fi [egn(7)] for each configuration, such as, Geonfivib =
<Fvib>T - TSconvab

Temp. (Fyip)r Sconfivib —TSconfrvib  Geonfrvib

K] [eVv per atom] [meV per (atom K)] [eV per atom] [eV per atom]
300 —8.107 0.6578 —0.1973 —8.305
1500 —9.093 0.6863 —1.029 —10.12

the (free) energy distributions gradually widened and shifted to
lower energy ranges, indicating the structure is progressively
stabilised by lattice vibrations. The changes in the shapes of the
(free) energy distributions further show that the vibrational
entropic contribution to the free energy is not a simple constant
correction factor across the configurational space. By integrat-
ing the free energy distributions, the configurational entropy
and free energy that include the vibrational contribution at 300
and 1500 K can be obtained and are listed in Table 4. Using the
free energies (Geonfivin) determined in this way, the cubic phase
of LLZO is now correctly predicted to be more stable than the
tetragonal one by 973 meV at 1500 K (as opposed to being
233 meV less stable with Gon¢ only), confirming the importance
of lattice vibrations in stabilising the cubic phase at high
temperature. In contrary, at 300 K, the cubic phase is also
predicted to be more stable than the tetragonal phase by
106 meV based on Geonfivib, and the later was predicted to be
more stable by 147 meV if the vibrational contributions were
omitted for c-LLZO. This could be indicating that the lattice
vibrations and configurational disorders are strongly compet-
ing in determining the phase stability at 300 K, which is worth
further investigating in the future.

3.5 Model transferability to c-LLZO with a different Li site
occupancy

Having demonstrated the robustness of the MLFFs that
are trained on the structural optimisation and AIMD trajec-
tories for c-LLZO structures with an Li site occupancy of
12:44, in this section, we shall apply these MLFFs to explore
the PES of a larger set of ¢-LLZO with the Li site occupancy of
11:45 that contains a total of 65958 unique configurations.**
Similar to Fig. 5, in Fig. 8(a), we first compare the distribution
of the local minimum energies p(E) that are obtained through
structural optimisation using MLFF, using a subset of ¢c-LLZO
containing 19 333 configurations, for which the corresponding
DFT results are available. Once again, we observe good agree-
ment between p™"“**(E) and p°""(E), whereby the key features of
the peak and shoulders in p""(E) are well reproduced in
PpMFF(E). This suggests that the as-trained MLFF can be well
transferred to model c-LLZO of a different Li site occupancy,
and again demonstrates the dominant contributions to the
cohesive energies of the crystal is the short-range chemical
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environment rather than the overall site-occupancy in the
unit cell.

The most significant advantage offered by MLFF is its speed
that enables us to perform the structural optimisation, together
with MD samplings at 300 and 1500 K for the entire set of
65958 ¢-LLZO configurations in ~344 days on a single V100
GPU. This is much less than the ~ 810 days that it cost us just
to perform structural optimisations on 19333 configurations
(29% of the dataset) using periodic DFT. The results are
presented in Fig. 8(b-d) and Table 5.

The p(H) curves in Fig. 8(b) show that the full set [as given by
p™“*(H)] contains more lower energy configurations than the
DFT set [as given by p®*"(H)]. Based on these two distributions,
at 300 K, the computed configurational entropic contributions
to the free energy —TSconfig is —0.2528 eV per atom from the
DFT set, which is 11.2% lower than the converged value of
—0.2848 eV per atom from MLFF sampling [also see Table 5].
This level of error is qualitatively consistent when ~20k of
MLFF-optimised local minimum energies are used to deter-
mine —TSconfig [see Fig. S8, ESIT]. This underestimation in the
configurational entropy can be primarily due to incomplete
sampling, and this can be tested by using the KDE (Kernel
Density Estimate) density of p° " (H) to sample a full set of
65 958 enthalpy values and compute the corresponding config-
urational entropy at 300 K, which gives an estimated —TSconfig
of —0.2843 eV per atom or 0.176% relative error. Note that the
size of the DFT-optimised set (19 333) was not chosen based on
any statistical insight but merely an arbitrary point at which we
thought there would be sufficient data for benchmarking
purposes and decided to stop carrying on with more DFT
calculations. In the above analysis, as shown by the density
estimations, the DFT set is definitely oversampled, consuming
more computing time than it is necessarily needed. A promis-
ing future direction is to explore generative models to enhance
the sampling efficiency for disordered solids,**®” but it is
beyond the scope of the present work.

Moving on to the vibrational free energy landscapes at finite
temperatures, Fig. 8(c and d) show again that the distributions
of F,i, widen and shift toward the lower energy range as the
temperature is increased from 300 to 1500 K, which is consis-
tent with the observations from Fig. 7. On the other hand,
although the number of configurations in this set of ¢-LLZO is
an order of magnitude more than the other set with an Li site
occupancy of 12:44, the converged Geonf+vin Values for this set
of ¢c-LLZO are only 64 and 350 meV lower than those for the
12:44 set at 300 and 1500 K, respectively (see Table 5 and
Table 4). This is because the distributions of F;, [Fig. 8(c and
d)] are much wider than the thermal energy kgT at the respec-
tive temperatures, such that many high-energy metastable
configurations contributed insignificantly towards the partition
function.

A natural extension from here on will be to apply the as-
trained MLFFs to compute the configurational entropies for c-
LLZO with other Li site occupancies [Fig. 1(c)], from which the
total configurational entropy across the global PES may be
obtained from the superposition of energy basins.®*°' However,
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Fig. 8 Energy landscape for cubic LLZO with an Li site occupancy of 11:45. (a) Benchmarking the performance of the MLFF trained on the 12_44_opt
for optimising a subset of c-LLZO structures (19 333 data points) with an Li site occupancy of 11:45. The solid lines compare the distribution of energies
p(E) for the local minima on the PES as obtained from DFT and MLFF, whereas the dashed lines show the convergence of configurational entropic
contribution to the free energy at 300 K. (b)-(d) Distributions of enthalpies (b) and vibrational free energies (c) and (d) for all 65958 configurations of
c-LLZO with an Li site occupancy of 11:45 at 0, 300 and 1500 K, as computed using MLFF, respectively, and the convergence of the configurational
entropic contribution to the free energies calculated from the corresponding energy distributions. In (b), the DFT data [as shown in (a)] are also included

Table 5 Configurational entropies and free energies for all c-LLZO configurations with an Li site occupancy of 11:45

View Article Online

Paper

Without vibrational contribution

Temp. [K] (H)r [eV per atom] Sconf [MeV per (atom K)] —TScont [€V per atom] Geont [€V per atom]
300 —7.839 0.9494 —0.2848 —8.123
1500 —7.839 0.9549 —1.432 —9.270

With vibrational contribution

Temp. [K] (Fuib)r [€V per atom] Scontvib [MeV per (atom K)] —TScontib [€V per atom] Geonfiib [€V per atom]
300 —8.106 0.8792 —0.2638 —8.369
1500 —9.092 0.9195 —1.379 —10.47

this is merely an exercise of exhausting computational powers, and
more informative sampling strategies should be explored to achieve

This journal is © the Owner Societies 2025

this goal efficiently to advance the field of computational thermo-
dynamics of disordered solids.
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4. Conclusions and future outlooks

In this work, for the first time, we are able to follow the exact
statistic thermodynamic protocol, to computationally deter-
mine the combined contributions from vibrational and config-
urational entropies towards the phase stabilities of cubic garnet
electrolyte LLZO with two specific Li site occupancies. This is
enabled by using the equivariant neural network SO3krates that
is built upon the transformer architecture, delivering high data
efficiency, regression accuracy, enhanced stability in MD simu-
lations, as well as good model transferability. Our results show
uniquely, that the configurational free energies determined
from the 0 K-enthalpies, which correspond to the energies of
the local minima on the PES, are insufficient to correctly
order the cubic LLZO over its tetragonal counterpart as the
stable phase at 1500 K. This can be remedied instead, by
computing the configurational free energies from the Helm-
holtz free energies, to account for the effect of lattice vibrations
in renormalising the 0 K PES to the corresponding finite-
temperature free energy surface. Most importantly, our results
clearly demonstrate significant variations in the PDOSs, which
translate to a non-uniform shift from H to F,, across different
configurations, rendering the necessity to compute F,;, indivi-
dually for every LLZO configuration. This task is certainly only
feasible by using a fast and stable forcefield, like the one being
developed in this work.

More specifically, we have chosen to compute the Helmholtz
free energies by convoluting the PDOS from MLFF-MD simula-
tions. While this offers the advantage to account for the
anharmonicity in lattice vibrations, we cannot fully rule out
the possibility of Li ions diffusing into other neighbouring sites
due to their highly mobile nature. This means that F;, calcu-
lated in this way may have additionally included contributions
from neighbouring local minima that may belong to other Li
site occupancies, especially at high temperatures. This could be
checked, in the future, by recalculating F,;, based on quasihar-
monic approximations from frozen-phonon calculations.
Another avenue worth exploring is to train the MLFFs to
directly predict F,;, using the data generated in this work,
which can immediately offer an order of magnitude speed up
in the sampling efficiency.

Despite our explicit account for the vibrational contribu-
tions to the phase stabilities of ¢-LLZO at finite temperatures,
we have only considered LLZO with perfect stoichiometry and
the effects such as dopants together with Li and O non-
stoichiometries in lowering the stable temperature of c-LLZO
have been neglected.’"*>°>?® These factors not only diversify
the chemical space® but also increase the number of config-
urations factorially, making the brute-force approach adopted
in this work no longer feasible even with an efficient MLFF. The
use of foundational models® trained across the chemical space
of possible dopants in LLZO, that is further combined with
generative models,*>®” may offer the much needed solutions in
the near future.

Finally, we would like to reiterate a key difference between
the traditional atom-atom forcefield®® and MLFF. In the

9106 | Phys. Chem. Chem. Phys., 2025, 27, 9095-9111

View Article Online

PCCP

language of artificial intelligence, the former can be considered
as ‘rule-based’ models, where there is a clear physical motiva-
tion behind the design of each functional employed in the
forcefield for computing the strengths of atom-atom interac-
tions, such as the two-body bond stretching and dispersion
interactions. In contrast, MLFF developed based on neural
network architecture is largely relying on information exchange
to surrogate a high-dimensional function, or an ansatz, that
best describes the behaviours of the training data. In this
regard, the development and adaptation of explainable artifi-
cial intelligence in computational chemistry and materials
science will be an important avenue to explore for advancing
our understanding of the structure-property relationships for
functional materials at the atomistic level.’®

5 Methodologies
5.1 Ab initio calculations

All DFT calculations were performed using the Vienna Ab initio
Simulation Package (VASP)”” with the standard projector aug-
mented wave (PAW) method®® and the PBE -(Perdew-Burke-
Ernzerhof)®® exchange-correlation functional. We employed
the GW-version of the pseudopotential for each element at an
energy cut-off of 500 eV. Geometry optimisations were per-
formed only to relax the atomic positions while keeping the
lattice constants unchanged, such that the latter are consistent
across all training/validation data. The optimisations were
terminated when the energy difference between two successive
steps is below 10~* eV. All calculations were performed without
spin polarisation and only a single I'-centered K-point was
adopted in order to speed up the computation of a large set
of structures. The K-point setting was chosen by considering
that the LLZO structures are of a large unit cell with lattice
constants a ~12-14 A.

To generate the data for training the MLFF for MD simula-
tions, one structure of cubic LLZO with an Li-site occupancy of
12: 44 was first randomly selected. Then, an AIMD simulation
was carried out from 10 to 2610 K at 1 fs per step for 5.2 ps
using the velocity-scaling algorithm to generate a total of 5200
frames for model training and validations. A single unit cell of
LLZO is used for AIMD and its lattice constants were kept fixed
during the simulation. To achieve a stable MD run using MLFF
at a target temperature T, it is critical that the MLFF model can
learn the topology of the PES over an extensive energy range,
such that the model ‘knows’ how to restore to a stable structure
if some overly distorted structures are generated during the MD
run. This can be achieved by including structures that have
been sampled over a wide temperature range in AIMD to
generate the data to train the MLFF for MD simulations.”®
For benchmarking the phonon DOS using VACF, AIMD simula-
tions were performed under the NVE ensemble using the
velocity Verlet algorithm at the target temperatures at 1 fs per
step for 4 ps. To further test the model transferability for
running MD simulations on other structures in the 1244 opt
set (see Section 5.2 for details), 50 structures were randomly

This journal is © the Owner Societies 2025
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selected and AIMD simulations were performed under the NVT
ensemble at 320 K for 4 ps at 1 fs per step, using an Anderson
thermostat with a collision probability of 0.5. Note that the
AIMD trajectories generated under this ensemble are not
suitable for computing the phonon DOS, because the atomic
forces are ‘contaminated’ by the coupling to the heat bath. As
such, they will only be used for comparing the accuracies of
energies and atomic forces predicted by the MLFF model.

5.2 Training of the SO3krates networks

The SO3krates models are trained with the following settings.
The dimension of the feature vector F is 132, and & = 4 heads
are used in the message-passing updates. The cut-off distance
Tewt = 5 A is chosen for identifying neighbouring atoms. [ =
{1,2,3} is selected for constructing the EVs.

For the task of structural optimisations, the SO3krates model
is trained with 7= 2 layers. The 12_44_opt set is used for model
training and validation. Briefly, all cubic LLZO structures with a
24d:96h site occupancy ratio of 12:44 are retrieved from the
dataset published by Holland et al.** Then the atomic positions
in each structure are randomly disturbed using a method
implemented in the pymatgen Python APL'° before it is
optimised to its nearby local minimum using DFT. The random
distributions help to generate a more diversified set of atomic
environments for fitting a robust MLFF model. In total, the
12_44_opt contains 95271 data points, and 1000 are selected
for model validation. Model training is terminated after 500
epochs.

For the task of molecular dynamics simulations, the SO3xk-
rates model is trained with T = 3 layers, with 1000 data points
used for training and 1200 for validation. Model training is
terminated after 1000 epochs.

All data points for training and validation were randomly
selected from the full (structural optimisation or AIMD trajec-
tories) set without applying any filtering procedure. We note
that more informed and robust strategies to select training data
exist, for example, in our previous work, " structural descriptor
and kernel-based ML combined with furthest-point sampling
was applied to select a set of structurally most distinctive
molecular crystals to enhance the model accuracy while redu-
cing the amount of the training data used. However, using this
approach would require the hyperparameters for the kernel to
be separately optimised to achieve the best expressivity. Com-
putationally, large amounts of disc storage and memories are
also necessary to store the pre-computed structural descriptors
and/or kernels, which can be particularly significant for LLZO
with more than 100 atoms in the unit cell. This means separate
and devoted efforts are required to implement this workflow. As
such, we did not implement the furthest-point sampling strat-
egy to optimise the training and validation sets in this work,
but it is worth exploring in the future.

All models are trained by minimising the following loss
function that combines the energy and atomic forces:

E:(lfﬁ)(EfEDFT)er%i > (F,i—F,i‘DFTY, (16)

k=1 ie{xy,z}
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in which the trade-off parameter f = 0.99. The ADAM (adaptive
moment estimation)'®® optimiser is used with an initial learn-
ing rate of 10, which is decreased by a factor of 0.9 for every
10" training steps. All model trainings are carried out with a
single NVIDIA V100 GPU.

5.3 Structural optimisations and MD simulations with MLFF

Structural optimisations are performed using the limited-memory
Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm'® to opti-
mise the atomic positions, and are terminated when the
maximum atomic force is smaller than 0.08 eV A~'. MD
simulations at the target temperature are carried out under
the NVE ensemble for 6 ps at 1fs/step using the velocity
Verlet algorithm.
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